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Abstract One of the greatest challenges in life sciences
and biomaterials research is adhesion of biomolecules and
bacteria to solid surfaces in aqueous solutions. An example
concerning everybody is biofilm formation in the oral
cavity on dental materials and dental hard substances,
respectively. The main characteristics typical for any
bioadhesion can be observed excellently in the oral cavity.
Initially, a proteinaceous layer termed pellicle is formed. It
mediates the interactions between solid substrata, oral fluids
and microorganisms. Numerous different materials with
differing physico-chemical properties and possible impact
on the acquired pellicle are present in the oral cavity such
as enamel, dentine, restorative materials or dental implants.
Despite the fact that in vitro studies demonstrate consider-
able differences of experimental pellicles formed on these
materials, the in situ pellicles seem to be relatively similar
and level off the different properties of the underlying
substrates. However, the bacterial colonisation of pellicle-
coated surfaces under in vivo conditions differs consider-
ably. Long-range forces and detachment of biofilm layers
may account for this phenomenon despite the masking
effect of the pellicle. Accordingly, low-energy surfaces are
desirable for restorative materials exposed to the oral cavity
to minimise bacterial adhesion. The oral cavity is an easy

accessible in vivo model for understanding bioadhesion and
for investigation of protein–surface interactions noninva-
sively. For evaluation of biofilm formation on dental
materials, in situ or in vivo studies are preferable.
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The ubiquitous phenomenon of bioadhesion

Natural scientists, medical scientists and engineers of all
branches are faced with the ubiquitous phenomenon of
bioadhesion and biofilm formation on different solid
surfaces. This is relevant for hulks of supertankers as well
as for catheters, water pipes or contact lenses [58, 78, 83,
84].

These interfacial phenomena have become an integral
part of all human endeavours, since no conceivable systems
can exist without the coexistence of different states of
matter [93–95]. The solid–liquid interface is of paramount
importance due to its involvement in many biological
processes [82–84, 93–95]. Also, in modern dentistry, a vast
number of different materials are adopted and therewith an
object of bioadhesion. In the oral cavity, caries, peri-
implantitis and periodontitis are caused by oral biofilms
formed on the initial proteinaceous coating of all solid
substrata, the acquired pellicle [53, 54, 70, 82–85]. In this
context, it is noteworthy that in contrast to all other human
tissues, dental hard substances are non-shedding surfaces
[143]. Accordingly, intraoral biofilm management is
strongly required. However, anti-adhesive easy-to-clean or
self-cleaning surfaces are not only demanded for dental
application but also in other medical disciplines, for
example in ophthalmology for intracorneal implants or
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intraocular lenses, respectively [78]. Ophthalmology is also
faced with the problem of bacterial adherence in a wet
chamber open to external influences. The development of
extended wear contact lenses requires materials that will
selectively bind specific proteins to minimise the bacterial
adhesion [78]. This example demonstrates clearly that
interdisciplinary research projects of medics, material
scientists, biochemists and dentists will yield new intelli-
gent materials. The oral cavity is an often overlooked easy
accessible and relevant in vivo model for noninvasive
monitoring of substrate-dependent bioadhesion. The objec-
tive of this review was to summarise our understanding of
the role of the salivary protein conditioning film in the
process of bacterial adhesion and biofilm formation on
biomaterials under oral conditions. Thereby, it was intended
to elucidate to which extent bioadhesion is substrate-
dependent in the oral cavity.

Physico-chemical determinants of bioadhesion

At solid–liquid interfaces, the fundamental of a spontane-
ous adsorption process is that more energy is released than
gained according to the Gibbs law of free energy, meaning
a gain in entropy or a decrease in the enthalpy, respectively
[93–95]. This is described by the equation [93–95]:

ΔadsG ¼ ΔadsH � T ΔadsS < 0

where G = Gibbs free energy, H = enthalpy, T = absolute
temperature, S = entropy and Δads = net change of the
thermodynamical parameters.

Adsorption of proteins from an aqueous solution onto a
solid surface is the result of various types of interactions
that simultaneously occur between all the components,
namely the fluid, the solid and the solubilised proteins. The
polarity of each of these components of course has great
impact on the adsorption process. The polarity is reflected
in the hydrophilicity or hydrophobicity of the interacting
components.

The effective forces relevant for protein adsorption can
be divided according to the range of the interactions. Van
der Waals forces and Coulomb forces represent the main
exponents of the long-range forces (50–100 nm). Hydro-
phobic interactions, the most relevant forces in water, are of
medium range (10–50 nm) [152]. Electrostatic interactions,
ionic interactions and Lewis acid–base interactions are
classified as short-range interactions as well as covalent
bonds or hydrogenic bonds (less than 5 nm). These forces
of different range have an impact on protein adsorption and
on protein conformation after adsorption (Fig. 1) [94–96,
106, 143]. However, the acid–base interactions or electron
acceptor/electron donor interactions are regarded as the
most predominant non-covalent forces [152].

Superordinate physical variables are helpful to describe
the surface properties. The surface free energy (mJ/m2) is a
physical value describing the whole energy of a solid
surface as an equivalent to the surface tension of a fluid.
The contact angle reflects the interactions of fluids with
solid surfaces depending on the polarity, hydrophilicity and
wettability of the involved components [21, 33]. The
contact angle is a function of the surface energies of a
system [59]. The surface free energy, γs, its polar, gps , and
dispersion components, gds , are calculated from contact
angle measurements [22, 33]. High water contact angles
mean poor wettability [33, 115].

The current models for initial bioadhesion were de-
scribed thoroughly by Teughels et al. [143] in a recent
review. Initial adhesion of bacteria is characterised by weak
and reversible adhesion mediated through long- and short-
range forces (Figs. 1 and 2).

