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Abstract The aim of the present study was the quantifica-
tion of Streptococcus mutans adhesion on ten widely used
pit and fissure sealant materials and the correlation of these
findings to surface roughness (Ra) and surface free energy
(SFE). Additionally, changes in streptococcal adhesion and
surface parameters after water immersion and artificial
aging have been investigated. Circular specimens of ten
fissure sealants (seven resin-based composites, two glass
ionomers, and one compomer) were made and polished.
Surface roughness was determined by perthometer and SFE
by goniometer measurements. Sealant materials were
incubated with S. mutans suspension (2.5 h, 37°C), and
adhering bacteria were quantified by using a biofluores-
cence assay in combination with an automated plate reader.
Surface properties and S. mutans adhesion were measured
prior to and after water immersion after 1 and 6 months and
after additional thermocycling (5,000 cycles; 5°C/55°C).

The tested sealants showed significant differences in S.
mutans adhesion prior to and after the applied aging
procedures. Aging resulted in slight increases (mostly
<0.2 μm) in surface roughness, as well as in significant
decreases in SFE and in significantly lower quantities of
adhering bacteria. Ketac Bond and UltraSeal XT plus
revealed the lowest adhesion potential after artificial aging.
In general, the amount of adhering S. mutans was reduced
after aging, which may be related to the decline in SFEs.
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Introduction

In pedodontics, dental pit and fissure sealants have been
used for the prevention of occlusal tooth surfaces from
dental caries since the 1960s. The effectiveness of these
sealants in managing tooth decay in children at various
levels of risk has been demonstrated in many studies [1, 3,
8, 11, 21]. Sealant materials provide a physical barrier
between the oral habitant and deep pits and fissures, which
are highly vulnerable to the initiation of caries [15].

The bacterium Streptococcus mutans has been identified
as the main etiological agent of caries, which represents the
most common chronic childhood disease [15]. Within the
complex formation of a dental biofilm, S. mutans is
primarily responsible for the initiation of tooth decay as
well as for the progression of an established lesion [9, 16].
The initial adhesion of specific bacteria to tooth surfaces or
artificial dental substrata is both the primary and the
essential prerequisite for the formation of a cariopathogenic
biofilm within the oral cavity [25, 40]. Therefore, sealants
and dental materials in general should reveal a low
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susceptibility to adhere to oral bacteria. Ideally, sealants
should also exhibit antibacterial properties that may amplify
their potential to prevent caries [19]. It comes as a surprise
that—to our knowledge—the adhesion of microorganisms
to sealant materials has not yet been investigated. In fact,
only few investigations into the antibacterial properties of
these materials are available so far [19, 22].

Currently, three types of sealant materials are available:
resin-based composites, compomers, and glass ionomer
cements [1]. It is still unknown if one of these sealants is
superior in preventing the development of caries lesions in
vivo [34, 3]. The acid etch technique, the current bonding
systems, and the invention of modern resin materials with
adequate mechanical properties have made resin-based
composites the most popular sealing materials in contem-
porary dentistry [14]. Resin-based composites are highly
esthetic and exhibit the best retention length of all sealant
materials [3, 14, 21]. Although new composites offer a
fluoride-releasing effect, Menon et al. could not find any
antibacterial property, neither for Helioseal (without fluo-
ride) nor for Helioseal F (containing fluoride), by using the
disc diffusion method [22]. The second type of material—
glass ionomer cements—was introduced as a sealing
material in the 1970s [20]. Because of their high release
of fluoride, the pivot of preventive dentistry, glass ionomer
cements are preferred in clinical situations in which the
field of work cannot be kept moisture-free [3, 22, 35].
Compomers, also referred to as polyacid-modified resin
composites, were marketed to provide the mechanical and
esthetic benefits of composites as well as the fluoride-
releasing advantages of glass ionomers [23, 24]. Matalon et
al. [19] demonstrated in an in vitro agar diffusion testing
that—when compared against three resin-based sealants—
the compomer-based sealant Dyract Seal featured the most
potent and long-lasting antibacterial activity. Besides the
type of sealant material, physicochemical surface character-

istics such as surface roughness, hydrophobicity, and
surface free energy (SFE) have been shown to significantly
influence bacterial adhesion [2, 37]. It has been demon-
strated that the SFE of a solid substratum has a crucial
influence on the adhesion of oral bacteria [6, 28, 29, 39]. In
the thermodynamic model of microbial adhesion, bacterial
strains with high SFE (such as S. mutans) have a negative
interfacial free energy of adhesion (ΔFadh<0) at substratum
surfaces with high SFE and are, therefore, expected to
preferentially adhere to such substrata [28, 29, 39].
Surprisingly, little information is available on sealants with
regard to changes of SFE through aging and the potential
effects on microbial adhesion.

