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ABSTRACT

Background: With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring
accelerated osseointegration and enhanced peri-implant bone regeneration is increased.

Purpose: A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous
titanium oxide surface.

Materials and Methods: Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 mg
of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were
surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-
implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of
variance followed by Tukey’s post hoc test.

Results: New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since
2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc
oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded
groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05).

Conclusions: These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration
and peri-implant bone formation and it would be potentially applicable in poor-quality bones.
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INTRODUCTION

The success of endosseous dental implants is directly

related to osseointegration, a process of bone-implant

surface interaction that ultimately leads to bone-to-

implant anchorage. As the surface topography of

implant has a major impact on osseointegration, various

physical and chemical surface modifications have

been developed to promote early osseointegration thus

to shorten overall treatment time.1,2 Among them,

increased surface roughness has been shown to improve

bone apposition on the implant.3,4 Chemical treatment
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of implant surfaces such as acid etching or fluoride

treatment has also been applied for increased

osseointegration.5–7 In order to enhance osseointegra-

tion and osteogenesis around peri-implant region,

protein growth factors such as recombinant human

bone morphogenetic protein-2 (BMP-2) are being

tested applying on the implant surfaces.8,9 However,

protein growth factors require a carrier that must be

resorbed when osseointegration is about to take place,

which may be a disadvantage. Moreover, chemical sta-

bility of proteins until implant placement is a problem

to overcome. Cost-effectiveness ratio is also question-

able with recombinant growth factors. If bioactive sub-

stances can be loaded directly on the implant surface

without carrier, it would be more attractive strategy

for promoting osteogenesis around the titanium (Ti)

implants. Micro-arc oxidation (MAO) technique for

modifying the Ti surface has been reported in which a

positive voltage is applied to a Ti specimen immersed in

an electrolyte.10 A few micrometer-thick newly formed

titanium oxide layer is porous with interconnected pores

and firmly adhered to the substrate, which is beneficial

for the biological performance of the implants. Another

advantage of this MAO process is the possibility of

incorporating Mg, Ca, and P ions into the surface layer,

which are shown to enhance bioactivity of implant

surface.11–13 In addition, bone stimulating drugs or

molecules may be incorporated directly into the

porous titanium oxide layer, from which they would be

released efficiently at the implant installation site. Statin,

one of the most commonly prescribed lipid-lowering

agents, has been shown to upregulate BMP-2 in osteo-

blastic cells.14 Our previous works and many other in

vivo studies have validated that statins stimulate bone

healing when applied locally.14–29 The objective of this

study was to evaluate the effect of simvastatin loaded

onto the porous titanium oxide surface by MAO on

osseointegration and bone regeneration around the

implant.

MATERIALS AND METHODS

Preparation of Drug-Loaded Titanium
Screw Implants

The surfaces of titanium screws (1.8 mm in diameter

and 5 mm in length at threaded region) were treated by

MAO technique using an electrolyte solution consisting

of 0.1 M of calcium glycerophosphate and 0.15 M of

magnesium acetate tetrahydrate. The voltage of 420 V

was applied from a pulsed electrical source for 7

minutes. After the MAO process, the treated screws were

cleaned and sterilized. Simvastatin (OHARA Pharma-

ceutical Co. Ltd., Koka, Shiga, Japan) was dissolved in

ethanol and applied on the oxidized surface by wetting

homogenously. The ethanol was evaporated out com-

pletely in a laminar air flow in a clean bench. Titanium

screw implants loaded with 25 or 50 mg of simvastatin/

implant were prepared.

Characterization of Implant Surfaces

The titanium screw implants after MAO treatment were

observed by scanning electron microscopy.

In Vitro Release of Simvastatin from Implant

The release of simvastatin was measured using

an ultraviolet-visible spectrophotometer, NanoDrop,

ND-1000 (NanoDrop Technologies, Wilmington, NC,

USA). The spectrometer was calibrated using six stan-

dards of simvastatin solution at 37°C. The absorbance

was measured at 238 nm and working curve for

calculation of simvastatin concentrations was estab-

lished from the absorbance values. The samples were

placed in 500 mL of 0.1 M of tris buffer solution

(pH 7.4) and positioned in a Taitec Personal 11 Shaker

(Taitec Corp., Tokyo, Japan) set at 100 rpm and 37°C.

