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Abstract The aim of this study was to evaluate peri-implant
bone reactions around immediately loaded conical implants
with metal and acrylic resin prosthetic restorations. Five
splinted conical implants were inserted in each hemimand-
ible of six minipigs at the alveolar crest level. Ten implants
were inserted in each minipig. All the implants were
immediately loaded. The implants were divided into a group
with an acrylic resin prosthetic restoration and into another
group with a metal prosthetic restoration. No postoperative
complications or deaths of the minipigs occurred. All
minipigs were killed after 3 months. No implant was lost.
A total of 60 implants were retrieved and processed to obtain
thin ground sections. Histology and histomorphometry
showed the presence of compact, mature bone around all
the implants. Bone was in close contact with the implant
surface starting from the first or second implant threads. A
high quantity of mineralized bone was present around
immediately loaded conical, root form implants. No differ-
ences in the peri-implant bone response were found in the
groups with different prosthetic reconstructions.
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Introduction

Immediate loading of dental implants is currently one of the
most interesting and studied topics in implant dentistry [1].
Although it has been shown to be clinically successful under
long-term function [2, 3], limited knowledge exists regarding
the healing and remodeling processes of the bone around
these implants. Animal studies demonstrated osseointegra-
tion of immediately loaded definitive [4, 5] and provisional
[6] implants. Histologic evaluations of immediately loaded
implants showed a high degree of osseointegration under
long-term function [7, 8]. Using screw implants with a
microstructured surface and bone quality-adapted insertion
procedures, osseointegration was achieved when implants
were initially stable and splinted within the prosthetic
suprastructures [9]. The importance of the implant geometry
and surface characteristics, in an effort to achieve better bone
anchorage, has been demonstrated [10] and various implant
systems have been introduced over the past years in order to
achieve a faster bone integration [11, 12]. Some authors
focused their attention on the conical implant design. Nordin
et al. [13] showed that a conical implant had a wider
diameter in the cortical passage and that it resulted in bone
resorption along the conical surface down to the first thread.
Sakoh et al. [14], in an in vitro study, showed that conical
implants had a higher primary stability than cylindrical
implants. These authors found that the torque and push-out
values of the conical implants were significantly higher,
while the mean Periotest values of the conical implants were
significantly lower. Quaresma et al. [15], in a finite element
analysis, showed that a conical implant connected to a solid,
internal, conical abutment produced lower stresses on the
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alveolar bone and prosthesis and greater stresses on the
abutment compared to a cylinder implant connected to a
screw-retained, internal hexagonal abutment. The use of
miniature pigs in dental research increased significantly due
to their similarity in gross anatomy and physiology to
humans, as well as for other scientific, economic, and ethical
reasons [16]. The roots of the teeth in the minipig are curved
distally and the teeth have a higher number of roots than
humans (e.g., the molars have four to six roots) [16]. The
minipig is a valuable preclinical model that can be used in
oral and craniofacial research [17-21] although the rate of
bone regeneration in pigs is different from humans (pigs 1.2–
1.5 mm/day; human 1.0–1.5 mm/day) [22]. The restorative
materials used for implant-supported prostheses are another
important point in implant dentistry due to the fact that they
play a relevant role in the long-term success of osseointe-
grated implants [23]. However, in vivo studies histologically
quantifying the reaction of the peri-implant hard tissues to
different restorative superstructure materials are lacking [24].
The three most common groups of materials used for fixed
prostheses are porcelain, acrylic, and metal. Impact loads are
the lowest with acrylic, increase with metal, are greater with
enamel, and further increase with porcelain. Porcelain and
acrylic fractures can occur under excessive loads or even
with a lesser load of longer duration, angulation, or
frequency, and acrylic fractures more easily [25]. Few data
are available regarding biomechanical reactions between
immediately loaded implants rehabilitated with acrylic and
metal suprastructures [26].

The aim of this study was to evaluate peri-implant bone
reactions around immediately loaded conical implants with
either metal or acrylic resin prosthetic restorations.

Materials and methods

A total of six Göttingen minipigs, 14 to 16 months of age and
with an average body weight of 35 kg, were used in this study.
The study was approved by the Ethical Committee of the
Veterinary Clinic of the University of Madrid, Spain. A total
of 60 root form conical implants (RF, Bone System, Milan,
Italy) were used. The animals were sedated with an
intramuscular injection of ketamine (10 mg/kg), atropine
(0.06 mL/kg), and stresnil (0.03 mL/kg). In the areas exposed
to surgery, 4 mL of local anesthesia (2% lidocaine with
12.5 µg/mL epinephrine; Xylocain/Adrenalin®, Astra, Wedel,
Germany) was injected and three premolars and three molars
were extracted in each hemimandible.