Thus, the aim of the present in vitro study was to
investigate the adhesion of S. mutans on various pit and
fissure sealant materials (n=10) before and after artificial
aging and to correlate these findings to changes in surface
roughness and SFE.

Materials and methods

Specimen preparation

A total of ten widely used pit and fissure sealants (seven
resin-based composites, two glass ionomers, and one
compomer) were assessed in this study (cf. Table 1). All
materials were applied in exact accordance with their
respective manufacturer’s instructions. Uniform cylindrical
specimens (measuring 10.0 mm in diameter and 2.0 mm in
thickness) were prepared by carefully dispensing the
sealants in a custom plastic mold with calibrated circular
holes in order to avoid air bubble entrapment. The light-
curing materials were covered immediately from top to
bottom with two glass slides (Alfred Becht, Offenburg,
Germany) followed by light polymerization for 1 min from

Table 1 Ten fissure sealants and two reference materials

Type of material Material Manufacturer Lot no.

Resin-based composite Clinpro Sealant 3M ESPE, St. Paul, MN, USA 20051202

Delton FS+ Dentsply DeTrey, Konstanz, Germany 051007

Embrace WetBond Pulpdent, Watertown, MA, USA 060227

Grandio Seal Voco, Cuxhaven, Germany V 31185

Guardian Seal KerrHawe, Orange, CA, USA 447015

Helioseal F Ivoclar Vivadent, Ellwangen, Germany 6127844

UltraSeal XT plus Ultradent Products, South Jordan, UT, USA B1TDX

Glass ionomer Ketac Bond 3M ESPE, St. Paul, MN, USA 3079498

Fuji II LC GC, Leuven, Belgium 0604191

Compomer Dyract Seal Dentsply DeTrey, Konstanz, Germany 0605000708

Reference materials Sinfony (veneering composite) 3M ESPE, St. Paul, MN, USA 237870

Glass Marienfeld, Koenigshofen, Germany –
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each side (Heliolux DLX1; Vivadent, Schaan, Liechtenstein/
100 W, 2 cm distance from the tip). Every specimen was
accurately polished to high gloss by using a polishing
machine (Motopol 8; Buehler, Coventry, UK) and wet
abrasive paper (grain 4000; Buehler, Duesseldorf, Germany).
Glass slides (Marienfeld, Koenigshofen, Germany) and
specimens of a veneering composite (Sinfony; 3M ESPE,
St. Paul, MN, USA) served as reference substrata. A total of
240 specimens, meaning 20 samples of each material, were
made. All specimens were stored in distilled water for 5 days
to reduce the potential antibacterial influence of residual
monomers or other cytotoxic constituents.

Surface roughness and surface free energy

The arithmetic average of surface roughness (Ra) was
determined on three spots of six specimens for each material
by using a profilometric stylus instrument (Perthometer S6P;
Perthen, Goettingen, Germany). The total SFE/γ as well as
its dispersion and polar components were calculated from
automated contact angle measurements (OCA 15 plus;
Dataphysics Instruments, Filderstadt, Germany). Therefore,
three liquids with differing surface tension were used:
deionized water, diiodomethane (Sigma-Aldrich, St. Louis,
MO, USA), and ethylene glycol (Merck KgaA, Darmstadt,
Germany). Four drops for each liquid (2 μL) were examined
on five randomly selected specimens for each material. The
left and right contact angles of each drop were averaged.
SFE was calculated according to the Owens, Wendt, Rabel,
and Kaelble method [26].

