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ABSTRACT

Background: Differences in implant microtexture are important in conditioning the bone response around dental implants.

Purpose: The aim of the present study was an evaluation of the bone response in machined (M), blasted with apatitic
calcium phosphate (tricalcium phosphate/hydrossyapatite [HA] blend) particles (resorbable blast texturing [RBT]), and
coated with HA implants.

Methods: A total of 48 (16 M, 16 RBT, and 16 HA) threaded screw-shaped implants were inserted into the tibia of 12 rabbits.
The specimens were retrieved after 1, 2, 4, and 8 weeks and processed for histology.

Results: All experimental groups showed an increase of the bone-implant contact percentages through the study period.
Higher and highly statistically significant differences were found in the percentages of bone observed in the concavities
rather than in the convexities of the implants retrieved after 1, 2, and 4 weeks, while no significant differences were found
after 8 weeks. In the different time periods, higher percentages of bone-implant contact were found in the RBT and
HA-coated implants both in the concavities and in the convexities, but these differences were not statistically significant.

Conclusions: The newly formed bone present in the concavity of the threads was not influenced by the implant surface in
the first healing period, while after 4 to 8 weeks, the percentage of bone observed in the concavities and convexities was
similar. Additional histological studies are necessary to further evaluate the critical role of the concave geometry in bone
differentiation and formation around dental implants.
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INTRODUCTION

Currently, there is a strong interest in the biomate-

rials surface properties.1 Different approaches are being

investigated to try to obtain an ideal implant surface that

is conducive to bone formation in the peri-implant

region.2 The tissue response to biomaterials is influ-

enced by nano, micro, and macrotopography of their

surface.3 Most probably, there may be an optimal

microroughness that affects the initial healing pro-

cesses.4 The optimal surface roughness (Ra) has not

been determined yet, even if Han and colleagues have

reported that an Ra of 1.5 mm produced a stronger bone

response than smoother or rougher surfaces.5 The aim is

to optimize and possibly shorten the time of osseointe-

gration.3 A considerable variation exists in surface prop-

erties, such as topography, roughness, oxide thickness,

oxide composition, and microstructure.1,5,6 Cells have

been shown to relate to different types of surfaces:

macrophages, for example, have been shown to affect

“rugophilia,” while fibroblasts did not adhere to the

same surfaces.4 Stem and differentiating cells feel the

substratum, and this fact can mean that migrating and
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attaching cells are able to transform mechanical cues