The thermodynamic model regards the surface free
energy as the main determinant and does not differentiate
electrostatic interactions. The alteration of Gibbs free
energy due to adsorption of the bacteria is described as
ΔG ¼ gsb � gs1 � gb1. Thereby, γsb represents the surface–
bacterium interfacial free energy, γsl the surface–liquid
interfacial free energy and, γbl the bacterium–liquid
interfacial free energy [1, 8, 143]. Adhesion takes place if
the equation is negative, as a minimisation of energy is
favoured in the nature.

The DLVO model named after Derjaguin, Landau,
Verwey and Overbeck depicts the interaction of a negative-
ly charged bacterium with a solid surface in aqueous
solutions (Fig. 3). Both the bacterium and the surface are
coated by an electrical double layer named Stern layer; the
outer surface of this layer is charged negatively. Two forces
are relevant for the interaction—the Lifshitz–van der Waals
attractive forces, becoming active at a range of even more
than 50 nm or less, and the electrostatic repulsive forces of
the similarly charged surfaces. The Gibbs energy of the
interaction is calculated as a function of the distance,
summing up repulsive and attractive forces when the
electric double layers of the respective forces overlap
(Fig. 1) [13, 110, 143, 151]. The hydrophobic interactions,
quantitatively the strongest effect in water, are always
attractive [152]. In contrast, the acid–base interactions
neglected in the classical DLVO theory can be either
attractive or repulsive depending on the degree of hydro-
philicity or hydrophobicity of the surfaces involved [152].
Accordingly, an extended DLVO theory (XDLVO) was
described by van Oss et al. combining the classical DLVO
model with thermodynamic aspects [143, 151, 152]. In
water, the acid–base interactions are to be considered as
they represent about 90% of the total non-covalent
interaction forces, either attractive or repulsive [152]. The
XDLVO approach intends to combine four elementary non-
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covalent forces: van der Waals forces, electrostatic forces,
Brownian molecular motion and acid–base interactions [77,
143, 151]. Each of the three non-covalent interactions
decays depending on the respective thermodynamic circum-
stances as a function of distance [152]. The acid–base
interactions based on electron donating and accepting
molecules are more pronounced than the other forces, but
are relatively short ranged [143, 152]. However, hydrophil-
ic repulsion may occur if hydrophilic particles attract water
molecules more strongly than the acid–base cohesive
attraction between water molecules [152].

In the oral cavity, there are no pure chemical substances
but a proteinaceous cocktail with colloidal components of
various properties. Accordingly, a colloid chemical ap-
proach is helpful for interpretation of the phenomena
occurring during pellicle formation in the oral cavity [93–
95]. The electrostatic properties of colloidal particles or

protein agglomerates in a suspension are described by the
zeta potential. The zeta potential refers to the electrostatic
potential generated by the accumulation of ions at the
surface of the colloidal particle. The ions are arranged in an
electrical double layer consisting of the previously de-
scribed Stern layer and the diffuse layer [93–95, 160].

Protein adsorption is characterised by a reorientation and
structural rearrangement after first adhesion to the surface
resulting in conformational changes [38]. The charged
groups redistribute according to the polarity of the surface.
Changes in the hydration of the sorbent and the protein
surface are the result [93–95].

Low structural stability of protein aggregates facilitates
adsorption of proteins to a surface due to easier structural
rearrangements. The rearrangement of the proteins may
continue for a long period of time [95]. The degree of
structural rearrangements depends on the rate of deposition

short and medium range forces
• hydrophobic interactions 
• hydrogen bonds
• covalent bonds
• electrostatic interactions

long range foces
• van der Waals forces
• Coulomb interactions
• dipole-dipole

interactions

properties of solid substrates: Gibbs free energy < 0 
surface free energy, roughness, chemical composition 

- bacterial adherence 
- initial microbial biofilm formation 

pellicle formation 
masks substrata specific properties to a certain extent 
depending on pellicle thickness 

detachment
and turn over

• composition 
• receptors
• enzyme 

activities
• shear forces
• anti-bacterial

proteins

Fig. 1 Interactions of proteins,
fluids and bacteria in the oral
cavity. Substrate-specific surface
properties are masked by the
pellicle to a certain extent, but
biofilm formation is influenced
by long-range forces transferred
through the pellicle layer
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relative to the rate of structural changes [150, 159]. Such
long-term structural alterations involve an expanding contact
between the single protein molecule and the sorbent surface.
This may cause displacement of the later adsorbed neighbour-
ing molecules [93–95]. It was described for plasma that upon
its contact with surfaces, at least five proteins in succession
displace each other within 1 min [158]. Such effects might
also be of relevance for pellicle formation.

The process of protein adsorption is multifactorial, as
isoelectric point, repulsion, desorption, structural stability,
heterogeneity of the sorbent and the adsorbed protein layer
as well as several orientations and conformations of the
adsorbed protein layer have an impact [22, 96]. In the oral
cavity, these mechanisms are superimposed by bacterial
colonisation. The redistribution of the charged groups is
modulated by low-molecular-weight ions, by the pH of the
surrounding solution and by the isoelectric point. The
isoelectric point (pI) is the pH at which a protein carries no
net electric charge.

For the surface of hydrophilic sorbents, hydration is
favourable and the hydration opposes the adsorption. If
adsorption occurs, some hydration water will be retained.
On the other hand, if the surface is hydrophobic, dehydra-
tion of that solid would stimulate protein adsorption, as this
means a gain in entropy [93–95].

Also, the hydrophobicity of the protein exterior influen-
ces the protein adsorption.

Under quiescent conditions, proteins reach the surfaces by
Brownian molecular motion in a stochastic manner. How-
ever, in the oral cavity, saliva is oversaturated with the
proteins and the proteins adsorb from a flowing solution.
Due to the highly varying conditions with the inhomogenous
adsorption solution saliva, it is not sensible to use mathe-
matical equations as they can only offer an approximative
approach but do not completely describe the complex
process of bioadhesion. The adsorption is smaller than the
flux to the surface, in general due to the electrostatic
repulsion or thermodynamic effects or because a fraction of
proteins does not collide in the proper orientation that is
required for attachment to the surface [93–95].

