Carbon Dioxide Laser and Hydrogen Peroxide Conditioning in the Treatment of Periimplantitis: An Experimental Study in the Dog

Leif G. Persson, DDS, PhD;* Jafaar Mouhyi, DDS, PhD;[†] Tord Berglundh, DDS, PhD;* Lars Sennerby, DDS, PhD;[†] Jan Lindhe, DDS, PhD*

ABSTRACT

Background: Various methods have been applied for the treatment of periimplantitis lesions. It has been reported that the procedures used have been effective in eliminating the inflammatory lesion but that re-osseointegration to the oncecontaminated implant surface has been difficult or impossible to achieve.

Purpose: The aim of this study was to examine the use of carbon dioxide (CO_2) laser in combination with hydrogen peroxide in the treatment of experimentally induced periimplantitis lesions.

Materials and Methods: Three dental implants (ITI Dental Implant System^{*}, Straumann AG, Waldenburg, Switzerland) were placed in each side of the edentulous mandible of four beagle dogs. Implants with a turned surface and implants with a sand-blasted large-grit acid-etched (SLA) surface (SLA^{*}, Straumann AG, Waldenburg, Switzerland) were used. Experimental periimplantitis was induced during 3 months. Five weeks later each animal received tablets of amoxicillin and metronidazole for a period of 17 days. Three days after the start of the antibiotic treatment, full-thickness flaps were elevated, and the granulation tissue in the bone craters was removed. In the two anterior implant sites in both sides of the mandible, a combination of CO_2 laser therapy and application of a water solution of hydrogen peroxide was used. The implant in the posterior site of each quadrant was cleaned with cotton pellets soaked in saline. Biopsy specimens were obtained 6 months later.

Results: The amount of re-osseointegration was 21% and 82% at laser-treated turned-surface implants and SLA implants, respectively, and 22% and 84% at saline-treated turned-surface implants and SLA implants, respectively.

Conclusions: The present study demonstrated the following: (1) a combination of systemic antibiotics and local curettage and débridement resulted in the resolution of experimentally induced periimplantitis lesions; (2) at implants with a turned surface, a small amount of re-osseointegration was observed at the base of the bone defects whereas a considerable amount of re-osseointegration occurred at implants with an SLA surface; and (3) the use of CO_2 laser and hydrogen peroxide during surgical therapy had no apparent effect on bone formation and re-osseointegration.

KEY WORDS: antibiotics, biopsy, dental implants, dogs, histology, surgery, titanium

V arious methods have been applied for the treatment of periimplantitis lesions.¹⁻⁶ It has been reported that the procedures used have been effective

©2004 BC Decker Inc

in eliminating the inflammatory lesion but that reosseointegration to the once-contaminated implant surface has been difficult or impossible to achieve. In a recent experimental study on treatment of periimplantitis lesions, it was suggested that "neither the chemical nor the mechanical cleaning procedures hitherto used may recondition the once contaminated implant surface to an extent that will allow re-osseointegration to occur."⁷

Limited information is available in regard to the surface characteristics of contaminated implants. Mouhyi and colleagues⁸ examined failed Brånemark

^{*}Department of Periodontology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden; [†]Department of Biomaterials/Handicap Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden

Reprint requests: Leif G. Persson, DDS, PhD, Department of Periodontology, The Sahlgrenska Academy at Göteborg University, Box 450, SE-405 30 Göteborg, Sweden; e-mail: leif.persson@ odontologi.gu.se

System[®] implants (Nobel Biocare AB, Göteborg, Sweden) with scanning electron microscopy (SEM) and x-ray–induced photoelectron spectroscopy (XPS). The authors claimed that the implant harbored debris and contaminants that included remnants of blood, fibers, and microorganisms. The XPS analyses revealed that the surface layer of contaminated implants contained small amounts of titanium and were about 75% carbon, 18% oxygen, and 4% nitrogen whereas uncontaminated implant surfaces were 17% titanium, 25% carbon, 55% oxygen, and 3% nitrogen.