Adhesion testing

Adherent S. mutans were quantified as described before [5].
Briefly, the S. mutans strain 20523 (DMSZ, Braunschweig,
Germany) was used as a test microorganism in this study.
The day prior to the experiment, 1 mL of a bacterial
suspension was inoculated with 250 mL of sterile trypticase

soy broth (BD Diagnostics) and incubated at 37°C for 12 h.
The optical density of the suspensions was adjusted with a
spectrophotometer (Genesys 10S; Thermo Spectronic,
Rochester, NY, USA) to 0.3 at 540 nm. The oxidation–
reduction fluorescence dye Alamar Blue/Resazurin (Sigma-
Aldrich, 0.75 g/mL aqua dest) was used to determine the
quantity of bacterial adhesion. Fluorescence intensities
were recorded by an automated multidetection reader
(Fluostar optima; BMG Labtech, Offenburg, Germany) at
wavelengths of 530 nm excitation and 590 nm emission.
High relative fluorescence intensities indicated high strep-
tococcal adhesion.

Aging regimes (water immersion and thermocycling)

All test and reference materials were similarly allotted to
the aging regime. Surface roughness values, SFEs, and
quantification of adhering streptococci were determined at
the following time points: at baseline, after 1 month of
immersion in distilled water, after 6 months of water
immersion, and after additional aging in a thermal cycler
(Regensburger Kausimulator, EGO, Germany) with 5,000
cycles (5°C/55°C).

Statistics

Continuous data were summarized by using medians
and interquartile ranges (25th to 75th percentile). Global
between-group comparisons were done by the Kruskal–
Wallis test. The Mann–Whitney U test in combination
with the Bonferroni adjustment was performed to detect
differences in surface roughness, SFE, and relative
fluorescence intensities. Spearman’s rank correlation coef-
ficients were calculated to assess correlations between the
variables relative fluorescence intensity, surface rough-
ness, and SFE. Calculations were done using the statistical
software SPSS 15.0 for Windows (SPSS, Chicago, IL,
USA).

Fig. 1 Relative fluorescence intensities indicating streptococcal
adhesion (bars), total SFE (circles and continuous lines), and
arithmetic average of surface roughness (squares and dashed lines)

at baseline, after 1 month of water immersion, after 6 months of water
immersion, and after additional thermocycling (medians) of ten fissure
sealants and two reference materials
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Results

Arithmetic surface roughness (Ra)

The pairwise comparison by Mann–Whitney U test
revealed statistically significant differences in arithmetic
surface roughness between the various assessed materials
(66 pairs; α=0.0008). The significantly highest roughness
values, both at baseline as well as after thermocycling, were
found for Guardian Seal (0.23/0.53 μm), Ketac Bond (0.29/
0.44 μm), and Fuji II LC (0.90/0.96 μm). Except for Fuji II
LC that displayed steady roughness values, surface rough-
ness of all test materials increased significantly after the
particular aging regimes, especially after thermocycling (six
pairs; α=0.0083) (cf. Table 2 and Fig. 1).

Total surface free energy

Significant differences were observed in SFE at baseline.
Fuji II LC showed significantly higher SFE values
(59.8 mJ/m−2) and the reference material Glass significantly
lower SFE values (38.8 mJ/m−2) than all other assessed
materials (66 pairs; α=0.0008). After the various aging
protocols, statistically significant differences were no
longer detectable (p>0.0008 for all pairwise comparisons).
In general, SFE values of all test materials significantly
declined after the various aging procedures (six pairs; α=
0.0083). The most significant declines were calculated after
thermocycling (cf. Table 2 and Fig. 1).

Streptococcus mutans adhesion

The comparative adhesion of S. mutans is displayed in
Fig. 1 and Table 3 as relative fluorescence intensities for all
sealant and reference materials. The pairwise comparisons
between baseline and after thermocycling showed signifi-
cant decreases of fluorescence for Clinpro Sealant (p=
0.001), Delton FS+ (p=0.002), Embrace WetBond (p<
0.001), Guardian Seal (p=0.002), UltraSeal XT plus (p<
0.001), Ketac Bond (p<0.001), and Dyract Seal (p<0.001).
No statistically significant differences between baseline and
after thermocycling were found for Grandio Seal (p=
0.650), Helioseal F (p=0.880), Fuji II LC (p=0.059), and
reference materials Sinfony (p=0.070) and Glass (p=
0.762). The Kruskal–Wallis rank analysis of variance
revealed statistically significant differences between test
and reference materials for all four assessed stages of aging
(p<0.001).