The process of bioadhesion and biofilm formation
in the oral cavity

The acquired pellicle was defined as initial integument on
oral surfaces which is free of bacteria [20, 54]. This
proteinaceous layer is composed of adsorbed proteins,
amongst them several enzymes, glycoproteins and other
macromolecules [40, 53, 67, 70, 72]. Despite the versatile
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Fig. 2 Initial bacterial approach
and adhesion to a pellicle-coated
surface is mediated by fimbriae
as well as by long-, medium-
and short-range forces and leads
to specific receptor–adhesin
interactions. The forces may be
attractive (hydrophobic interac-
tions, van der Waals forces,
hydrogen bonds, calcium
bridges), repulsive (electrostatic
interactions) or both (acid–base
interactions)
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oral fluids, pellicle formation is of high selectivity, since
only a fraction of the proteins present in the saliva is found
in the pellicle [47, 53, 56, 168]. The first pellicle formation
occurs almost instantaneously [22, 30, 49, 147]. So-called
pellicle precursor proteins, phosphoproteins with high
affinity to hydroxyapatite are the first to adsorb to the
tooth surface. Examples are statherin, histatin and proline-
rich proteins [53, 57]. This interaction is conveyed by the
ionic calcium and phosphate layer at the enamel surface [9,
53, 57, 88]. Due to this fact, surface-specific protein
adsorption to restorative surfaces is conceivable. However,
besides ionic interactions, van der Waals forces and
hydrophobic interactions contribute to the formation of the
proteinaceous pellicle layer [53, 153, 156]. The adsorption of
proteins, thereby replacing structured water molecules at the
surface, means a gain in entropy as a driving force for
pellicle formation [53, 153, 156]. The first adsorbing
proteins undergo an unfolding and flattening process,
thereby increasing their cross-sectional area and providing
rapid surface coverage [95]. This process is visualised as the
electron dense basal layer observed in transmission electron

microscopy (TEM) micrographs (Figs. 4, 5) [24, 48, 49].
The rapid first stage is followed by a second phase
characterised by a continuous adsorption of biomolecules
from the oral fluids [53]. Thereby, the pellicle formation
reaches a plateau [68, 132, 137]. Protein aggregates rather
than single molecules are responsible for the fast increase of
the pellicle’s thickness within 30–90 min. These micelle-like
globules and heterotypic complexes are described as supra-
molecular pellicle precursors [112, 120, 157]. Most of the
parotid proteins are secreted in globular aggregates with a
diameter of approximately 150 nm [112, 120, 157]. The
amino acid profile of these structures is similar to that of
2-h in vivo pellicles [170]. Furthermore, these aggregates
have a negatively charged surface layer coating a hydropho-
bic interior [112, 120]. Accordingly, their adsorption process
may be explained with the DLVO theory, and a masking of
material-specific surface properties is conceivable [143].

The function of the pellicle is ambivalent. On the one
hand, the pellicle serves as a lubricant and as an anti-
erosive barrier und buffer [43, 52, 53]. In addition, the
antibacterial proteins lactoferrin, cystatins and lysozyme
add protective properties [25, 41, 46, 53, 105, 147]. Even
sIgA was detected in the pellicle [4, 15, 17, 25, 72]. On the
other hand, the pellicle features some properties facilitating
bacterial adhesion. Several pellicle components such as
amylase, proline-rich proteins, Mucin MG 2, fibrinogen and
lysozyme serve as specific receptors for bacterial adherence
[26, 53, 54, 111, 121, 122]. Initial bacterial adhesion passes
through a phase of weak and reversible binding before an
irreversible attachment is established (Fig. 2) [73, 83, 84].
Reversible initial binding occurs preferentially in the surface
irregularities where microorganisms are protected against
mechanical shear forces (Fig. 4) [10, 16, 97, 110, 142].

It is reasonable to suppose that composition, formation,
ultrastructure, functionality and bacterial colonisation of the
initial oral biofilm may be modulated by the underlying
substrata. Dental research is faced with a vast number of
materials with different physical and chemical properties
exposed to the oral fluids: dental hard substances, ceramics,
titanium, resin composites, nanomaterials, gold alloys,
denture base materials, orthodontic brackets or suture
materials [29, 69, 92, 101]. It is desirable to achieve minimal
colonisation of these materials with pathogenic bacteria. Thus,
the aim of the present reviewwas to depict the possible impact
of different solid substrata on the pellicle and on the initial oral
biofilm. Thereby, it was to be evaluated if the pellicle masks
the physico-chemical characteristics of solid substrata ex-
posed to the oral fluids or if the surface properties are
transferred to impact the bacterial biofilm.

There are many rather inconsistent and incomparable
studies on initial biofilm formation on different solid
substrata performed with very different methodical
approaches. Three different types of studies are to be

GE: Electrostatic 
repulsive force 

GA: van der Waals
attractive force 

G: Gibbs free
energy

Fig. 3 DLVO theory. Interaction between negatively coated surface
and negatively coated bacterium or protein aggregates, respectively.
There are attractive forces (Lifshitz–van der Waals forces) active at a
distance of 50 nm and electrostatic repulsive forces. These repulsive
forces are caused by the Stern layer formed in aqueous solutions. The
resulting Gibbs free energy is a resultant of both. The hydrophobic
interactions are always attractive [152]. Figure modified after
Teughels et al. [143]
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differentiated: in vivo studies (the biofilm is scrapped of the
tooth or restoration, respectively, in the oral cavity), in situ
studies (specimens of the certain substrata are exposed in
the oral cavity for a period of time) and in vitro studies
(different substrata are exposed to collected saliva or
adsorption solutions extraorally) [86]. Notwithstanding,
bioadhesion is a complex process dependent on a vast
number of factors [93–95, 143]. Hence, it seems tempting to
simulate and to monitor distinct aspects in laboratory setups
or in vitro, respectively, to eliminate sources of irritation
[87]. However, it is questionable if these in vitro studies
mirror the intraoral in vivo situation. Accordingly, it is to be

verified if in vitro studies are appropriate for understanding
bioadhesion in life sciences or if they misdirect.