The tooth extractions were difficult in every case because
the roots were divergent and usually curved distally. It was
always necessary to separate the roots before extracting them.

After a healing period of 3 months, no migration of the
neighboring teeth was observed and five splinted implants

10 mm in length and 4.1 mm in diameter were inserted in each
hemimandible at the level of the alveolar crest (Fig. 1) under
continuous external sterile saline irrigation. All the implants
were immediately loaded (the same day of the insertion). The
implants were divided into two groups; the implants in the
first group, inserted in the left hemimandible, were rehabil-
itated with prosthetic restorations in acrylic resin (Fig. 2),
while the implants in the second group, inserted in the right
hemimandible, were rehabilitated with a prosthetic restora-
tion in metal (Fig. 3). Both kinds of restorations were put in
centric occlusion and checked with articulating paper [27].
The animals were inspected after the first few postoperative
days for signs of wound dehiscence or infection and weekly
thereafter to assess general health. No postoperative compli-
cations or death occurred. All minipigs were killed after
3 months. The animals were euthanized with an overdose of
ketamine hydrochloride given intravenously. No implants
were lost. A total of 60 implants were retrieved (Figs. 4 and
5). The implants and surrounding tissues were stored
immediately in 10% buffered formalin and processed to
obtain thin ground sections. The specimens were processed
using the Precise 1 Automated System (Assing, Rome,
Italy). The specimens were dehydrated in a graded series of
ethanol rinses and embedded in a glycol methacrylate resin
(Technovit 7200 VLC, Kulzer, Wehrheim, Germany). After
polymerization, the specimens were sectioned, along the
longitudinal axis of the implants, with a high-precision
diamond disk at about 150 µm and ground down to about
30 µm with a specially designed grinding machine. Three
slides were obtained for each implant. These slides were
stained with acid fuchsin and toluidine blue and examined
with transmitted light under a Leitz Laborlux microscope
(Leitz, Wetzlar, Germany).

Histomorphometry was carried out using a light micro-
scope (Laborlux S, Leitz, Wetzlar, Germany) connected to a

Fig. 1 Five implants are placed in each hemimandible at the level of
the alveolar crest
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high-resolution video camera (3CCD, JVC KY-F55B,
JVC®, Yokohama, Japan) and interfaced to a monitor and
personal computer (Intel Pentium III 1200 MMX, Intel®,
Santa Clara, CA, USA). This optical system was associated
with a digitizing pad (Matrix Vision GmbH, Oppenweiler,
Germany) and a histometry software package with image-
capturing capabilities (Image-Pro Plus 4.5, Media Cyber-
netics, Immagini & Computer Snc, Milano, Italy).

The histomorphometric measurements involved the mean
percentage of bone to implant contact (BIC) in the three best
consecutive threads in the cortical region, the bone area in all
threads, as well as the bone area in the three best consecutive
threads in the cortical region.

Results

The histological results in both groups were similar and will
be presented together. Histological analysis of the bone–

implant interface revealed compact, mature bone found
around all implants (Figs. 6 and 7). Many osteons were
present. Only a few marrow spaces were present. Bone was
in close contact with the implant surface (Fig. 8). Only a
few remodeling areas were present. Only a few osteoblasts
were present at higher magnification. No inflammatory cell
infiltrate was present in the marrow spaces. A slight
inflammatory cell infiltrate was observed in the peri-
implant soft tissues. No osteoclasts were observed. No
gaps or fibrous, connective tissue was found at the bone–
implant interface (Fig. 9). No epithelial downgrowth was
present. First bone to implant contact was present at the
level of the first or second implant thread. The quantitative
histomorphometric analysis showed that:

1. bone to implant contact in all available threads around
the implant = 69.8±3.2 (acrylic prosthetic restorations)
vs 68.1±2.1 (metal prosthetic restorations; p=0.38);

2. bone to implant contact in the three best consecutive
threads in the cortical region = 84±2.7 (acrylic

Fig. 2 Implants rehabilitated with acrylic resin restoration

Fig. 3 Implants rehabilitated with metal restoration

Fig. 4 Radiograph showing, before retrieval, the implants splinted
and rehabilitated with acrylic resin restoration

Fig. 5 Block sample retrieved after 3 months
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prosthetic restorations) vs 83±3.6 (metal prosthetic
restorations; p=0.41);

3. bone area in all threads = 91±0.9 (acrylic prosthetic
restorations) vs 89±1.1 (metal prosthetic restorations;
p=0.32);

4. bone area in the three best consecutive threads in the
cortical region = 93±1.6 (acrylic prosthetic restorations)
vs 91±1.8 (metal prosthetic restorations; p=0.39).