The amount of the drug released into the tris buffer

was measured 24 hours after the initial immersion,

then everyday for 14 days. The cumulative concentra-

tion was calculated using the previously determined

working curve.

Anesthesia and Surgical Procedures

This study was approved by the institutional committee

for animal experiments. Sixteen-week-old male Wistar

rats were used. The animals were anesthetized with

a combination of ketamine and xylazine (40 mg/kg;

5 mg/kg). The proximal part of tibia, about 1 cm from

the condyle, was exposed and drilled with a series of

burs under continuous saline coolant. Ti screw was

then inserted into the drill hole with the torque value

of 10 to 15 N. Each animal received control and drug-

load implants or micro-arc oxidized and drug-loaded

implants randomly at left and right tibiae so that each

implant type was inserted in six separate animals (n = 6
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for each group). The soft tissue flap was repositioned

and sutured. Ten days before and 3 days before sacrific-

ing, calcein and tetracycline were injected, respectively.

At 2 and 4 weeks after surgery, the animals were sacri-

ficed and the tibiae were harvested.

Radiological Analysis by Microcomputerized
Tomography (Micro-CT)

Directly after retrieval of the samples, x-ray imaging was

performed by a micro-CT scanner (InspeXio; Shimadzu

Science East Corporation, Tokyo, Japan) with a voxel

size of 25 mm/pixel. Tri/3D-Bon software (RATOC

System Engineering Co., Ltd., Tokyo, Japan) was used

to make a three-dimensional reconstruction from the

obtained set of scans and to convert the micro-CT image

data into bone mineral density values and accordingly

create color-labeled images. Out of the entire three-

dimensional data set, a cylindrical region of interest

(ROI) with a diameter of 2.3 mm and a height that

covered the entire length of the implant inserted in the

bone was selected for analysis. ROI was placed around

the implant and the implant in the ROI was selected and

extracted by means of binarization, leaving 250-mm-

wide ROI ring surrounding the implant. The volume of

the newly formed bone around the titanium screw was

measured three dimensionally. The volume measure-

ments were performed by one experienced examiner

being blinded for the identity of the specimens.

Measurement of Mineral Apposition
Rate (MAR)

After harvesting and fixation procedures, the specimens

were dehydrated in graded alcohol and embedded in the

Rigolac resin (Nisshin EM, Tokyo, Japan). The samples

were cut with the rotary diamond saw and polished until

50-mm-thick sections were obtained. The unstained

sections were observed under a fluorescent microscope

(BZ-8000, Keyence Corporation, Tokyo, Japan) for fluo-

rochrome labeling. For MAR, interlabel distances were

measured and the values were divided by the time inter-

val between administrations of two vital markers.

Measurement of Bone-Implant Contact (BIC)

The sections were stained with 0.1% toluidine blue

for microscopic observation. Microscopic images were

taken with the resolution (1 pixel equals 2.83 mm)

(BZ-8000, Keyence Corporation), and by using ImageJ

software (National Institutes of Health, Bethesda, MD,

USA) the implant surface in contact with mineralized

bone, referred to as the “BIC,” was marked and calcu-

lated as a percentage.

Statistical Analysis

Data were first analyzed by one-way analysis of variance

and if significant difference was detected (p < .05),

Tukey’s post hoc multiple comparison tests were

performed.

RESULTS

Characterization of Implant Surfaces

Titanium implant surfaces after MAO had characteristic

porous configuration with irregular raised areas. The

pore size ranged from 0.5 to 2 mm (Figure 1).

Release of Simvastatin from Implant
Surface In Vitro

Approximately 80% of adsorbed simvastatin was

released after 24 hours. This initial burst release was

followed by the gradual and stable release of the drug

that was maintained until 2 weeks (Figure 2).

