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Implementation of new software for fast screening of cell
compatibility on surface modifications using low-contrast
time-lapsed microscopy
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Abstract Assessment of cell adhesion and cell size
provides valuable information on surface biocompatibility.
However, most investigations on cell morphology dynam-
ics are time and resource consuming, of rather descriptive
character and lack procedures for appropriate quantifica-
tion. The aim of the study was to develop a software
programme which allows automated cell segmentation and
identification as well as calculation and further processing
of cell size in low-contrast images. The software utilises
modified edge detection and morphologic operations for
automatic cell analysis in light microscopy images. In an
application study, osteogenic cell-adhesion dynamics were
quantified for the ECM proteins collagen type I (COL) and
fibronectin (FIB) over a period of 12 hrs. Untreated tissue
culture polystyrene (TCPS) served as control. The software
programme proofed full function in automatic cell tracking
and quantification of cell size. After 11 h, cell sizes were

highest for COL (6391±1167 µm2) and FIB (6036±
411 µm2) compared with TCPS (3261±693 µm2). The
developed software allows quantification of initial cell size
changes on translucent surface modifications and is suitable
as a reliable tool for fast biocompatibility screening.
Osteogenic cell adhesion was significantly promoted by
COL and FIB indicating the potential of respective
functionalized biomaterial surfaces.
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Introduction

Early cell–substrate interactions play a pivotal role for
many physiological and pathophysiological processes.
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These interactions frequently result in characteristic cell
adhesion dynamics and changes of the cellular phenotype
[1, 2]. As an implication, capturing of cell-adhesion
dynamics with resulting cell morphology might be utilised
to identify promising substrate properties of high biocom-
patibility. High-throughput content screening using cell
image-based assays offers a powerful new tool for
understanding the biology of initial cellular adhesion
dynamics [3–5]. Image-based live-cell assay experiments
need to generate and analyse a large amount of images
collected over a short period of time using automated high
microscopy data acquisition. Since thousands of cells
typically are needed to be screened for respective cell
experiments, fast and highly reliable image analysis
algorithms are of critical importance even in low-contrast
images. One fundamental task of automated screening
systems is accurate cell segmentation that often precedes
other analyses such as cell morphology, tracking and
dynamic behaviour. The accurate and computationally
efficient segmentation of cells without distinct edges which
become more indistinct at the start of adhesion is the focus
of this paper.

In modern regenerative dentistry and dental implantol-
ogy, various biomaterials with specific surface properties
like bone substitute materials, occlusive membranes or
dental implants have been introduced and are in the focus
of ongoing research activities. For the incorporation and
osseointegration of the applied biomaterial, adequate
responses of adjacent cell populations are indispensable.
For example, during peri-implant healing, mechanisms of
new bone formation require the active migration of
osteogenic cells to the implant surface with subsequent
controlled adhesion at the surface. Successful and timely
cell attachment is obligate precondition for further cell
proliferation and differentiation. Fast and plane cell
adhesions are attributes of biocompatible surfaces. Further-
more, various studies showed that these “biologically
active” surfaces are closely associated with characteristic
cell morphologies. Osteogenic cells cultivated on biocom-
patible surfaces represented a stretched, spindle-shaped
phenotype with development of lamellipodias and filopo-
dias, whereas less compatible surfaces resulted in rather
roundish cell forms [6–9].

It is well accepted that extracellular matrix (ECM)
components like collagen and fibronectin play a regulatory
role for osteogenic cell functions and specifically promote
osteogenic cell adhesion or motility [10–14]. Furthermore,
over the actin-supported signalling pathway between
extracellular matrix and intracellular compartments, the
outside–in signalling for proliferation and cellular differen-
tiation is regulated [15]. The aim of the study was to
develop a programme which allows automated cell identi-
fication with quantification of cell surface and motility

parameters. In an application study, osteogenic cell adhe-
sion dynamics were quantified for the ECM proteins
collagen type I and fibronectin over a period of 12 hrs.

Materials and methods

Cell culture and substrates

A commercial hipbone-derived osteogenic cell line
(HHOBc, PromoCell, Heidelberg, Germany) was utilised.
Cells were cultivated using standard osteoblast cultivation
medium, consisting of foetal calf serum (FCS, Gibco
Invitrogen, Karlsruhe, Germany), Dulbecco's modified
Eagle's medium (DMEM, Gibco Invitrogen), dexametha-
sone (100 nmol/l, Serva Bioproducts, Heidelberg,
Germany), L-glutamin (Gibco Invitrogen) and streptomycin
(100 mg/ml, Gibco Invitrogen). Cultivation was carried out
at 37°C in a constant humidified atmosphere of 95% air and
5% CO2.