At the starting point of the investigation, a significantly
lower fluorescence intensity was found on reference material
Sinfony than on all tested sealant materials. The comparisons
between Glass and all tested materials revealed significant
differences for all sealants, except for Grandio Seal (p= T
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0.013), Helioseal F (p=0.226), and Ketac Bond (p=0.364).
In general, high relative fluorescence intensities (rfu>20,000)
could be observed for Clinpro Sealant, Delton FS+, Embrace
WetBond, Guardian Seal, and UltraSeal XT plus. Moderate
fluorescence intensities (rfu between 10,000 and 20,000) were
found for Fuji II LC and Dyract Seal, and low fluorescence
values (rfu<10,000) for Grandio Seal, Helioseal F, Ketac
Bond, Glass, and Sinfony.

After 6 months of water immersion and thermocycling,
Sinfony still revealed significantly lower fluorescence
intensities than all tested sealants, except for Ketac Bond
with comparable values (p=0.496). UltraSeal XT plus
showed a significantly lower fluorescence intensity than
both reference materials, Sinfony and Glass (p=0.001).
Significantly higher fluorescence intensities than for refer-
ence material Glass were found for Clinpro Sealant, Delton
FS+, Guardian Seal, Grandio Seal, Ketac Bond, and Fuji II
LC. No statistical difference to Glass was revealed by
Embrace WetBond (p=0.705), Helioseal F (p=0.151), and
Dyract Seal (p=0.023). After aging, high relative fluores-
cence intensities were still found for Guardian Seal and
moderate fluorescence intensities for Clinpro Sealant and
Delton FS+. All other tested materials showed low
fluorescence intensities.

Correlations between fluorescence, Ra, and SFE

Spearman’s rho coefficients (SR) were calculated to detect
possible correlations between the assessed surface properties
and the quantity of bacterial adhesion. No significant
correlations were found between fluorescence and Ra (SR=
−0.015). Medium correlations were found between fluores-
cence and SFE (SR=+0.301) and between Ra and SFE (SR=
+0.203).

Discussion

In modern dentistry, pit and fissure sealants represent a
state-of-art method for preventing the initiation of occlusal
caries in children [1, 3, 21]. Thus, the potential of a pit and
fissure sealant material to reduce microbial adhesion and
prevent the colonization of cariopathogenic bacteria may
contribute to the prevention of caries [1, 18, 19]. The
present study aimed at assessing changes in surface
properties of sealant materials after artificial aging and at
attempting to correlate these findings to the in vitro
adhesion of S. mutans.

The resazurin reduction test employed in this study is a
well-established fluorometric assay for the in vitro quanti-
fication of viable bacteria [12, 33]. The comparison of
antibacterial properties in vivo seems to be preferable but
must be regarded as impracticable in consideration of the
high number of materials tested (n=12). Surprisingly, most
advice from in vitro studies on the suitability of a sealant
material for clinical settings has predominantly been based
on retention rates and mechanical properties rather than on
antibacterial or antiadhesion properties [3, 22]. However,
these biological parameters are indicators for the effective-
ness of a specific material to prevent caries, which, after all,
is the main reason for the application of a sealant.

High surface roughness values are known to promote
extensive plaque accumulation on both oral tissues and
dental materials [37]. Bollen et al. [4] found a threshold
value of 0.2 μm. Below this value, surface roughness had
no further influence on the quantity of bacterial adhesion.
Therefore, all specimens in this study were polished to high
gloss. Most specimens had significantly lower roughness
values than this threshold value, although aging generally
resulted in increasing roughness values. Increasing surface

Table 3 Relative fluorescence intensities [no units] on ten fissure sealants and two reference materials before and after water immersion and
artificial aging (median; 25%/75%)

Material Baseline After 1month After 6months After thermocycling

Clinpro Sealant 32,398 (29,000/35,099) 25,363 (18,125/28,889) 18,874 (17,025/22,383) 12,072 (8,908/14,658)