Figure 1 Scanning electron microscopy showing the surfaces of (A) control and (B) micro-arc oxidized Ti screws.
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Peri-Implant Bone Volume

Figure 3, A and B demonstrated peri-implant bone for-

mation in micro-CT images in transverse and cross-

sectional views. At 2 weeks, peri-implant bone volume

measurements in micro-CT revealed significantly higher

bone volumes in simvastatin-loaded implant groups

than control and micro-arc oxidized groups (p < .05)

(Figure 3C). There was no significant difference between

two different simvastatin-loaded groups. At 4 weeks, all

groups showed similar amount of peri-implant bone

volumes (Figure 3D).

HISTOLOGICAL FINDINGS

At 2 weeks, control implants showed minimum bone

formation in the threads located at cortical bone and

marrow cavity. Micro-arc oxidized implants formed

more bone than control group both at cortical and

marrow cavity areas. On the other hand, both

simvastatin-loaded implants revealed obviously more

bone deposition directly on the implant surfaces at

cortical bone as well as in the marrow cavity compared

with those of control and micro-arc oxidized implants at

2 weeks. At the cortical bone region, active bone forma-

tion was observed with new bone already occupied the

whole thread. In the marrow cavity, apparent amount of

new bone was formed on the implant surface extend-

ing toward the periphery. Histological findings suggest

that contact osteogenesis predominated on oxidized

and simvastatin-loaded implant surfaces (Figure 4,

B–D). At 4 weeks, bone formation around the implants

in all groups appeared to be increased to the similar
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Figure 2 Release profile of simvastatin from micro-arc oxidized
Ti screws.
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Figure 3 Upper panel shows microcomputerized tomography images of control Ti screw implant surgically inserted into rat tibia,
(A) longitudinal section and (B) cross section. Lower panel shows peri-implant bone volume of control, micro-arc oxidized (MAO),
25-mg simvastatin-loaded (statin-25), and 50-mg simvastatin-loaded (statin-50) groups at (C) 2 weeks and (D) 4 weeks. *p < .05
compared with control and MAO groups.
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extent especially in the bone marrow cavity, although

amount of new bone formed directly on the implant

surfaces remained less in control and micro-arc oxidized

implants (Figure 5).

BIC

BIC values were significantly higher in simvastatin-

loaded implant groups than control and micro-arc

oxidized groups at both time points (p < .05). There

was no significant difference between 25- and 50-mg

simvastatin-loaded groups (Figure 6).

Mineral Appositional Rate

At 2 weeks, the mineral appositional rates were signifi-

cantly higher in simvastatin-loaded implant groups than

control and micro-arc oxidized groups (p < .05). At 4

weeks, although the rates appeared to be higher in the

drug-loaded implant groups, the differences were not

statistically significant (Figure 7, C and D).

DISCUSSION

With increasing application of early loading protocols

and placement of implants in poor-quality bones,

Figure 4 Photomicrographs showing bone deposition around (A) control, (B) micro-arc oxidized, (C) 25-mg simvastatin-loaded, and
(D) 50-mg simvastatin-loaded Ti screws at 2 weeks, stained with toluidine blue.
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Figure 5 Photomicrographs showing bone deposition around (A) control, (B) micro-arc oxidized, (C) 25-mg simvastatin-loaded, and
(D) 50-mg simvastatin-loaded Ti screws at 4 weeks, stained with toluidine blue.
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there is a need for accelerated osseointegration and

enhanced peri-implant bone regeneration especially in

poor-quality bones. More promising implant surfaces

are warranted in order to achieve the advantages of early

implant loading such as decreasing treatment time and

expenses, and increasing patient satisfaction.