Before our investigations, the cell line was qualitatively
characterised by immunohistochemical expression of alka-
line phosphatase (AP) and osteocalcin (labelled streptavi-
din–biotin/horseradish peroxidase). Cells were passaged at
regular intervals depending on their growth characteristics
using 0.25% trypsin (Seromed Biochrom KG, Berlin,
Germany). All trials were taken out at the 5th cell passage.
Osteogenic cells were detached and seeded on the different
test substrates (see following) with a concentration of 1*104

cells /ml. As representatives of solitaire ECM-proteins,
collagen type I (human placenta; Sigma, St.Louis, USA)
and fibronectin (human foreskin fibroblasts; Sigma, St.
Louis, USA) were utilised. The lyophilized powders were
dissolved in PBS supplemented with 1 mmol CaCl2 and
adjusted to a concentration of 100 µg/ml. petri dishes
(tissue culture polystyrene (TCPS); Greiner Holding AG,
Kremsmuenster, Austria) were incubated with 2,000 µl of
the respective working solutions for 1 h at 37°C, thus
allowing the proteins to precipitate on the TCPS surface.
Soluble remnants were removed by rinsing gently with
PBS. Potential remaining free adhesion sites were blocked
with a solution of 1% BSA for 30 minutes at room
temperature. Untreated TCPS served as control.

Images were acquired on an inverse phase–contrast
microscope (Nikon Diaphot-TMD, Nikon, Düsseldorf,
Germany) equipped with a Styrofoam-isolated lucite cube
enclosing the stage. Haemostasis inside the incubation cube
was provided by a heating coil, a thermostat, temperature
sensors (Heraeus, Hanau, Germany; Shiley, Irvine, CA,
USA), a mini-fan, a CO2 insufflation system and a CO2-
regulation unit (Heraeus). Immediately after incubation
with osteogenic cells, the respective test substrates (colla-
gen type I, fibronectin, TCPS-control) were placed into the
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controlled-atmosphere lucite box, and randomly selected
areas were observed for a period of 12 h. Images were
recorded with a CCD camera (The ImagingSource DFK
41BF02, The ImagingSource Europe GmbH, Bremen,
Germany) and stored as uncompressed bitmaps. Images
were captured every 60 min with the supplied software (IC
Capture, The ImagingSource Europe GmbH, Bremen,
Germany) and a resolution of 640×480 pixels. For each
test substrate, three consecutive assays were performed.
Altogether, we analysed 20 cells cultivated on collagen type
I, 25 cells cultivated on fibronectin and 23 cells cultivated
on TCPS.

Image segmentation algorithm

The flowchart of the used algorithm shown in Fig. 1
comprises six stages: First a background correction is
conducted using a modified unsharp masking technique
[16, 17]. A background image B is estimated through a
median filtered image. The output of the median filter with
input samples, x1; x2; . . . ; xN ;N ¼ 2k þ 1, is the k+1’th
smallest value of the set x1; x2; . . . ; xNf g. Once subtracted
from the original image I, it generates the result image with
equalised illumination R,

R x; yð Þ ¼ 128þ I x; yð Þ � B x; yð Þ ð1Þ

In a next step, an edge image is created calculating the
gradient magnitude by discrete convolution of the image
with sobel masks [17–21] in x- and y-direction. This image
containing the objects' edge magnitude (See Fig. 2a) is
further binarized by a histogram-based threshold algorithm
introduced by Zack in 1977 [22]. The function h(i), i є
[0..255], is the histogram of pixel intensities. A line l was

fitted to this histogram using the start point A(0,h(0)) and B
(x, h(x)), where x denotes the location of the histogram
maximum. A third point has to be searched by the software
for thresholding purposes by determining a third point C(y,
h(y)) which is located in a maximum distance to l. The
equation for a straight line between A and B is calculated
by its slope:

m ¼ hðxÞ � hð0Þ
x

ð2Þ

Using slope m, the distance d between l and h(j), j є [0..x]
can be calculated as

d ¼ m*j� hðjÞ þ hð0Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
����

���� ð3Þ

in order to find the biggest distance dmax between line and
histogram. Thus, a global search threshold t can be added
by adding a fixed offset chosen by the user to dmax (See
Fig. 2b).