into soluble molecular signals.7 A large series of implants

with different surfaces have been put on the market. The

implant surface can be machined (M), or it can be

treated with subtractive treatments, such as sandblasting

or acid-etching, or with addictive treatments, such

as, for example, titanium plasma spray.8,9 Moreover,

grooves can be added to some portions of the implant

surface to try to improve the implant initial primary

stability.3 These grooves can also have an influence on

cell orientation and migration by the so-called contact

guidance.3 The migration, attachment, and spreading

of the osteogenic cells toward the implant surface is of

fundamental importance in bone regeneration around

the implants; also, the formation of a scaffold composed

by fibrin and the activation of the blood cells located at

the implant surface most probably plays a role in the

healing processes.4,10,11 The microtexture of the implant

surface seems to influence the attachment and growth

of bone cells.12,13 Microroughened surfaces have been

shown to present more platelets than M surfaces,10 and

the roughest surfaces showed a higher rate of cell attach-

ment than other types of surfaces.14 Other researchers

have demonstrated that a better bone fixation exists for

rougher surfaces.14 An abrasive blasting of an implant

surface seems to increase the Ra, to remove the metal

surface contaminants, and to increase the reactivity of

the implant surface.15 In a previous study on immedi-

ately loaded implants (Maestro, BioHorizons®, Birming-

ham, AL, USA) retrieved from man, we did report a

striking finding, that is, the presence of newly formed

bone inside the thread concavities even at a distance

from preexisting bone.16 We thought that this finding

could be explained by the studies of van Eeden and

Ripamonti17 and of Ripamonti and colleagues18–19

who found that the surface geometry of a material

(hydroxyapatite [HA]) was important in the bone

formation and that bone formation could initiate

in concavities rather than on convexities of the HA

substratum. We further hypothesized that the thread

concavities of these implants, measuring about 500 mm

in diameter and 500 mm in depth, could be of the right

size and shape to be conducive to bone formation.19

The present study was planned to see if these

anedoctal histological results could be confirmed or dis-

proved in an animal study using the same implants with

the same thread concavities; we decided also to see if

the surface characteristics had also a role in the bone

formation in these concavities. Therefore, the aim of

the present study was then a comparison of the bone

response to threaded implants inserted in rabbit tibia

with three different surfaces (M, blasted with HA

particles, and HA coated).

MATERIALS AND METHODS

Thread-shaped M implants, implants blasted with

apatitic calcium phosphate (tricalcium phosphate/HA

blend) particles (resorbable blast texturing [RBT]), and

HA-coated implants made of titanium alloy (Specifica-

tion for Wrought Titanium 6AL-4V ELI Alloy for Surgi-

cal Implant Applications [ASTM] F136) (Maestro) were

used in this study. The particle size and blast parameters

of the RBT process are proprietary. After the blasting

procedure, the surface was then cleaned according to

internal cleaning procedures and ASTM F86-06 (stan-

dard practice for surface preparation and marketing of

metallic surgical implants).

Twelve New Zealand white mature male rabbits

were used in this study. The protocol of the study was

approved by the Ethical Committee of University of

Chieti-Pescara, Italy. The implants were inserted into

the tibia. Each rabbit received four implants, two

implants in the right tibia, and two in the left tibia. A

total of 48 implants (16 M, 16 RBT, and 16 HA) were

inserted. The rabbits were anesthetized with intramus-

cular injections of fluanizone (0.7 mg/kg body weight)

and diazepam (1.5 mg/kg body weight), and local anes-

thesia was given using 1 mL of 2% lidocain/adrenalin

solution. A skin incision with a periosteal flap was used

to expose the bone surface. The preparation of the bone

site was done with burs under generous saline irriga-

tion. The implant insertion was performed by hand.

The periosteum and fascia were sutured with catgut

and the skin with silk. No complications or deaths

occurred in the postoperative period. Three animals

were killed, with an overdose of intravenous pentobar-

bital, respectively, after 1, 2, 4, and 8 weeks. A total of 48

implants were retrieved.

Specimen Processing

Implants and surrounding tissues were washed in saline

solution and immediately fixed in 4% paraformaldehyde

and 0.1% glutaraldehyde in 0.15 M cacodylate buffer

at 4°C and pH 7.4, to be processed for histology. The

specimens were processed to obtain thin ground sec-

tions with the Precise 1 Automated System (Assing,
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Rome, Italy).20 The specimens were dehydrated in an

ascending series of alcohol rinses and embedded in a

glycolmethacrylate resin (Technovit 7200 VLC, Kulzer,

Wehrheim, Germany). After polymerization, the speci-

mens were sectioned, along their longitudinal axis, with

a high-precision diamond disc at about 150 mm and

ground down to about 30 mm with a specially designed

grinding machine. A total of three slides were obtained

for each implant. The slides were stained with acid

fuchsin and toluidine blue. The slides were observed in

normal transmitted light under a Leitz Laborlux micro-

scope (Laborlux S, Leitz, Wetzlar, Germany). Histomor-

phometry of bone-implant contact percentage in the

concavities and convexities of the threads was carried

out using a light microscope connected to a high

resolution video camera (3CCD, JVC KY-F55B, Q

IMAGING, Langley, Surrey (BC), Canada) and inter-

faced to a monitor and PC (Intel Pentium III 1200

MMX, ASUS, Taipei, Taiwan, China). This optical

system was associated with a digitizing pad (Matrix

Vision GmbH, Oppenweiler, Germany) and a histo-

metry software package with image capturing capabili-

ties (Image-Pro Plus 4.5, Media Cybernetics Inc.,

Immagini & Computer Snc, Milano, Italy).