Substratum-dependent protein adsorption and biofilm
formation on dental materials in vitro—appropriate
for understanding bioadhesion in life sciences?

Protein adsorption to different surfaces in vitro

The first adhesion of proteins is governed by physico-
chemical interactions rather than specific bonds [34, 155].

e

1.0µm 

1.0µm

a b

c d

2.0µm

Fig. 4 Biofilms formed in situ
over periods of 24 h on buccally
positioned specimens of enamel
(a), resin composite (b), pol-
ished ceramics (c), glazed
ceramics (d) and on a lingually
positioned enamel specimen (e).
Due to shear forces acting on the
surface of the lingually placed
specimen, the respective biofilm
is significantly thinner and
microorganisms are only detect-
able in surface irregularities.
However, the biofilms on the
different substrata are of high
ultrastructural uniformity. Origi-
nal magnifications of the TEM
micrographs: a 12,000-fold; b
3,000-fold; c 10,000-fold; d
15,000-fold; e 7,000-fold. Dur-
ing the preparation process for
TEM analysis, enamel and
ceramics were dissolved by acid
treatment and thus are not visi-
ble anymore. Note partial de-
tachment of the biofilm from the
ceramic sample at the interface
between the basal pellicle layer
and the adhering proteinaceous
layer (d, arrow)
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Most in vitro studies indicate a great impact of these
different physical surface characteristics on protein adsorp-
tion [5, 18, 69, 74, 75, 154]. Thereby, it is noteworthy that
protein layers on samples rinsed with water are thicker as
compared with unrinsed samples [34]. This indicates that
the hydration layer has considerable impact on protein
adsorption.

Proteins have a different affinity to diverse substrata.
More proteins adsorbed to rough surfaces [16, 90]. In an in
vitro scanning force microscopic approach, the adhesion
forces and the adsorption process of bovine serum albumin
onto enamel and a compomer were monitored in real time.
As expected, different modes of adhesion were observed
[124]. In vitro exposed Germanium prisms with high or low
surface free energy featured a pellicle formation of certain
qualitative selectivity as studied by atomic force microsco-
py. The amount of adsorbed protein was correlated with the
surface energy [5]. In another study, the adhered protein
mass in films on medium energy surfaces was higher than
on low-energy surfaces [18]. In addition, it has been shown
that modification of surfaces such as silicon wafers by
coating with polyethylene glycol or fluorocarbon moieties
reduces the protein adsorption [90].

Several studies investigated protein sorption to hydro-
philic and hydrophobic surfaces. Higher amounts of
salivary proteins adsorbed on hydrophobic surfaces as
compared with hydrophilic samples [74–76, 154–156].
Under in vitro conditions, proteins mostly have a higher
affinity to polymer materials, which have usually a
hydrophobic character [140]. Hydrophobic interactions
seem to play an important role as a driving force in pellicle
formation [74–76, 154–156]. Hydrophilic surfaces interact
preferentially with polar groups of adhering substrates,
whereas adsorption to hydrophobic surfaces is assumed to
be mediated by the hydrocarbon tail of organic molecules
[155]. Larger amounts of hydrophobic salivary fractions
adsorb on hydrophobic surfaces than on hydrophilic
materials. On hydrophilic surfaces, the largest amounts
from a more hydrophilic high-molecular-weight fraction are
adsorbed [155]. It was concluded that the substrate-
dependent adsorption behaviour of salivary proteins might
show a wide variation among the different fractions [75, 88,
155]. This is supported by several studies on the adsorption
of specific proteins. Different adsorption patterns were
observed for statherin and proline-rich proteins of different
hydrophobicity to hydrophobic and hydrophilic surfaces

1 µm

a b10 µm

c
1 µm

Fig. 5 Detachment phenomena observed in situ within the adherent
biofilm or mature pellicle layer: 6-h in situ pellicle and biofilm
formation on a ceramic specimen (a) and 24-h in situ biofilm
formation on a nanocomposite coated titanium specimen (b, c). The
coated titanium as well as the ceramic have been completely dissolved
due to treatment with hydrofluoric acid. On top of the dissolved
surface, a thin condensed layer of adsorbed salivary biopolymers can

be detected. The globular layer of adsorbed salivary proteins with
adherent bacteria is visualised in the state of detachment from the
basal layer. The observed phenomenon offers an explanation for the
minor bacterial colonisation of glazed ceramic materials or low-energy
surface coatings, respectively. Original magnifications of the TEM
micrographs: a, c 30,000-fold; b 7,000-fold
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[76]. In a study with glass, polytetrafluoroethylene and
methacrylate, highest adsorption of albumin was observed
on the most hydrophobic surface [146]. More proteins such
as lysozyme, proline-rich proteins or cysteine-containing
proteins are adsorbed to the enamel than to cementum
[114]. In contrast, another study found twice as many
potential protein binding sites for cementum versus enamel
[31]. However, salivary proteins adsorbed on the hydro-
phobic specimens were more loosely associated and a lager
fraction could be desorbed [156].

Besides critical surface tension, dispersions and polar
contributions to the surface energy, other chemical surface
characteristics were assumed to be responsible for the
pronounced differences of protein adsorption such as
corrosion of the materials or calcium pretreatment [87,
139]. This is confirmed by the influence of calcium on
albumin sorption or of fluoride application on lysozyme
and albumin sorption to enamel [31, 61]. Despite the high
number of in vitro studies yielding an influence of different
solid substrata on adsorption of biomolecules, some
investigations found quite identical patterns of protein
adsorption to differently pretreated hydroxyapatite surfaces
or to surfaces of different hydrophobicity, respectively [30,
163]. Not only in experimental pellicles on resin [169] but
also on other materials such as titanium or orthodontic
brackets were the typical components of the acquired
enamel pellicle such as amylase, proline-rich proteins or
mucin detected [3, 28].