The binary image B(x,y) is then created as:

B x; yð Þ ¼ 0 if R x; yð Þ < dmax þ offset
1 else

�
ð4Þ

Then, small objects are removed from the binarized
image (See Fig. 2c). In a further step, objects are closed
(See Fig. 2d) by creating an image F(x,y) where black
background pixels outside the objects are set to white using
a floodfill algorithm [23] to create the cleaned image C(x,y)
using a XNOR operation:

C x; yð Þ ¼ f B;Fð Þ ¼ B � F þ Bþ F ð5Þ
The objects are saved using labelling operations [17, 19,

24]. For the following, we assume the binary input image C
(x,y) copied to a two-dimensional array of integers where
objects are set to 1 and background to 0. The labelling
operator scans the array by moving along a row until it
comes to a point p (where p denotes the pixel to be
labelled) for which L(x,y)=n. When this is true, it examines
recursively the four neighbours in edge to edge connectivity
of p and changes the neighbouring pixels to the current
object number n (See Fig. 2e), similar to a floodfill
algorithm [23].

L x; yð Þ ¼
0
1

n 2 2; 3:::

8
<

:
ð6Þ

Thus, saved objects can be extracted from the label
image L(x,y) and be saved into Excel (Excel, Microsoft)
tables according to user predefined geometrical parameters
like minimal size, maximal size and roundness.

Fig. 1 Flowchart of the algorithm used. The solid arrows indicate
data process flow. Dotted lines illustrate settings predefined by the
user
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Results

Implementation and software

The cell tracking software was implemented using Borlands
Delphi 7 IDE (Borland, Langen, Germany). The software is
able to detect cells in low-contrast images according to the
described techniques. The performance of the proposed
algorithm was measured on a Sony Vaio VGN-SZ2XO/C
laptop computer with a 2 GHz Dual-Core CPU and 1 GB of
main memory under the operating system of Microsoft
Windows XP Professional. The total computation time
averages about 1.67 s for 320×240-sized images containing
between six to eight cells (minimum computation time
1.62 s, maximum computation time 1.72 s). For images the
size of 640×480 pixels containing between ten and 13
cells, we found an average computation time of 6.45 s
(minimum computation time 6.42 s, maximum computation
time 6.47 s), and for images the size of 1280×960 pixels
containing between ten and 13 cells, we found an average
computation time of 17.34 s (minimum computation time
17.19 s, maximum computation time 17.61 s). Performance
tests showed that computation time depends on the size of
the input images on one hand and the number of observed
cells on the other (see Fig. 3).

The described software is able to detect cells in low-
contrast images. The user can predefine threshold offsets,
size of removed noise or granulae (caused by vitiations in
culture media) and closing of objects. Because acquisition

time of an image is stored in the header of a bitmap by
commercial capture software delivered with the cameras
(i.e. IC Capture, The ImagingSource Europe GmbH, Bre-
men, Germany), the software described in this article is able
to extract this information to save it together with the
number of detected cells, the size of their area in micro-
meters, their circumference and their roundness into Excel
tables to describe cell growth and motility parameters (See
Fig. 4). The tables are used to calculate graphs of the
growth of all cells or a special selected single cell.
Additionally, motility paths can be calculated and displayed
on the current cell image.

Osteogenic cell-adhesion studies

The investigated substrates resulted in different cell
adhesion dynamics as well as in different cell sizes. For
all three surfaces, initial cell sizes of the still-detached
cells at 0 hrs were basically in the same dimension,
ranging from 904±30 µm2 for fibronectin (FIB) to 1284±
75 µm2 for collagen type I (COL). For all other time
points, values for TCPS were significantly lowest with a
maximum of 3261±693 µm2 after 11 hrs. Values for COL
and FIB showed no significant difference to each other
and indicated a fast and stronger increase of cell size
exceeding the TCPS maximum already after 3 hrs (COL,
3717±684 µm2, FIB: 3649±522 µm2). Maximum values
were 6391±1167 µm2 for COL and 6,036±411 µm2 for
FIB after 11 hrs (See Fig. 5). In order to evaluate the

Fig. 2 Edge magnitude image (a) and the resulting binarized image
(b), and it's cleaned derivative (c). Objects were closed using flood fill
and xnor operations (d) in order to prepare image for labelling (e).