Delton FS+ 21,527 (16,081/28,856) 27,299 (24,460/30,085) 26,101 (22,321/32,297) 10,629 (7,906/12,612)

Embrace WetBond 21,206 (14,434/40,632) 34,829 (31,670/37,077) 10,691 (9,192/13,060) 3,487 (2,937/5,069)

Grandio Seal 7,735 (6,256/9,557) 12,150 (9,966/14,055) 6,684 (4,214/7,323) 8,360 (6,563/9,293)

Guardian Seal 63,586 (63,524/63,695) 55,692 (54,640/57,870) 51,249 (48,511/57,572) 48,446 (42,902/55,053)

Helioseal F 5,909 (4,082/9,412) 8,228 (5,595/8,751) 1,409 (900/2,172) 5,461 (4,890/7,205)

UltraSeal XT plus 23,144 (19,426/29,164) 16,010 (15,476/19,245) 13,552 (11,619/15,294) 708 (587/749)

Ketac Bond 3,900 (2,042/4,739) 2,879 (1,621/4,486) 493 (381/1,177) 1,003 (492/1,382)

Fuji II LC 13,129 (8,676/19,642) 12,529 (10,143/15,263) 5,577 (4,699/9,641) 9,273 (8,973/9,980)

Dyract Seal 19,497 (18,430/23,277) 20,699 (17,728/27,246) 13,480 (10,525/16,318) 6,505 (5,615/9,438)

Sinfony (ref. 1) 1,410 (1,232/1,771) 2,182 (1,935/3,322) 1,619 (982/1,804) 1,205 (1,074/1,276)

Glass (ref. 2) 4,288 (3,839/5,707) 2,030 (290/3,419) 6,028 (3,135/7,595) 4,455 (1,962/5,708)

High fluorescence intensities indicate high amounts of adhering S. mutans
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roughness values on various dental materials after artificial
aging have been reported by other authors, which corre-
sponds to the findings of this study [36, 41, 42]. In resin-
based composites, aging is generally known to cause
erosion of the resin matrices and exposure of filler particles
[27]. In this study, only the resin-based composite Guardian
Seal and the glass ionomers Ketac Bond and Fuji II LC
revealed significantly higher Ra values than 0.2 μm. When
compared to all other resin-based composites, Guardian
Seal also had the significantly highest bacterial adhesion,
which—in this case—may result from its above-average
roughness values. In contrast to Guardian Seal, Fuji II LC
did not reveal a high streptococcal adhesion in spite of the
highest surface roughness values of all materials tested.
Therefore, other surface properties besides surface rough-
ness seem to have an influence on S. mutans adhesion.
Despite the significant differences in arithmetic surface
roughness values, no general correlation to adhesion
quantities could be observed in this study.

The crucial influence of hydrophobicity and SFE on the
bacterial adhesion process is widely accepted, but there is
still conflicting evidence if high SFE surfaces reduce or
enhance the quantity of adhering microorganisms [2, 6, 7,
28, 29, 31, 32, 37]. In this study, significant differences in
total SFE between the assessed materials were found at
baseline (SFE values ranged from 44.9 to 59.8 mJ/m−2).
Because of the specific chemistry of cements, the two glass
ionomers tested had significantly higher SFE values than
the resin-based composites. After the assessment of all test
materials, aging caused a leveling of these originally
distinct SFE values (38.3 to 45.0 mJ/m−2 after water
immersion and thermocycling). This leveling effect and
the general tendency for declining SFE values after the
various aging protocols may result from the absorption of
water. In turn, this absorption may lead to soaking and to a
rearrangement of monomer chains of the composite with
disperse parts oriented to the surface. Differences in the
contribution of polar and dispersion components were poor
(data not shown).

All surfaces in the oral cavity are rapidly covered with a
layer of salivary proteins [6, 28, 29, 39]. This proteinaceous
pellicle crucially affects the adhesion process of micro-
organisms to solid surfaces, but a considerable direct
influence of the underlying substratum on the quantity
and quality of bacterial accumulation remains [28, 39].
Specific substratum properties such as SFE are transferred
from the material–protein interface to the protein–bacterium
interface [28, 29]. As we intended to evaluate the bare
material-specific influences of different fissure sealants on
streptococcal adhesion in the present study, no pellicle
precoating of specimens was conducted. By eliminating the
influence of the pellicle, changes in streptococcal adhesion
could be reduced to the influence of material properties only,

which in turn led to a simplified interpretation of the results. In
general, the salivary pellicle reduces the material-specific
effects on bacterial adhesion by leveling differences in SFE
between high-SFE and low-SFE substrata [28, 39].