Different techniques for cleaning contaminated titanium surfaces and for reinstituting a surface layer that is comparable to a pristine implant surface have been evaluated. The effect of applying carbon dioxide (CO_2) laser and hydrogen peroxide solution to a contaminated titanium surface was examined in vitro by Mouhyi and colleagues.9 They attached titanium foils to the dentures of two patients. The foils were removed after 24 hours, placed in a bacterial culture solution, and incubated at 37°C for 24 hours. Different cleaning procedures were tested, including rinsing with citric acid, hydrogen peroxide solutions, and water, followed by the application of CO_2 laser. The foils were examined with SEM and XPS techniques. It was reported that treatment with CO₂ laser and hydrogen peroxide solutions resulted in a surface containing low levels of titanium and oxygen but high levels of carbon in comparison to pristine titanium foils. The aim of the present experiment was to further study the use of CO₂ laser in combination with

hydrogen peroxide in the treatment of experimentally induced periimplantitis lesions.

MATERIALS AND METHODS

The outline of the experiment (Figure 1) has been previously described.¹⁰ In brief, three solid-screw 8.0×3.3 mm dental implants (ITI Dental Implant System[®], Straumann AG, Waldenburg, Switzerland) were placed in each side of the edentulous ridge of the mandibles of four beagle dogs. Implants used in the left side were designed with a turned surface whereas implants with a sand-blasted large-grit acid-etched (SLA) surface were used in the right side. The implants were installed in such a way that the borderline between the intraosseus and transmucosal part of the implant coincided with the bone crest. Some surface characteristics of the two types of implants used in the present study were recently reported on.¹¹ The Sa values were $0.35 \pm 0.17 \ \mu m$ for the turned-surface implants and $2.29 \pm 0.59 \ \mu m$ for the SLA implants.

After implant installation a plaque control program including tooth and implant cleaning twice per week was initiated. Experimental periimplantitis was induced 3 months after implant installation by placing cotton ligatures in a submarginal position around the implants and allowing plaque formation.¹² Three months later, when radiographic examination of the implant sites disclosed that approximately 50% of the initial bone support had been lost, the ligatures were removed.

An antibiotic regimen was initiated 1 month later. Each animal received amoxicillin (Imacillin[®]

Bone marker

х

Figure 1 Design of the experiment. Ligatures were placed around the implants at 0 months (+ lig.) and were removed at 3 months (- lig.). Treatment was performed at 4 months, and a bone marker was injected at 4.5 months. Biopsies were performed at 10 months.

[AstraZeneca, Södertälje, Sweden], 250 mg twice per day) and metronidazole (Elyzol[®] [Dumex, Copenhagen, Denmark], 250 mg twice per day) tablets for 17 days.

Three days after the start of the antibiotic regimen, buccal and lingual full-thickness flaps were elevated. The granulation tissue in the bone craters around the implants was removed with curettes, and the exposed implant surfaces were treated in the following manner: In the two anterior implant sites in both sides of the mandible, a combination of laser therapy and the application of a 10 mM water solution of hydrogen peroxide was used. The CO_2 laser unit (Lasersat 20^{TM} , Satelec, Mèrignac, France) had the following settings: power, 8 W; pulse width, 10 ms; frequency, 20 Hz; and irradiation cycle, 5 seconds. The generated wavelength of the CO₂ laser was 10.6 µm, and the beam diameter was 300 nm at the focal point located 12 mm in front of the probe. The CO₂ laser was applied during continuous irrigation with a 100 mM solution of hydrogen peroxide (Figure 2). The implant in the posterior site of each quadrant was carefully cleaned with cotton pellets soaked in saline. The mucoperiosteal flaps were repositioned to cover all implants and were closed with mattress and interrupted sutures.