Bacterial colonisation of different materials in vitro

In general, most in vitro setups indicate a strong impact of
different physical surface properties on the bacterial
adhesion and colonisation. With and without a pellicle,
bacterial adhesion and biofilm formation as well as biofilm
resistance in vitro correlate with surface roughness [16, 91,
110, 142, 145] and polishing reduces the number of
adhering bacteria [62]. Irrespective of the surface rough-
ness, least amount of plaque adhere to ceramics, generally
regarded as low-adhesive materials [62, 87]. Bacterial
adhesion to a bare material of known surface free energy
can be well estimated on the basis of the interfacial
thermodynamics [104]. However, adhesion to protein-
coated surfaces is much more complex. Pellicle coating
itself results in reduced numbers of adhering bacteria and
has a homogenizing effect on the surface free energy in
vitro [3, 28, 91, 104, 125, 127, 141, 160]. In addition,
experimental salivary pellicles reduce the differences of
bacterial colonisation among uncoated materials of varying
physico-chemical properties [91, 103, 104]. However,
protein adsorption does not fully abolish the influence of
the chemical surface characteristics [91]. It was shown that
despite the reduction of bacterial adherence due to pellicle

formation, the tendency of all bacterial strains toward
negative slopes persisted [104]. This was to be expected
on the basis of surface thermodynamics of the bare
substrata and may indicate that at least to a certain extent,
substratum properties are transferred from the substratum–
protein interface to the protein–bacteria interface [104].
This conclusion was drawn earlier for streptococcal
adhesion to bovine-serum-albumin-coated artificial solid
substrata in vitro [103]. The transfer of the surface
properties is less pronounced by a maturated 2-h in vitro
pellicle than by a 5-min pellicle [104].

In another in vitro approach, different amounts of
bacteria adhered on different gold alloys [99]. This
observation gave the reason to believe that although the
known difference in chemical composition among pellicles
formed on different materials does not imply striking
differences in protein adsorption, they may still be of
importance for the selectivity of bacterial adhesion and
growth. In the presence of an experimental salivary pellicle,
ceramic and fibre-reinforced composites bound more
bacteria than the other materials confirming the hypothesis
[142]. Interestingly, an up to 20-fold difference in the
binding of some bacterial strains to different surfaces—
such as titanium, polymeric substrata or enamel—was
recorded [160, 164].

Modulation of early Streptococcus sobrinus biofilm
formation on various dental restorative materials by typical
salivary proteins was also investigated [140]. Highest
bacterial colonisation was observed onto polymer materials.
This was mediated by amylase and albumin, typical
bacterial receptors exposed in high numbers on the
respective substrata [140]. Thereby, it is noteworthy that
different bacterial strains yield dissimilar patterns of
interactions with various dental materials or germanium
prisms with high, medium and low critical surface tension
[6, 18, 19]. The initial critical surface tension of a material
was found to control the biological interaction potential of a
substratum surface mainly through its influence on the
mixed pellicle organisation [6, 18]. In tendency, less
bacteria adhered to low-energy surfaces, indicating the
relevance of low-energy surfaces for plaque control [19].
The application of amine fluorides reduces the surface free
energy in vitro, and it was postulated that this may reduce
bacterial colonisation [23].

Notwithstanding, even some in vitro studies found that
bacterial adhesion is not affected by the colonised material
covered by an experimental pellicle [125] or there are only
minor effects of the different substrata [141].

On the first view, in vitro studies seem to be preferable
as the experiments can be conducted under standardised
and reproducible conditions [87], but a lot of studies have
yielded clearly that in situ or in vivo gained pellicles differ
significantly from in vitro pellicles [15, 76, 86, 116, 167,
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168]. This affects not only the tenacity of the biofilm but
also composition and enzymatic activities [40]. Intraoral
maturation of the biofilm due to proteases and trans-
glutaminases may account for these differences [12, 40,
47, 165, 166]. Accordingly, in situ or in vivo approaches
are preferable despite high intra-individual and inter-
individual variability and different modulating factors such
as varying salivary flow, nutrition, bacteria in the oral
cavity, soft tissues, etc. Sometimes, the biological variations
are several times greater than the experimental errors [21,
42, 44, 45]. For studies on the influence of different
substrata, in situ experiments with individual trays or
splints for reproducible exposition of the samples in the
oral cavity seem to be ideal. This proceeding allows
investigation of the biofilm in the native state with a couple
of methods [42, 45, 50].

An easily accessible in vivo system for investigation
of bioadhesion to different substrata—the oral cavity

Based on the in vitro data, considerable impact of different
materials on bioadhesion in the oral cavity in vivo or in situ
is conceivable. However, the supposed substrate-dependent
effects are less pronounced under oral conditions.

Furthermore, protein adsorption as well as bacterial
adherence are mainly determined by the surface roughness
rather than by other material-specific physicochemical
surface characteristics [110, 126].

Physical surface characteristics

In vivo pellicle formation increased surface free energy of
human enamel from 84 to 110 mJ/cm2 within 5 min [22].
After 5 min, the surface free energy of pellicle-covered
solids remained constant for at least 2 h [22]. In an in situ
study with beagle dogs, surface free energies of different
materials originally ranging from 22 to 134 mJ/m2

converged to values between 60 and 100 mJ/m2 after
30 min of oral exposure [148]. It was concluded that only
the initial phase of protein adsorption during pellicle
formation is influenced by the surface free energy [148,
149]. Nonetheless, the adhesive properties of the substrata
may still be influenced by the certain material especially
with regard to biofilm formation. In situ pellicle formation
on artificial surfaces with different surface free energy
featured a certain qualitative selectivity [6], but in situ
exposition to the oral fluids compensated for the different
surface free energies of solid substrata and reduced the water
contact angles, respectively [14, 79, 89]. Thereby, the pellicle
drastically increases the wettability of a vast number of
materials and sealed of the effect of the original surface
activity yielding a homogenizing effect [59, 79, 89, 149].