Discussion

Primary stability is related to mechanical interlocking,
which is one of the most important factors for the
development of osseointegration [28]. The implant geom-
etry leads to a homogenous strain distribution in loaded
peri-implant bone [29]. It has been demonstrated in animal
experimental studies that immediate loading of dental
implants could be performed without disturbing the early
osseointegration process [30]. Several studies emphasized

Fig. 6 Low-power magnification of a histologic section of an implant
rehabilitated with an acrylic resin restoration. Bone is present over a
large portion of the implant surface. Acid fuchsin–toluidine blue, ×8

Fig. 7 Low-power view of a histologic slide of an implant
rehabilitated with a metal restoration. Mature bone lines the implant
perimeter. Acid fuchsin–toluidine blue, ×8

Fig. 8 Compact, mature bone with many osteons are found at the
implant interface of an implant supporting an acrylic restoration. Acid
fuchsin–toluidine blue, ×40

Fig. 9 Peri-implant bone found around an implant restored with a
metal prosthesis. No gaps or soft tissues are found at the bone–metal
interface. Acid fuchsin–toluidine, blue ×40
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that the osseointegration process depended on the implant
design [10-20]. In the present study, a very high bone–
implant contact percentage was present around immediately
loaded conical, root form implants. The implant system
used in this study was designed to allow implants to have a
direct bone–implant contact over the whole implant surface
directly after insertion. The use of a rough, sandblasted, and
acid-etched surface was most probably helpful in obtaining
a high bone–implant contact percentage in both groups.
Clinical, radiographic, and histologic evidence supported
the use of metal [24] and acrylic resin suprastructures as
fixed prostheses for the restorations of endosseous dental
implants [31]. However, when comparing porcelain and
acrylic resin occlusal surfaces on osseointegrated implant-
supported prostheses opposing natural teeth, no differences
related to material could be detected in the load rates [32].

In the present animal study, no differences were found in
the bone response in specimens retrieved after 3 months in
the two groups (implants with metal superstructures and
implants with acrylic resin superstructures). Acrylic resin
had a low module of elasticity and could decrease the
occlusal impact forces on the bone–implant area if
compared to metallic suprastructures. Gracis et al. [33]
evaluated the damping effect of five restorative materials
rigidly connected to a Brånemark implant and subjected to
an impact force. These materials included a gold alloy, a
noble metal ceramic alloy, porcelain, a laboratory-processed
light-activated microfilled resin, and a heat- and pressure-
polymerized polymethyl methacrylate resin. The two resins
were found to reduce the impact force by about 50% when
compared to porcelain or the alloys. However, this potential
protective role has never been fully demonstrated and, on
the contrary, a significantly better distribution of bending
moments was observed with the metal prostheses in
comparison to the acrylic resin prostheses [34]. Sertgöz
[35] used a three-dimensional field emission microscopy to
study the effect of the superstructure material and occlusal
surface material on the stress distribution in an implant-
supported fixed prosthesis. The conclusion was that using a
superstructure material with a lower modulus did not lead
to substantial differences in the stresses in any of the parts
of the model (e.g., prosthesis, screws, implants, surround-
ing bone), although the lower-modulus material did tend to
concentrate stresses in the retaining screws.

The data of the present study were in agreement with
other studies that observed no statistically significant
differences of the force absorption quotient between the
occlusal surfaces of gold, porcelain, and resin [36]. More
recently, a study [37] used strain-gauged abutments to
measure the force transferred to the implant after the
application of a shock. This was measured in vitro and in
vivo in five patients, and the different occlusal materials did
not lead to different forces generated on the implants.

In the present histological specimens, a marginal bone
resorption up to the first or second thread was observed.
This could be related to the lack of oral hygiene or to an
overloading of the implants. The data to assess the
importance of inflammation of the peri-implant tissues
and of occlusal overload are, however, still insufficient
[38]. In a recent review, it has been stated that, even if in
several clinical studies marginal bone loss around implants
had been associated with high occlusal stress of the
implants, a causative relationship with overload has not
been established [39].

Even if there was a difference in resilience between
acrylic resin and other materials, this difference was,
probably, only measurable in vitro. Therefore, it seemed
reasonable that prosthesis materials had no significant
effects on the peri-implant bone stress, and the results of
the present study showed that a protective role of resin for
the bone–implant interface could not be demonstrated.

Additional studies are certainly necessary to evaluate the
different types of implant-supported prostheses before final
restorative recommendations can be made.
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