Two weeks after surgery the sutures were removed, and a fluorochrome (oxytetracycline [Oxysentin[®], Ciba-Geigy AG, Basel, Switzerland], 16 mg/kg of body weight) was injected intravenously. The fluorochrome administration was repeated 24 hours later. Three weeks after suture removal, the marginal portion of all implants had penetrated the mucosa, and a plaque

Figure 2 Clinical photograph of implant sites in the left side (turned implants) when the flap has been elevated. The head of the laser instrument is seen to the left.

control program consisting of tooth and implant cleaning was initiated.

Six months after the surgical therapy (month 10; see Figure 1), the animals were sacrificed with an overdose of Pentothal[®] Natrium (Abbot Laboratories, Chicago, IL, USA) and perfused with a fixative¹³ through the carotid arteries.

The mandibles were removed, and block biopsy specimens of each experimental site were dissected. The biopsy specimens were prepared for ground sectioning according to methods described by Donath and Breuner.¹⁴ The blocks were first divided in a mesiodistal direction with a cutting grinding unit (EXAKT[®], EXACT Apparatebau GmbH & Co., Norderstedt, Germany). From each buccal and lingual portion, one mesiodistal section was prepared. The remaining buccal and lingual portions of the blocks were cut in a buccolingual direction. All sections were reduced to a thickness of about 20 µm. From each experimental site, therefore, six sections representing the mesial, distal, buccal, and lingual aspects of the implant were produced.

The histologic examination was performed with a Leica DM-RBE^{*} microscope (Leica Mikroskopie und Systeme GmbH, Wetzlar, Germany) equipped with an image analysis system (QWin, Leica Microsystems AG, Wetzlar, Germany). The unstained sections were examined under fluorescence light and with a filter that was compatible with the fluorochrome. The location of the fluorochrome in the sections indicated the base and the lateral wall of the infrabony defect immediately after treatment (Figures 3B and 4B). The base of the defect (BD) was identified, and the size of the defect area was assessed.

The sections were stained in toluidine blue. The following landmarks were identified and used for the linear measurements (Figure 5): the implant shoulder (IC), the marginal level of bone in contact with the implant (CBI), the marginal portion of the periimplant mucosa (PM), the apical termination of the barrier epithelium (aJE), and the marginal position of the lateral bone wall of the defect (BC).

The bone tissue was further examined by use of a morphometric technique. A lattice composed of 100 points (\times 200 magnification) was superimposed (1) over the regenerated bone in the previous defect and (2) in a region occupied by "old bone" in the apical part of the implant. The proportions occupied by lamellar bone, bone marrow, and woven bone were

Figure 3 Mesiodistal ground section of an implant with the adjacent periimplant tissues. *A*, Light microscopic photo of an implant with a sand-blasted large-grit acid-etched surface. *Yellow arrow* indicates the most coronal bone in contact with the implant (CBI); *red arrow* indicates the base of the defect (BD), identified by the position of the bone marker in Figure 3B. Notice the direct contact between the newly formed bone and the implant surface (\times 25 original magnification; stained with toluidine blue). *B*, Photograph made with fluorescent light. Bone marker (oxytetracycline) seen as yellow areas identifies the apical and lateral borders of the produced bone defect (*red arrow*) (\times 25 original magnification).

assessed. The percentage of bone-to-implant contact was determined within the "regenerated" area.

Mean values and standard deviations for the different variables were calculated for each implant unit and animal.

RESULTS

Histologic Examination and Measurements

New bone formation had occurred in the infrabony defects of all experimental sites. In sections from sites including the SLA implants, the newly formed bone was in direct contact with the implant surface (see Figure 3A). This re-osseointegration occurred at both laser- and saline-treated surfaces. In sites harboring implants with turned surfaces, however, a 50 to 200 μ m wide zone of connective tissue was consistently found

to be present between the newly formed bone and the titanium surface (see Figure 4A).