Three implant for each group were analyzed under a

Leo scanning electron microscope (Zeiss, Hallbergmoos,

Germany). Roughness measurements were performed

for all types of implants, using a Mitutoyo Surftest

211 Profilometer (Mitutoyo Corporation, Tokyo, Japan):

an average of three readings was performed for each

surface. A total of five implants for each type of surface

were analyzed.

Statistical Evaluation

The implant represented the unit of analysis. Analysis

of variance was used to test the statistical significance of

the differences among the three experimental categories

in the bone-implant contact percentages. Bonferroni-

corrected t-test for unpaired samples was employed as

post hoc test. Values of p < .05 were accepted as statisti-

cally significant.

RESULTS

Scanning Electron Microscopy

M Implants. Typical grooves produced during the

manufacturing of the implants were present (Figure 1A).

The Ra was 0.81 m.

RBT Implants. The surface was highly irregular with

many small depressions, indentations, and peaks

(Figure 1B). The Ra was 2.15 m.

HA-Coated Implants. The surface was very rough and

irregular with the presence of many depressions and

peaks (Figure 1C). The Ra was 4.15 m.

Light Microscopy

One Week (M). Only a few inflammatory cells were

present. Newly formed small bone trabeculae could be

seen growing toward the implant surface. It was possible

to observe a large number of osteoblasts in the process of

producing osteoid matrix toward the implant surface.

No osteoblasts were detected on the implant surface.

The bone-implant contact percentages in the concavities

and convexities were 9.2 1 2 and 0.2 1 0.8, respectively.

Two Weeks (M). Newly formed, small bone trabeculae

could be seen growing toward the implant surface. It was

possible to observe a large number of osteoblasts in the

process of producing osteoid matrix toward the implant

surface (Figure 2). No inflammatory cells were present.

Figure 1 A, Machined surface. Grooves produced during the manufacturing of the implants are present, ¥1000. B, RBT surface.
The surface of the implants is highly irregular with many small depressions and indentations and flatter appearing areas, ¥250.
C, HA-coated surface. The surface is highly irregular with the presence of many peaks and valleys, ¥250.
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No osteoblasts were detected on the implant surface.

The bone-implant contact percentages in the concavities

and convexities were 14 1 1 and 4 1 2.2, respectively.

Four Weeks (M). The number of osteoblasts near the

implant surface tended to decrease in a significant

way. The peri-implant bone was more mature, and the

marrow spaces were few in number. A direct contact

between implant and bone was observed only in a few

areas (Figures 3 and 4). The bone-implant contact

percentages in the concavities and convexities were

19.5 1 2.1 and 12 1 3.5, respectively.

Eight Weeks (M). Osteoblasts were absent in almost

all fields. Mature bone was in direct contact with the

implant surface, while in other areas, a gap or osteoid

matrix was interposed between mineralized bone and

implant surface. The bone-implant contact percentages

in the concavities and convexities were 26 1 3.1 and

25 1 4.2, respectively.

One Week (RBT). A large number of newly formed,

intensely stained bone trabeculae was in contact with

the implant surface. The osteoblasts produced osteoid

matrix directly on the implant surface. Lines of

cuboidal-shaped osteoblasts were visible around the

implant perimeter. In a few areas, the preexisting bone

was being resorbed by osteoclasts that were remodeling

the bone that had been prepared during the surgical

procedure. The bone-implant contact percentages in the

concavities and convexities were 10 1 2.2 and 1 1 0.8,

respectively.

Two Weeks (RBT). Newly formed, strongly stained bone

was found in close contact with the implant surface.

The bone trabeculae were wide and contained large

osteocyte lacunae. The osteoblasts were actively secret-

ing the osteoid matrix that was undergoing mineraliza-

tion in some areas (Figure 5). The bone-implant contact

percentages in the concavities and convexities were

16 1 1.4 and 6.1 1 2.3, respectively.