Cell boundaries are outlined by red edges superimposed to the original
image (f)
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developed method for accurateness, we compared it with
two popular existing methods. As illustrated in Fig. 6c,
simple thresholding by an adaptive global threshold is not
adequate because a darker cell (indicated by the red arrow)
is missed. The images d, e, and f show that the tested
canny edge detector [17, 21, 25] either overestimates (at a
smoothing parameter of sigma=1.0) or underestimates
edges found in the images (at a smoothing parameter of
sigma=3.0). Even if adequate values are chosen for sigma,
there are further edge-linking algorithms needed to
compute useful results.

Discussion

Compared with traditional, rather descriptive cell observa-
tion studies, reliable quantification of important cell
attributes like cell size offers additional information on
cell–substrate interactions. Furthermore, assessment of
changes of cell size over time can be utilised to monitor
dynamic cell adhesion on various substrates. The aim of the
study was to introduce a new analysis procedure for
automated, simple and fast cell tracking and analysis in
order to extract quantitative data characterising cell

Fig. 4 Screenshot of the software described. Cells highlighted by red edges are superimposed by their individual migration paths (left). Cell
growth is illustrated by curves and tables

Fig. 3 Performance tests on
images with a resolution of
1280×960 pixels showing the
computation time depending on
number of cells observed in the
image
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responses to different substrates. Continuous in vitro cell
imaging was achieved by life video microscopy coupled
with automatic image analysis software. The employed
light microscope allowed quick and easy observation and
image acquisition, but the images were of low initial
contrast which, additionally, could further worsen over
observation time due to artefacts and focus changes. To
cope with this problem, we implemented a simple, robust
and fast segmentation algorithm composed of gradient
operators and an adaptive threshold method. As shown
before, see Fig. 6c, simple thresholding by an adaptive
global threshold was not adequate because darker cells
were missed. The tested canny edge detector either over-

estimates (at a smoothing parameter of sigma=1.0) or
underestimates edges found in the images (at a smoothing
parameter of sigma=3.0). Even if adequate sigma values
are selected for edge detection, there are further edge-
linking algorithms needed to compute useful results. Thus,
we decided to implement an unusual edge-detection method
by applying an adaptive global threshold on a gradient
image. As shown in Figs. 2f and 6b, the proposed method is
adequate for low-contrast transmitted microscopy images.
Similar systems for time-lapse video microscopy for
automatic cell growth evaluation were described by Dallas
et al., Debeir et al., Ersoy et al., Wang et al., Yue et al. and
Zhang et al. [3–5, 26–28], whereas Debeir et al. reported a

Fig. 6 Transmission light image (a) and resulting binary image of the
edge detection described (b) without further cleaning of thresholding
result. Simple thresholding by an adaptive global threshold is not
adequate because a darker cell (indicated by the red arrow) is missed

(c). The images (d–f) show that the tested canny edge detector
overestimates (at a smoothing parameter of sigma=1.0) or under-
estimates edges found in the images (at a smoothing parameter of
sigma=3.0)

Fig. 5 Mean values of cell size
for the different investigated
substrates. Error bars indicate
standard deviations
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computation time of approximately 10 s for images of
700×500 pixels, which shows that our system is compara-
ble fast. Our method can effectively segment grey scale
images with poor background, such as that obtained from
imaging cells cultured on substrate-coated tissue culture
polystyrene (TCPS). The experimental results obtained
using this method and comparisons with existing methods
clearly show adequate function for fast and affordable
screening test for functionalised surfaces by means of time-
lapse light microscopy. We think that the method described
can be easily adapted for other purposes. We think of the
automated analysis of digital images of brush biopsies [29]
or confocal laser scanning microscope images [30].
Investigation of surface-modified smooth TCPS, e.g. coated
with functional ligands, serves as initial model for complex,
non-translucent surface structures like titanium dental
implants and provides first hints on biocompatibility of
the surface modification. The results of our application
study on modified TCPS surfaces indicated noticeable
promotion of osteogenic cell adhesion dynamics and
resulting cell size by the single ECM proteins collagen
type I and fibronectin. As efficient cell adhesion is a
mandatory precondition for further cell maturation, which
additionally can be promoted by the investigated ECM
ligands, our in vitro results are congruent with observed
high performances of respectively functionalised dental
implants in vivo [31–33]. As a summary, the developed
software allows fast and uncomplicated quantification of
initial cell reactions on (translucent) substrates and serves
as a reliable tool for biocompatibility-screening of surface
modifications.
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