The histometric measurements are presented in Table 1. The distance between the soft tissue margin and the implant shoulder (PM to IC) varied from 1.19 to 1.47 mm. Although the dimension of the connective-tissue interface (aJE to CBI) was similar at all laser- and saline-treated sites, the barrier epithelium (PM to aJE) appeared to be longer at sites exposed to laser therapy than at saline-treated sites (2.18 mm vs 1.87 mm at turned implants and 2.31 mm vs 1.87 mm at SLA implants).

The depth of the infrabony defect (BC to BD) that was assessed with the fluorochrome marker as reference was 2.03 to 2.12 mm at the turned implants and 1.45 to 1.72 mm at the SLA implants. At the sites with turned implants, laser therapy and saline therapy resulted in

Figure 4 Mesiodistal ground section of an implant with the adjacent periimplant tissues. *A*, Light microscopic photo of an implant with a turned surface. *Yellow arrow* indicates the most coronal bone in contact with the implant (CBI); *red arrow* indicates the base of the defect (BD), identified by the position of the bone marker in photo 4B. Notice connective tissue separating the bone from the implant surface (\times 25 original magnification; stained with toluidine blue). *B*, Photograph made with fluorescent light. Bone marker (oxytetracycline) seen as yellow areas identifies the apical and lateral borders of the produced bone defect (*red arrow*) (\times 25 original magnification).

re-osseointegration of 0.46 mm (21%) and 0.42 mm (22%), respectively. The corresponding figures for the sites with SLA implants were 1.13 mm (74%) for laser therapy and 1.22 mm (84%) for saline therapy.

The size of the defect that developed during the ligature breakdown period varied between 4.20 and 5.25 mm². The amount of bone fill that occurred following the different treatment procedures varied from 3.18 to 3.98 mm². This amount of bone fill corresponded to 72 to 82% of the preexisting defect area.

The morphometric measurements are presented in Table 2. On average the regenerated bone was 44.5 to 50.5% lamellar bone, 37.5 to 45.8% woven bone, and 6.8 to 12.4% bone marrow. The corresponding figures describing the "old bone" lateral to the defect area were 85.8 to 89.1% lamellar bone and 10.9 to 14.2% bone marrow.

For laser-treated sites the percentage of boneto-implant contact (Table 3) within the "reosseointegration zone" was 59.3% at turned implants and 72.1% at SLA implants. At the saline-treated sites the corresponding respective percentages were 67.6% and 62.9%.

DISCUSSION

The present study demonstrated that a combination of systemic antibiotics and local curettage and débridement resulted in the resolution of experimentally induced periimplantitis lesions. At implants with a turned surface, a small amount of re-osseointegration was observed at the base of the bone defects whereas a considerable amount of re-osseointegration had occurred at implants with an SLA surface. Further, the use of CO_2 laser and hydrogen peroxide during

Figure 5 Schematic drawing illustrating the landmarks used for the histometric measurements. (aJE = level of the apical termination of the barrier epithelium; BC = level of the lateral bone wall of the defect; BDh = base of the defect; CBI = marginal level of bone in contact with the implant; DA = defect area; IC = implant shoulder; PM = marginal portion of the periimplant mucosa).

surgical therapy had no apparent effect on bone formation and re-osseointegration.

The effect of the application of a CO_2 laser and hydrogen peroxide solution to a contaminated titanium surface was examined in vitro by Mouhyi and colleagues,⁹ who tested different cleaning procedures, including rinsing with citric acid, hydrogen peroxide solutions, and water, followed by the application of CO₂ laser on titanium foils. They reported that the treatment with CO₂ laser and hydrogen peroxide solutions resulted in a surface containing low levels of titanium and oxygen but high levels of carbon, in comparison to pristine titanium foils. Mouhyi and colleagues⁹ also reported that the best results were obtained when a combination of laser, hydrogen peroxide, and citric acid was used. The results from the present experiment showed that a contaminated surface does not prevent re-osseointegration, at least not at implants with a rough surface. This observation is in agreement with findings reported by Deppe and colleagues.¹⁵ They placed implants with a plasma-sprayed surface in the mandibles of beagle dogs. Experimental periimplantitis that resulted in the loss of 30 to 50% of the periimplant bone was induced, and three different treatment procedures were applied. The implants in one group were decontaminated with an air-powder abrasive unit while the implants in a second group were treated with a CO₂ laser unit (continuous wave, 2.5 W, and duration of 12×5 seconds). In the third group of implants, a combination of the air-powder treatment and laser treatment was applied. Deppe and colleagues¹⁵ reported that after a healing period of 4 months, newly formed bone was found to be in contact with the implants in all treatment groups. Referring to an