In this study, we tested novel simvastatin-loaded

porous titanium oxide surfaces. The titanium surface

was oxidized by micro-arc technique producing porous

titanium oxide surface. Recent evidences have shown

the increased osseointegration and bone conduction

by similar surfaces produced by anodizing and MAO

processes.30–39 This porous implant surface provides not

only an excellent condition for bone cells but also inter-

connected pores to retain the drug efficiently and release

effectively. Our study demonstrated that micro-arc

oxidized porous titanium oxide surface can retain sim-

vastatin efficiently. In vitro release pattern of simvastatin

indicated that considerable amount of drug was released

immediately after immersion into solution. Such burst

release may be attributed to direct attachment of simv-

astatin on the oxidized titanium surface as no carrier

material was used. It is speculated that similar immedi-

ate release of simvastatin would have been achieved at

the local area around titanium screw implant, affecting

the early cellular responses immediately after surgical

implant placement. It is clear from the results that

simvastatin-loaded implants showed more BIC as early

as 2 weeks. The difference was more prominent in the

region of marrow cavity, suggesting accelerated contact

osteogenesis in simvastatin-loaded groups. Moreover,

the mineral appositional rates of drug-loaded groups

were faster and peri-implant bone volumes were greater

in drug-loaded groups than control and nondrug-

loaded groups especially at early time point. These

findings suggest the accelerated and enhanced osseoin-

tegration and bone regeneration around the implant

by simvastatin-loaded implants. In simvastatin-loaded

groups, considerable amount of new bone was formed

even on and around the implant threads located in

the marrow cavity. However, the bone volume did not

further increased by 4 weeks. All of the loaded simvas-

tatin might have been released during the first 2 weeks

and disappeared completely thereafter. At 4 weeks,

peri-implant bone volume in all groups appeared to be

similar especially in the marrow space areas. It may be

due to increasing new bone formation by distance osteo-

genesis originating from inner aspect of cortical bone in

all groups. Nevertheless, more matured peri-implant

bone was observed in simvastatin-loaded groups at 4

weeks, suggesting faster peri-implant bone regeneration

at 2 weeks and earlier remodeling by 4 weeks. It would

be interesting to compare the effects of simvastatin with

or without drug delivery carrier. More prolonged effect
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of simvastatin may be achieved with the use of drug

delivery carrier.

We tested 25 or 50 mg of simvastatin per implants.

We chose these doses according to previous experiments

with simvastatin affecting in certain area of bone. Both

doses were effective to stimulate osseointegration and

peri-implant bone regeneration without showing any

untoward effects in our experiment.

Simvastatin is one of the lipid soluble statins

that effectively stimulates bone formation when applied

locally. Moreover, it is chemically stable and inexpensive.

No carrier is needed to deliver the drug at the implant

installation site when it is loaded directly onto the

porous oxide layer on the implant surface. Osteogenic

cells can attach and lay down bone matrix directly on

the implant surface because there is no intervening

layer of drug carrier on implant surface. We have

recently reported that simvastatin upregulates BMP-2

and transforming growth factor-b with subsequent

stimulation of osteogenic cell proliferation, migration,

recruitment, and differentiation in the early phase of

bone healing, leading to increased bone formation.40 In

the present study, it is speculated that simvastatin, which

was released immediately from the porous Ti surface,

enhanced growth factor expression, osteogenic cell pro-

liferation, migration, recruitment, and differentiation,

subsequently stimulating de novo bone formation

directly on the implant surface (contact osteogenesis) in

the similar manner. More bone was observed directly on

the surfaces in simvastatin-loaded implants especially

in the bone marrow cavity of tibia, whereas control sur-

faces showed less bone on the Ti surface. Bone forma-

tion seems to originate from the inner cortical bone

surface extending toward the implant (distance osteo-

genesis) in control groups. Taken together, simvastatin-

loaded titanium oxide surfaces would be potentially

applicable in poor-quality bones to accelerate osseoin-

tegration and bone formation around implants.

CONCLUSIONS

The simvastatin loaded onto porous titanium oxide

surface accelerated and enhanced osseointegration and

peri-implant bone regeneration at early time point in

our study model and it has potential to apply clinically

in poor-quality bones. Further studies are necessary to

validate the effects of the simvastatin-loaded implants in

alveolar bones of the bigger animal models.
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