Ultrastructure

The ultrastructure of the pellicle can be explored with
several electron microscopic approaches such as scanning
electron microscopy (SEM), TEM, atomic force microsco-
py (AFM) or field emission in-lens SEM [10, 11, 48].
Transmission electron microscopic studies show no clear
ultrastructural differences of in situ formed pellicles on
enamel, Vestopal and a couple of restorative materials [6,
10, 11, 48]. In a recent in situ study, AFM was used to
monitor the protein adsorption on mica, silicon wafer and
graphite. The surface free energy of the materials affected
the rate of pellicle formation, whilst the overall size of the
adsorbed protein aggregates appeared to be identical [51].

If compared with conventional electron microscopic
studies, scanning force microscopic investigation has the
advantage that no fixation of the samples is necessary. A
scanning force microscopic study investigating the ultra-
structure of in situ pellicles on a compomer and on enamel
yielded completely different topographies of the pellicles
after 60-min formation time [124]. The pellicle layer on the
compomer was homogenous with a wavy substructure,
whereas the enamel pellicle exposed a base layer on top of
which larger proteins or protein agglomerates were
adsorbed. Furthermore, the enamel pellicle had a substruc-
ture of a net of furrows. Despite the fact that cross-sections
of pellicles on different surfaces as investigated in TEM
yield a quite similar appearance [48], further research is
necessary to visualise the surface morphology of in situ
pellicles on different materials.

Amino acid composition

Differing amino acid profiles were recorded for in vivo or
in situ pellicles on enamel surfaces as compared with
pellicles on dentures [27], plastic films [100] polyethylene
terephthalate, restorative materials such as composite and
amalgam [136, 138], primary teeth [135] or on fluoridated
tooth surfaces, respectively [116, 118]. However, these
differences manifested only as a slight shift of some amino
acids such as glycine, isoleucine, serin, lysine and proline
or the lack of cysteine and methionine, two amino acids
present in the enamel pellicle in very small amounts near
the limit of detection [27, 100, 116, 118, 136, 138].
Pellicles on primary teeth had an overall similar pattern as
compared with permanent teeth, but the contents of serine,
glycine and tyrosine were significantly different [135]. In
general, the amino acid composition of the in vivo or in situ
formed pellicles on different solid substrates was quite
similar and correspond to other studies on the acquired
enamel pellicle [117, 119]. A remarkable disadvantage of
the amino acid analysis is that some amino acids may be
hydrolysed during the preparation of the samples [40, 100,
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117, 119]. Furthermore, no conclusion on the proteins or on
the functionality of the pellicles can be drawn [40, 53, 70,
100]. Accordingly, quantification of typical pellicle proteins
and glycoproteins offers additional information.

Protein adsorption and composition

Protein adsorption during in vivo pellicle formation occurs
selectively [27, 47, 56, 168]. This has been shown not only
for enamel but also for denture base materials, titanium and
nickel chromium alloy [27, 36, 64, 65, 102]. Many
components of the acquired enamel pellicle were detected
in in vivo or in situ pellicles on different restorative
materials [27, 45], but some differences were observed. In
contrast to enamel pellicles, cystatine, proline-rich proteins
and low-molecular-weight mucin were not detectable in
denture pellicles by sodium dodecyl sulphate polyacryl-
amide gel electrophoresis, whereas amylase, lysozyme
sIgA, albumin and high-molecular-weight mucin were
present in both [27]. Less albumin was detected on in situ
titanium pellicles as compared with dental hard tissues [65].
Nevertheless, in a gold immunolabelling approach, the
same amounts of amylase and lysozyme were detected on
enamel, titanium and fieldspar ceramic [45].

Enzyme activities

In contrast to other methods of protein analysis, evaluation
of enzyme activity gives an insight in the biological
function of the pellicle without desorption, denaturation or
fixation of the initial oral biofilm. Enzymatic methods are
usually based on photometric determination of the conver-
sion rate of a certain substrate [36, 40, 42]. However, only
few papers consider enzymes in the acquired pellicle on
different materials [36, 42, 102], thereby some of them do
not include a reference group [36], and others do not
determine enzyme activities [65, 102]. In situ pellicles on
denture base material yielded activities of all enzymes
typically occurring in enamel pellicles [36]. Amylase and
lysozyme are the most abundant enzymes in the acquired
pellicle with high structural and functional significance [42,
45]. In situ experiments with six subjects yielded that the
impact of dental hard tissues and different materials on the
activity of amylase and lysozyme activity in the acquired
pellicle is very limited [42].