Table 1 Results of Histometric Measurements at Laser-Treated and Saline-Treated Implants: Mean Values and Standard Deviations*						
	Turned Implants		SLA Implants			
	Laser	Saline	Laser	Saline		
IC–PM (mm)	1.19 (0.34)	1.33 (0.21)	1.47 (0.26)	1.31 (0.45)		
PM–aJE (mm)	2.18 (0.65)	1.87 (0.35)	2.31 (0.37)	1.71 (0.46)		
aJE–CBI (mm)	1.95 (0.15)	1.90 (0.39)	1.80 (1.09)	1.62 (0.62)		
BC–BD (mm)	2.12 (0.35)	2.03 (0.52)	1.77 (0.82)	1.45 (0.33)		
Re-osseointegration (mm)	0.46 (0.14)	0.42 (0.13)	1.13 (0.32)	1.22 (0.35)		
Re-osseointegration	21 (9.0)	22 (16.7)	74 (30.0)	84 (8.6)		
(% of bone defect)						
Defect area (mm ²)	5.05 (1.81)	5.34 (1.19)	5.14 (2.68)	4.20 (0.93)		
Bone fill (mm ²)	3.54 (1.37)	3.81 (0.84)	3.98 (1.53)	3.18 (0.57)		
Bone fill (%)	75.0 (6.7)	72.0 (3.9)	82 (12.2)	76.0 (10.1)		

SLA = sand-blasted large-grit acid-etched.

*Values in parentheses represent standard deviations.

Periimplant Bone Tissue at Laser-Treated and Saline-Treated Implants: Mean Values and Standard Deviations*						
	Turned I	Turned Implants		SLA Implants		
	Laser	Saline	Laser	Saline		
Regenerated bone (%)						
Lamellar bone	48.3 (7.2)	50.5 (14.6)	44.5 (14.1)	50.1 (7.4)		
Bone marrow	11.1 (5.6)	6.8 (4.3)	9.6 (4.6)	12.4 (3.7)		
Woven bone	40.4 (11.4)	42.6 (13.4)	45.8 (14.9)	37.5 (5.1)		
"Old bone" (%)						
Lamellar bone	86.3 (6.0)	89.1 (3.5)	86.6 (4.8)	85.8 (8.2)		
Bone marrow	13.7 (5.4)	10.9 (3.5)	13.4 (4.9)	14.2 (6.2)		
Woven bone	0	0	0	0		

Table 2 Res	sults of Morpho	metric Measur	ements of
Periimplant	t Bone Tissue at	Laser-Treated	and Saline-Treated
Implants: N	lean Values and	l Standard Dev	iations*

SLA = sand-blasted large-grit acid-etched.