Four Weeks (RBT). Only in a few portions of the inter-

face actively secreting osteoblasts were observed. Mature

Figure 2 Machined implant after 2 weeks. Newly formed bone
is present in the concavities of the implant, while only a few
and very small trabeculae are present in the implant convexities.
Toluidine blue and acid fuchsin, ¥12.

Figure 3 Machined implant after 4 weeks. The quantity of
newly formed bone in the concavities of the implants is
increased and only a few bone trabeculae are present in the
implant convexities. Toluidine blue and acid fuchsin, ¥12.

Figure 4 Particular of the previous figure at higher
magnification. It is possible to observe newly formed bone in
the thread concavities. Toluidine blue and acid fuchsin, ¥100.
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bone and marrow spaces were present in other areas

of the interface (Figures 6 and 7). The bone-implant

contact percentages in the concavities and convexities

were 22.5 1 2.4 and 13 1 3.2, respectively.

Eight Weeks (RBT). An increase in the quantity of bone

around the implants was observed. Only a few osteo-

blasts were present. Mature mineralized bone and, only

in a few areas, not yet mineralized osteoid matrix were

detected at the interface. The bone-implant contact per-

centages in the concavities and convexities were 28 1 3

and 24 1 4.2, respectively.

One Week (HA). It was possible to observe a large

number of newly formed, intensely stained bone

trabeculae that were in contact with the implant

surface. The trabeculae were wide, with a woven

immature appearance, and with large osteocyte

lacunae. The osteoblasts were actively secreting the

osteoid matrix that was undergoing mineralization

in some areas. The bone-implant contact percentages

in the concavities and convexities were 13 1 2 and

1.3 1 0.8, respectively.

Two Weeks (HA). The newly formed bone was in close

contact with the HA coating. It was possible to observe a

large number of newly formed, intensely stained bone

trabeculae that were in contact with the HA coating.

Osteoid matrix was produced directly on the HA

coating. The bonding between the implant metal and

the HA coating was very tight (Figure 8). The thickness

of the HA coating of the implants appeared to be

uniform. The bone-implant contact percentages in the

concavities and convexities were 17 1 1 and 6.1 1 2.3,

respectively.

Four Weeks (HA). It was possible to observe a large

number of newly formed, intensely stained bone trabe-

culae that were in contact with the implant surface. The

bonding between the implant metal and the HA layer

was very tight and continuous, and in a few areas, the

HA was colonized by biologic fluids. A few osteoblasts

were actively secreting the osteoid matrix that was

Figure 5 RBT surface after 2 weeks. Newly formed bone is
present almost only in the concavities. Only a few bone
trabeculae are present in the convexities. Toluidine blue and
acid fuchsin, ¥12.

Figure 6 RBT surface after 4 weeks. It is possible to observe an
increase of the bone in the concavities. Toluidine blue and acid
fuchsin, ¥12.

Figure 7 Higher magnification of the previous figure. Newly
formed bone and many osteoblasts producing osteoid matrix
directly on the implant surface are present. Toluidine blue and
acid fuchsin, ¥100.
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undergoing mineralization in some areas. The bone-

implant contact percentages in the concavities and con-

vexities were 24.5 1 2.5 and 15 1 3.7, respectively.

Eight Weeks (HA). Mature, lamellar bone was present in

direct contact with the HA coating. Few osteoblasts were

observed. The bone-implant contact percentages in the

concavities and convexities were 30 1 3.1 and 29 1 1.2,

respectively (Figure 9).

Statistical Analysis

All experimental groups showed an increase of the

bone-implant contact percentages through the study

period. Higher and highly statistically significant differ-

ences were found in the percentages of bone that had

formed in the concavities rather than the convexities

of the implants in the specimens retrieved after 1

(p = .000), 2 (p = .000), and 4 weeks (p = .004). No sta-

tistically significant differences were found in the per-

centages of bone that had formed in the concavities

rather than the convexities of the implants in the speci-

mens retrieved after 8 weeks (p = .703). In the different

time periods, higher percentages of bone-implant

contact were found in the RBT and HA-coated implants

both in the concavities and in the convexities, but these

differences were not statistically significant (Table 1).