From pellicle to plaque—initial bacterial colonisation
of different materials in vivo

The omnipresent in vivo formation of a pellicle in vivo
reduces bacterial adhesion considerably irrespective of the
underlying substratum and has a masking effect on
materials’ specific surface characteristics [63, 89, 126,

138]. In vivo and in situ studies on bacterial biofilm
formation on dental materials are inconsistent but indicate a
certain effect of different solid substrates on microbial
colonisation [63, 92, 123, 126]. These effects are super-
imposed and overruled by the surface roughness of the
materials [108–110]. Composition of plaque on different
substrata featuring comparable roughness do not differ
considerably [108]. At surface irregularities, protein
agglomerates or microorganisms are protected against shear
forces [110]. A systematic review showed that surface
roughness above a Ra threshold of 0.2 μm facilitates
bacterial adhesion [143]. Accordingly, strong effects of
solid substrates on biofilm formation and maturation were
mainly observed with very pronounced differences of the
surface structure [109]. Some in situ studies with different
materials even yielded no ultrastructural differences of
plaque on restorative materials and enamel as observed
electron microscopically (compare Fig. 4) [10, 11, 50].
Another in vivo study gave clear evidence that the
colonisation pattern of oral streptococci in 4-h-old in vivo
plaque on plastic films is similar to that previously
observed on natural tooth surfaces [113]. In an in situ
approach including different implant materials, the number
of adhering viable bacteria after 4 h of oral exposition
depended on the surface properties, but after 48 h of plaque
formation on the substrata, there were no differences
detectable any longer [92]. The specimens had different
roughness, contact angles and surface free energies,
respectively [92]. In vivo plaque formation was evaluated
for a number of other dental restorative materials such as
amalgam, gold alloy, Cr–Co alloys, ceramic as well as for
enamel and dentine [126]. Thereby, not only the amount but
also the quality of the biofilm was monitored for 4 and
24 h, respectively [126]. The amount of early deposits on
the different substrata depended on their surface roughness,
whilst plaque formation after 24 h was qualitatively similar
[126]. This lacking trend for preferential colonisation of
common restorative materials corresponds to other in situ or
in vivo studies [66, 71, 126, 129, 144]. Apparently, surface
properties influenced only early bacterial adherence but not
plaque maturation. Also, bacterial colonisation of adjacent
restored proximal surfaces was investigated [63]. In
general, restored proximal surfaces tend to be more highly
colonised by Streptococcus mutans than sound surfaces, but
gold is less colonised as compared with amalgam [63].
Adjacent gold surfaces are even less colonised than sound/
sound proximal sites. In contrast, very high scores were
recorded for neighbouring resin to resin surfaces [63]. Also,
ceramic crowns seem to accumulate less plaque than
adjacent normal tooth surfaces [98]. Nonetheless, even on
polished gold cast restorations, considerable biofilm forma-
tion can be observed clinically after cessation of oral
hygiene (Fig. 6). Overall, polymeric materials seem to
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accumulate the highest amounts of bacteria in vivo or in
situ [63, 129–131, 138, 162]. In the oral cavity, hydrolysis
of the silane interface between polymer matrix and
anorganic filler particles as well as extensive wear of resin
composite fillings and other degradation processes yield an
increasing surface roughness of composite fillings. This
aspect rather than physicochemical surface properties offers
an explanation for the enhanced plaque accumulation
especially on aged composite fillings [133, 134]. However,
durability of modern composite materials is superior as
compared with the materials used more than two decades
ago [81]. In contrast, significantly less bacteria were detected
on zirconium oxide discs as compared with titanium of similar
roughness after 24 h exposition in vivo [123], and titanium
nitride or zirconium nitride coatings reduced the number of
adherent bacteria in vivo after 60-h exposure on implant
materials [39]. Low-energy surfaces—even after several days
of exposure in the human oral cavity—retained the smallest
amount of adherent plaque due to the lower binding forces
between bacteria and solid substrata [32, 107, 108, 161].
Such arrangements are determined by the initial surface
energy status of the material. Low critical surface tension
materials are unable to retain thick plaque deposits. At a
critical thickness, presumably plaque layers peel away [18].
It should be mentioned that easy release of accumulated
biomass will occur not at the lowest surface energies but
slightly above between 20 and 30 mN/m, the so-called theta
surfaces with an optimum between 22 and 24 mN/m. At this
level, the adsorbed proteins seem to yield the lowest level of
conformational changes or denaturation, respectively, re-
quired for tenacious binding to the surface [7].

The classical anti-adhesive surface coating Teflon (poly-
tetrafluoroethylene, surface free energy 20 mJ/m2) yields a
less plaque accumulation in vivo and in situ as compared
with other materials or enamel (60–80 mJ/m2) [80, 107,

108, 161]. Furthermore, the accumulated bacterial biofilm
can be removed more easily from Teflon-coated specimens,
indicating a lower tenacity of the biofilm [80]. However,
Teflon coatings do not have the physical characteristics
needed for durable coating of solid surfaces in the oral
cavity. New nanocomposites with a surface free energy of
less than 20 mJ/m2 having the mechanical properties of
composite restorative materials are available for the coating
of titanium or enamel [55]. These composites are based on
polycondensation of methyl-triethoxy-silane, tetraoxy-silane
and perfluoro-octyl-trimethoxy-silane with suspended SiO2

nanoparticles [55]. The nanocomposite material exposes
different components at the surface varying at the nano
level. Adsorbing proteins are faced with different types of
binding forces, decreasing the bond strength to the surface as
compared with bare enamel [55]. At the moment, only heat
curing material is available, but further studies are in
progress to develop a light curing version [55]. However,
the first in situ results are very promising for the establishment
of an easy-to-clean material in modern dentistry. In an electron
microscopic analysis of specimens exposed in situ, a strongly
reduced adherence of bacteria was observed on the coated
samples as compared with uncoated controls. Also, the 6-h in
situ pellicle itself exposed a different ultrastructure. The
24-h bacterial biofilm on nano-coated enamel samples—if
present—does not differ from that observed on uncoated
samples, but with coated specimens, the detachment of
bacterial layers from the basal layer of the pellicle was
observed, indicating self-cleaning effects (Fig. 5) [55]. Intra-
orally active shearing forces are strong enough to remove the
outer pellicle layer and adhering bacteria from the nano-
composite coating. The nanocomposite does not work by
inhibiting the adhesion of the proteins but by reducing
adhesion strength or tenacity, respectively. The tenacious
basal layer which does not detach from the surface might
ensure the lubricating effect of the pellicle to prevent
enhanced tooth wear [60]. Also, typical enzymes such as
lysozyme or peroxidase are present in the in situ pellicle on
the nano-coated enamel samples in an active conformation,
indicating that the protective properties of this proteinaceous
layer are maintained (unpublished data).