*Values in parentheses represent standard deviations.

experimental study in dogs, Kolonidis and colleagues¹⁶ reported that osseointegration can occur on implant surfaces that initially were exposed to plaque and were subsequently cleaned. In the study referred to, implants with a turned surface were partially installed, and plaque was allowed to accumulate on the exposed implant surfaces for 5 weeks. Following cleaning with either citric acid or hydrogen peroxide, the implants were retrieved and were reinstalled in newly prepared sites on the contralateral side of the mandible. After healing, histologic evaluation revealed that all treated implant surfaces were associated with direct bone-to-implant contact. This finding is in contrast to reported results from the treatment of experimental periimplantitis on implants with a turned surface.³ In this context it is important to note that no defects were present around the implants in the study by Kolonidis and colleagues¹⁶ whereas crater-formed defects are present in experimental periimplantitis models.³

Table 3 Percentage of Bone-to-Implant Contact within the Zone of Re-osseointegration at Laser-Treated and Saline-Treated Implants: Mean Values and Standard Deviations*				
Turned Implants SLA Implants				
Laser	Saline	Laser	Saline	
59.3 (8.4)	67.6 (10.3)	72.1 (12.4)	62.9 (2.1)	

SLA = sand-blasted large-grit acid-etched.

*Values in parentheses represent standard deviations.

In the present study, implant surfaces were subjected to the combination of CO₂ laser and hydrogen peroxide in an attempt to improve conditions for reosseointegration. It has been suggested that CO₂ laser has the ability to sterilize a surface by a temperature increase that leads to the destruction of cells and microorganisms.¹⁷ The use of CO₂ laser together with the application of hydrogen peroxide was based on the theory that the oxide layer can be restored by an increase in temperature and by the presence of an oxidant.¹⁸ Mouhyi and colleagues¹⁹ studied the soft tissue response to titanium surfaces that were cleaned with the combined use of hydrogen peroxide and CO₂ laser. Contaminated and subsequently cleaned titanium cover screws were placed in the abdominal walls of rats, and the thickness of a surrounding fibrous capsule and the presence of macrophages were analyzed. It was reported that the combined CO₂ laser and hydrogen peroxide decontamination procedure resulted in a significant reduction in the thickness of fibrous capsules and in the number of macrophages when compared to the untreated contaminated controls.

The current study showed that re-osseointegration occurred only to a small extent at implants with a turned surface whereas a high degree of re-osseointegration was observed at the SLA implants. No differences regarding re-osseointegration were detected between laser-treated and saline-treated sites in any of the implant groups. The apparent lack of effect of the combined application of CO₂ laser and hydrogen peroxide in the present study may thus indicate that

surface characteristics are of more importance for reosseointegration than is a possible "decontamination" effect from laser therapy.

One of the problems related to different treatment procedures for contaminated implant surfaces is the risk of tissue damage caused by an increase in temperature. Eriksson and Albrektsson²⁰ studied the influence of temperature increase on bone tissue in rabbits. They reported that a relatively small increase in temperature from 47°C to 50°C during the course of 1 minute resulted in bone tissue damage. In an in vitro study, however, Mouhyi and colleagues²¹ found that the temperature increase during surface decontamination with a CO_2 laser unit is small and that there is a low risk of tissue damage. The observation in the present study that an implant site treated by CO₂ laser in combination with a hydrogen peroxide solution healed with a high degree of re-osseointegration at SLA implants may support such a conclusion.

CONCLUSIONS

The present study demonstrated the following: (1) a combination of systemic antibiotics and local curettage and débridement resulted in the resolution of experimentally induced periimplantitis lesions; (2) at implants with a turned surface, a small amount of re-osseointegration was observed at the base of the bone defects whereas a considerable amount of re-osseointegration occurred at implants with an SLA surface; and (3) the use of CO_2 laser and hydrogen peroxide during surgical therapy had no apparent effect on bone formation and re-osseointegration.

ACKNOWLEDGMENT

This study was supported by grants from the ITI Foundation, Waldenburg, Switzerland.

REFERENCES

- Günay H, Skuballa C, Neukam FW. Experimentelle Untersuchung zur Behandlung von periimplantären Knochendefekten. Zeitung für Zahnärtztliches Implantologie 1991; 7: 16–24.
- Persson LG, Ericsson I, Berglundh T, Lindhe J. Guided bone generation in the treatment of periimplantitis. Clin Oral Implants Res 1996; 7:366–372.
- 3. Persson LG, Araújo M, Berglundh T, Gröndahl K, Lindhe J.