DISCUSSION

In the present study, we did find that the bone formation

started preferentially in the implant thread concavities

during the first healing period. In fact, a higher and

highly statistically significant difference was found in the

percentages of bone that had formed in the concavities

rather than the convexities of the implants in the speci-

mens retrieved after 1, 2, and 4 weeks. The percentages

of bone that had formed in the concavities and in the

convexities of the implants became similar in the speci-

mens retrieved after 8 weeks. Similar results have been

reported by Hall and colleagues and by Burgos and

colleagues who found, in a rabbit study, that new bone

formation was observed more often in the grooves and

in areas with no adjacent host bone, usually as solitary

islands with apparently no connection to surrounding

and preexisting bone.3,21,22 In Hall and colleagues’21

study, about 70% of the grooves were filled by bone.

Figure 8 HA-coated surface after 4 weeks. Newly formed bone
is in direct contact with the HA coating. Toluidine blue and
acid fuchsin, ¥50.

Figure 9 HA-coated surface after 8 weeks. Mature bone is in
direct contact with the implant surface. No differences are
present between the quantity of bone present inside the
concavities and the convexities. Toluidine blue and acid
fuchsin, ¥12.

TABLE 1 Statistical Analysis

Concavity Convexity p Value

1 week (M) 9.2 1 2 0.2 1 0.8 .000

1 week (RBT) 10 1 2.2 1 1 0.8 .000

1 week (HA) 13 1 2 1.3 1 0.8 .000

2 weeks (M) 14 1 1 4 1 2.2 .000

2 weeks (RBT) 16 1 1.4 6.1 1 2.3 .000

2 weeks (HA) 17 1 1 6.1 1 203 .000

4 weeks (M) 19.5 1 2.1 12 1 3.5 .003

4 weeks (RBT) 22.5 1 2.4 13 1 3.2 .004

4 weeks (HA) 24.5 1 2.5 15 1 3.7 .004

8 weeks (M) 26 1 3.1 25 1 4.2 .703

8 weeks (RBT) 28 1 3 24 1 4.2 .703

8 weeks (HA) 30 1 3.1 29 1 1.2 .702
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It has been demonstrated that topography may

modulate the osteoblast differentiation,8 and rougher

surfaces produced a higher degree of bone formation

around the implants.23–30 Moreover, the geometric prop-

erties of implant surfaces seem to impose also mechani-

cal restrictions on the cell cytoskeletal components that

are involved in cell spreading and locomotion.26–28 It has

been reported that the thread geometry may be related

to the amount of bone at the implant interface.31 The

Maestro system was designed to increase the surface area

of support in relation to bone density, and implants

designed for soft bone have more than 30% additional

surface area compared with other threaded implant

designs with a resulting less stress transferred to the

surrounding bone.28 Square threads, moreover, have

been reported to have a higher bone-implant contact

percentage and higher reverse-torque values compared

with V-shaped thread or reverse buttress thread.31 An

HA coating has been described to produce a faster and

greater bone-implant contact percentage and greater

reverse-torque resistance when compared with non-

coated implants.32 Threads are used to increase the

initial contact area between implant and bone, to

improve the initial stability, to enlarge the implant

surface area, and to favor dissipation of interfacial

stresses.33 The design of a dental implant should be such

that high stress peaks are avoided in the peri-implant

bone.34 One method to decrease the strain in bone is to

decrease the stress to the implant and to the prosthesis.31

As a result, conditions that increase area of support in

the bone or methods to decrease force to the prosthesis

are appropriate.31 The smaller the peak stress in the

bone, the bigger is the load that can be carried before the

onset of bone resorption.34 A square thread, such as that

of the implants used in the present study, provides an

optimized surface area for intrusive and compressive

load transmission, producing a lower strain profile

to bone.33 Bone has been shown to be the strongest in

compression and the weakest in shear loading.31 A

square threaded implant is reported to have a 10-fold

reduction in remodeling rate31 and has demonstrated

to show a higher bone to implant contact (BIC)