In accordance with these actual data, in a previously
performed in vivo study by Olsson et al. [98], ceramic
crowns with a highly hydrophobic surface coating accu-
mulated almost no plaque, indicating a biofilm formation of
low shear stress resistance.

The pellicle, a physiological masking of different surface
properties?

The reviewed in vivo or in situ data on the proteinaceous
pellicle and on the bacterial biofilm on different substrata

Fig. 6 Biofilm formation on polished gold alloy surfaces after
cessation of oral hygienic procedures for 8 weeks
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are somewhat bewildering. Pellicles on different substrata
have a certain uniformity. This was shown for enzyme
activities as well as for the ultrastructure or for the general
amino acid composition, respectively [11, 42, 45, 48, 100,
136, 138]. Observed differences were not very pronounced
and are often attributed to selective mechanisms of protein
adsorption during the very initial stages of pellicle
formation [35, 56, 100, 149]. During the deposition of the
pellicle layers, the specificity of adsorption process onto
substrata with different physical properties is assumed to be
lost progressively [100]. Salivary protein adsorption tends
to level out the original differences in substratum surface
free energy [148, 149] and evens the surface relief [126].
Thereby, the micelle-like globular structures and the
heterotype complexes composed of salivary proteins and
mucins provide fast filling or sealing of surface irregular-
ities or rough structures, respectively [53, 112, 120, 157,
170].

However, bacterial adhesion and biofilm formation
were often shown to follow the pattern expected on the
basis of critical surface tension and of the original surface
free energy of a material together with the shear forces
present [107, 108, 110, 129–131, 149, 162]. The differ-
ences in bacterial colonisation of dental materials are not
fully explored. There are only postulates for the phenom-
enon of different bacterial colonisation despite the rather
homogenous pellicle layer. It is likely that a mechanism
exists by which surface characteristics of a solid are
transmitted through the adsorbed film (Fig. 1) [18,
95, 103, 146]. The range of the forces responsible for
adherence of proteins and bacteria seems to be of
considerable significance for this observation [94, 95,
106, 143].

It may be postulated that long-range forces act through
the pellicle layer and impact at least the first approach of
the microorganisms [18]. Further on, despite the described
homogenising and masking effects of the pellicle formation
[59], there may be conformational differences of the
adsorbed proteins on different materials [106]. This is
especially relevant for the bacterial receptors or for the
active sites of enzymes [2, 37, 40, 106]. Also, rearrange-
ment and desorption of external parts of the pellicle layer
are assumed to be a key to different bacterial colonisation
of dental materials [95]. Despite the fact that the pellicle on
different surfaces exposes the same enzyme activities at the
surface and despite the ultrastructural homogeneity [42,
48], the pellicles may be of different tenacity, as indicated
by measurement of the adhesion forces [124]. The tenacity
of the adsorbed proteins is a result of surface properties
such as wettability, electric charge, surface free energy, etc.
[95]. Pellicles of different tenacity detach or peel off in a
different manner or yield a different turnover, respectively
[6, 156]. The bacterial biofilm and the outer layer of the

pellicle detach or shed of from ceramic surfaces, leaving
only the electron dense basal layer (Figs. 4d and 5). This
phenomenon was observed only with polished or glazed
ceramic surfaces and especially on new low-energy nano-
composite surfaces [55]. Salivary films are adsorbed on
low-energy surfaces with a loose, more native configura-
tion, and therefore, they could be more easily desorbed [6,
156]. In conclusion, physico-chemical surface properties
are only in part counterbalanced by pellicle formation.
Conformational differences of the adsorbed proteins in-
duced by short-range forces as well as long-range forces
transmitted through the pellicle layer may account for this
phenomenon [18, 37, 95, 103]. Nevertheless, pellicle
formation on all orally exposed surfaces ensures the
ubiquitous biological function of this proteinaceous film
as a lubricant [53].

Despite the nature of the pellicle to mask the physical
surface properties of different solid substrates, surface-
determined long-range interactions influence the bacterial
colonisation of the pellicle layer [143]. This allows the
establishment of low-energy surfaces with low bacterial
colonisation without eliminating the protective and lubri-
cating pellicle layer.

All in all, extensive knowledge and exploration of the in
situ pellicle is the fundament for biofilm management
strategies in the oral cavity. Despite extensive investigation
of the amino acid composition and the ultrastructure, some
aspects of pellicle research are still in the beginning. Many
small peptides were not characterised until now [53, 70,
128]. Furthermore, the structural and conformational
changes of salivary proteins due to the process of
adsorption are of high importance to understand bioadhe-
sion on the molecular level. [37, 106] Thereby, the oral
cavity offers the unique opportunity to carry out in situ
studies in noninvasive approaches [42, 45]. Valuable
information of general scientific interest on bioadhesion
processes in vivo can be gained from dental research using
the oral cavity as a model. In this context, it has to be
pointed out again clearly that in situ and in vitro studies
yielded differing results, indicating the limitations of in
vitro approaches [15, 40, 167].

Conclusions

– In vitro studies do not reflect bioadhesion in vivo.
Accordingly, in situ or in vivo studies are strongly
recommendable in order to understand the details of
bioadhesion in man.

– The oral cavity is an excellent in vivo model for the
investigation of protein–surface interactions noninvasively.

– Pellicle formation masks the physicochemical surface
properties of dental materials to a certain extent.
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However, bacterial adhesion and tenacity of the
bacterial biofilm is considerably influenced by long-
range forces transferred through the pellicle layer.

– Low-energy surfaces are desirable for biofilm manage-
ment in the oral cavity; the realisation of such materials
for clinical use is conceivable.

– Besides chemical and physicochemical surface charac-
teristics of dental materials, the surface roughness is of
great relevance for bioadhesion in the oral cavity.
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