Resolution of periimplantitis following treatment. An experimental study in the dog. Clin Oral Implants Res 1999; 10:195–203.

- Hanisch O, Tatakis DN, Boskovic MM, Rohrer MD, Wikesjö UME. Bone formation and re-osseointegration in peri-implantitis defects following surgical implantation of rhBMP-2. Inter J Oral Maxillofac Implants 1997; 12: 604–610.
- Hürzeler MB, Quinones CR, Schüpbach P, Morrison EC, Caffesse RG. Treatment of peri-implantitis using guided bone regeneration and bone grafts, alone or in combination, in beagle dogs. Part 2: Histologic findings. Int J Oral Maxillofac Implants 1997; 12:168–175.
- Wetzel AC, Vlassis J, Hämmerle CHF, Lang NP. Attempts to obtain re-osseointegration following experimental periimplantitis in dogs. Clin Implants Res 1999; 10:111–119.
- Persson LG, Berglundh T, Sennerby L, Lindhe J. Reosseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res 2001; 10:111–119.
- Mouhyi J, Sennerby L, Pireaux JJ, Dourov N, Nammour S, Van Reck J. An XPS and SEM evaluation of six chemical and physical techniques for cleaning of contaminated titanium implants. Clin Oral Implants Res 1998; 9:185–194.
- Mouhyi J, Sennerby L, Wennerberg A, Louette P, Dourov N, Van Reck J. Re-establishment of the atomical composition and the oxide structure of contaminated titanium surfaces by means of CO₂ laser and hydrogen peroxide. An in-vitro study. Clin Implant Dent Relat Res 2000; 2: 190–202.
- Persson LG, Ericsson I, Berglundh T, Lindhe J. Osseointegration following treatment of peri-implantitis and replacement of implant components. An experimental study in the dog. J Clin Periodontol 2001; 28:258–263.
- Sennerby L, Persson LG, Berglundh T, Wennerberg A, Lindhe J. Implant stability during initiation and resolution of experimental peri-implantitis. An experimental study in the dog. Clin Implant Dent Relat Res 2005. (In press)
- Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello CP. Experimental breakdown of periimplant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992; 3:9–16.
- Karnovsky MJ. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 1965; 3:112–119.
- 14. Donath K, Breuner GA. A method for undecalcified bones and teeth with attached soft tissues. The Säge-Schliff technique. J Oral Pathol 1982; 11:318–325.
- Deppe H, Horch H-H, Henke J, Donath K. Peri-implant care of ailing implants with the carbon dioxide laser. Int J Oral Maxillofac Implants 2001; 16:659–667.
- 16. Kolonidis SG, Renvert S, Hämmerle CHF, Lang NP, Harris D, Claffey N. Osseointegration on implant surfaces

previously contaminated with plaque. An experimental study in the dog. Clin Oral Implants Res 2003; 14:373–380.

- Hall RR. The healing of tissues incised by a carbon-dioxide laser. Br J Surg 1971; 58:222–225.
- Kasemo B, Lausmaa J. Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocompat 1986; 2:235–338.
- Mouhyi J, Sennerby L, Van Reck J. The soft tissue response to contaminated and cleaned titanium surfaces using CO₂ laser, citric acid and hydrogen peroxide. An experimental

study in the rat abdominal wall. Clin Oral Implants Res 2000; 11:93–98.

- 20. Eriksson A, Albrektsson T. Temperature threshold levels for heat induced bone tissue injury: a vital microscopy study in the rabbit. J Prosthet Dent 1983; 50:101–107.
- Mouhyi J, Sennerby L, Nammour S, Guillaume P, Van Reck J. Temperature increases during surface decontamination of titanium implants using CO₂ laser. Clin Oral Implants Res 1999; 10:54–61.

Copyright of Clinical Implant Dentistry & Related Research is the property of B.C. Decker Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.