percentage.33

We have already seen that the geometry of the sub-

stratum affects both cell shape and movement, and, as

a result, cell function.17 Moreover, the geometry of the

substratum has been shown to profoundly influence

the expression of the chondro-osteogenic phenotype

in vivo.17,35 Biomimetic materials able to induce bone

formation through osteoinduction are changing in an

important way the techniques of bone regeneration.35 In

previous in vitro studies from our laboratory, we found

that microconcavities significantly affected dental pulp

stem cells differentiation into osteoblasts.36,37 The stem

cells challenged with concave surfaces differentiated

quicker and showed nuclear polarity, an index of secre-

tion, cellular activity, and matrix formation.36 On the

contrary, the worst cell performance was found with the

use of convex surfaces.36 In a series of experiments, most

of which on primates, Ripamonti and colleagues have

demonstrated that a specific geometry of the substratum

of HA determines bone formation by induction within

the porous HA, a phenomenon called geometric induc-

tion of bone formation.38–46 This geometric induction of

bone formation will be helpful in the engineering of

newly bone formation in the clinical context.35 Ripam-

onti has found that bone formation initiation may be

linked to concavities rather than planar or convex sur-

faces.35 He also found that the concavity is smart in the

sense that it anchors specific endogenous bone morpho-

genetic proteins at the interface of the HA with the

fibrovascular tissue with induction of bone as a second-

ary response.46–50 They have also found that in order for

these concavities to be active, they must have the follow-

ing measures: between 800 and 1600 mm in diameter

and between 400 and 800 mm in depth.35

The concavities of our implants, measuring about

500 ¥ 500 mm are somewhat in these ranges; moreover,

the data of Ripamonti35 refers to HA specimens, while

our data were obtained with titanium implants and

there could be differences between these two materials.

More recently, Ripamonti and colleagues performed a

study with the use of HA-coated titanium implants.7

They found that a series of repetitive concavities gener-

ated an inductive microenvironment for the induction

of bone formation. They stated that “the language of

the shape is the language of geometry, the language of

geometry is the language of a sequence of repetitive

concavities that biomimetize the remodeling cycle of the

osteonic bone.”

What is striking in our implants is that, in every

case, in the first healing periods, the bone formation

started almost exclusively inside the concavities. Our

results showed also an higher percentage of bone-

implant contact in the RBT and HA-coated implants

both in the concavities and in the convexities, but these
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differences were, however, not statistically significant. In

this experiment, the surface characteristics do not seem

to have a relevant role in the percentages of bone for-

mation. Ripamonti46,51 has shown that the concavities

of biomimetic biomaterial matrices were geometric

regulators of growth with a shape memory, recapitulat-

ing events that occur in the course of normal embryonic

development and appearing to act as gates, giving or

withholding permission to growth and differentiation.

The concavities are thus regulators of bone initiation

and deposition during remodeling processes of the

skeleton.46 Furthermore, microconcavity production

is a process mimicking physiological conditions within

marrow spaces during hematopoiesis, and micro-

concavities enhance the total area available, in a given

volume, for cell membrane interactions.36 This increase

in the contacts of cell membrane serves to augment the

exchanges at the level of the cell surface and is a very

important step for cell differentiation.36 The concavities

per se are regulators of growth, inducing specific tissue

formation and bone induction as in the remodeling

processes of the osteonic primate cortico-cancellous

bone and act as powerful geometric attractant for bone

forming cells.46,51

In conclusion, the grooves seem to provide a suit-

able environment for bone formation, possibly due to

mechanical forces, blood clot retention, and presence

and gradients of chemotactic and other agents from the

healing process.21,22 The constraining of a cell popula-

tion into a limited space seems to favor differentiation

and bone formation.22

Additional studies are necessary to further evaluate

the critical role of the concave geometry in bone differ-

entiation and formation around dental implants.35
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