The microbial adhesion process is not only dependent on
the SFE of the substratum but also on the SFE of the
bacterial strain [6, 7, 28, 39]. It has been assumed (in the
thermodynamic model of bacterial adhesion) that micro-
organisms with low SFEs prefer low-SFE surfaces and that
high-SFE bacteria adhere more strongly to substrata with high
SFE values [2, 7, 32, 37, 39]. Several authors found high
SFEs (>100 mJ/m−2) for different S. mutans strains [28, 38,
39] and Pratt-Terpstra et al. demonstrated that increased
quantities of S. mutans adhered on pellicle-free substrata
with high SFE [28]. Consequently, fissure sealant surfaces
with lower SFE values would be expected to be thermo-
dynamically unfavorable for S. mutans adhesion in the
present study. The declining number of adhering S. mutans
after aging and the correlation to diminishing SFE values
are in strong accordance with these findings. A single
streptococcal strain, S. mutans, was used as a test
bacterium in this study. Because of the complexity of the
individual bacterial cell surface and the unpredictable
influence of different bacterial strains (with differing
SFE) on the adhesion process, our findings must not be
transferred to the in vivo clinical situation without any
restrictions [7, 30].

It has been suggested that the formulation of the
compound has a significant effect on the antibacterial
property of sealant materials and hence on the quantity of
adhering microorganisms [22]. This assumption has been
affirmed by the present study because significant differ-
ences have been found in the bacterial adhesion to the
various sealant materials. The resin-based composite
Guardian Seal revealed the highest adhesion potential both
at baseline as well as after thermocycling. At the starting
point, the glass ionomer Ketac Bond and the composites
Grandio Seal and Helioseal F had the significantly lowest
adhesion values. After the various aging procedures, Ketac
Bond and UltraSeal XT plus showed low adhesion
potentials. This shifting emphasizes the importance of
artificial aging in the interpretation of in vitro microbial
adhesion studies. The observation of aging effects is
particularly interesting in the present study because anti-
adhesion properties in sealants might be helpful in
preventing caries in the long-term [19]. Matalon et al.
[19] found the compomer Dyract Seal to have the most
potent and longest-lasting antibacterial activity when
compared against Helioseal F and UltraSeal XT plus.
These findings have not been consistent to our data where
Dyract Seal did not show a significantly lower streptococ-
cal adhesion than these two resin-based composites.
Although, in our study, adhesion testing on glass ionomers
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tended to result in rather low adhesion values, it remains
equivocal if any type of sealant material is superior when
comparing resin-based composites, compomers, and glass
ionomers.

The fluoride release by sealant materials has been
suggested to reduce the adherence of S. mutans and may,
therefore, contribute to the prevention of caries [13, 17, 19].
Previous studies have reported that the fluoride level in
dental plaque on glass ionomers is significantly higher than
that on resin-based composites [10], which might serve as a
valid explanation for the low adherence of S. mutans to the
two glass ionomers used in this study.

In consideration of the limitations of this in vitro study,
the following conclusions may be drawn:

1. The tested sealant materials demonstrated a significantly
different S. mutans adhesion with a tendency for reduced
adhesion values after artificial aging. Ketac Bond and
UltraSeal XT plus revealed the lowest adhesion poten-
tials after artificial aging.

2. Except for Guardian Seal, which yielded high surface
roughness as well as high streptococcal adhesion, no
general correlation was found between surface roughness
and the quantity of adhering S. mutans.

3. Artificial aging and thermocycling resulted in increased
surface roughness values and declining SFEs.

4. Declining SFE values corresponded to declining adhesion
potentials during aging, a medium correlation between
SFE and bacterial adhesion could be observed.

5. The correlation between these in vitro findings and the
clinical performance of the various sealants has to be
established in further studies.
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