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Abstract Bisphosphonates (BP) are used in the treatment
of malignant osteolytic processes and postmenopausal
osteoporosis. There have been a number of incidents in
patients treated with BP. The incidents are described as an
osteonecrosis of the jaw (ONJ). The main medications
associated with these reports are zoledronic acid (ZOL) and
pamidronate (PAM). The clinical presentations describe a
deterioration of the jaw bones and surrounding tissues. The
purpose of this study was to investigate expression of
collagen types I, II, III, and V in human gingival
fibroblasts, osteoblasts, and osteosarcoma cells (SaOS-2
cells) by ELISA and reverse transcription PCR (RT-PCR)
with constant exposure (28 days) to ZOL and PAM. The
real-time PCR indicates that ZOL inhibited gene expression
below 16% at any concentration used. Hence, an amplifi-
cation of extracellular matrix was only possible for PAM at

concentrations of 1 µM. The following expression levels
were for fibroblasts at a maximum of 31%, exceptionally
high for the osteoblasts at 56%, and for SaOS-2 cells the
peak was 14%. Principally, a decreased production of
collagen was measured. With this in vitro study, we
demonstrated how negatively influencing a long exposure
to ZOL and PAM can be. Therefore, a reduction in
extracellular matrix production of these cell lines under
BP exposure could be a possible clinical indication as to
why patients experience ONJ and have wound healing
problems. However, it remains uncertain as to why an
osteonecrosis is mainly found in the jaws and not other
bones. As there are many influencing factors, further
investigation needs to be pursued.
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Introduction

Bisphosphonates (BP) are chemotherapeutical compounds used
in treatment of patients with osteoporosis and malignant
osteolytic processes, such as Paget’s disease, hypercalcemia
of malignancy, multiple myeloma, and tumor-associated
osteolysis [1–6]. The aim of BP is to prevent bone loss. Its
method is by blocking the mechanism of osteoclastic bone
resorption [7]. The inhibiting mechanism of the BP depends
on what generation it is. The newer compounds contain
nitrogen atoms and are more potent [8]. Two of the nitrogen-
containing BP are zoledronic acid (ZOL) and pamidronate
(PAM). These chemotherapeutics are the ones mainly associ-
ated with the osteonecrosis of the jaw (ONJ) [9, 10]. This
clinical complication of the BP has been reported numerous
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times since 2003 [9, 11–15]. ONJ is also often correlated with
previous oral surgical procedures, such as tooth extractions,
during BP therapy [11, 13, 16]. However, there have been
additional risk factors associated with ONJ, such as cortico-
steroid use, chemotherapy, radiotherapy, trauma, or infection,
but the real pathophysiology has not yet been fully clarified.
The potency of BP shows that ZOL has a greater potency than
PAM and additionally a better patient compliance, which
makes it easier to understand why most ONJ cases appear
with ZOL. The mechanism of BP on osteoclasts is mostly
understood, but the effects on osteoblasts have not been
elucidated to its core. There seems to be a paracrine influence
from the osteoblasts affecting the net amount of osteoclasts
[17].

On top, the nitrogen-containing BP affecting tumor cells
described a reduction of the survival, proliferation, adhe-
sion, migration, and invasion of tumor cells in vitro [18].
The consequences of treatment with BP for other cell
types, like osteoblasts and fibroblasts, are not yet fully
investigated nor understood.

The purpose of this study was to investigate the effects
of BP on these three cell types, gingival fibroblasts,
osteoblasts, representing the oral cavity, and SaOS-2 cells.
Therefore, we exposed these cells in vitro with constant
exposure to BP (28 days) and performed an ELISA and a
quantitative analysis of the expression of collagen types I,
II, III, and V with the real-time PCR.

Materials and methods

Human cell culture

Human osteoblasts and fibroblasts were isolated from the
samples of the iliac crest and of the gingiva, respectively.

The osteoblast samples derived from healthy patients,
without BP therapy, undergoing reconstruction surgery for
cleft lip and palate from our department of oral and
maxillofacial surgery. All patients had been informed about
this study and had signed a letter of informed consent
(Ethic number D 402/07). Preparation of the tissue samples
and further processing was performed as previously
described [19, 20]. Human osteogenic sarcoma cells
(SaOS-2 cells) were purchased from DSZM (Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH,
Braunschweig, Germany). Spongiosa cells of the sample
and SaOS-2 cells were defined as osteoblast-like cells by
the determination of osteoblast markers (biosynthesis of
osteocalcin and activity of alkaline phosphatase). Fibro-
blasts from gingival samples were obtained during routine
surgical procedures. Small tissue fragments were incubated
in Dulbecco’s MEM (Seromed T 043-01) with fetal calf
serum (FCS) under physiological conditions at 37°C and
95% air and 5% CO2. Further additions to the fibroblasts
were 105IU penicillin, 100 mg/l streptomycin, 2 mM L-
glutamine and 1 mM L-ascorbic acid 2-phosphate. The
gingival fibroblasts were tested and exhibited the typical
morphologic fibroblast patterns. The tests for osteocalcin
and alkaline phosphatase were negative.

The cells were subcultured in DMEM with FCS at 37°C
and 95% air and 5% CO2, and with 105IU penicillin,
100 mg/l streptomycin, 2 mM L-glutamine and 1 mM L-
ascorbic acid 2-phosphate for fibroblasts; and for
osteoblast-like cells, 100 nM dexamethasone (Biochrom,
Berlin, Germany) was added. Cells were subcultured in
second and third transfers at a density of 2.9×106/cm2. For
the transfers, a PBS–EDTA/Trypsin (10:1) solution 0.05% /
0.02% (w/v) (Biochrom) was used. Each cell line was
seeded on multiple six-well plates at a density of 5×105

cells.

Proteins Primer sequences

GAPDH Sense: 5′ GAG TCA ACG GAT TTG GTC GT 3′

Antisense: 5′ GAC AAG CTT CCC GTT CTC AG 3′

Osteocalcin Sense: 5′ TTC TGT GGG TGG AAG GAG AC 3′

Antisense: 5′ GGG GAG AGC CCC TAT TTA AG 3′

Collagen type I Sense: 5′ CCC CAG CCA CAA AGA GTC TA 3′

Antisense: 5′ CTG TAC GCA GGT GAT TGG TG 3′

Collagen type II Sense: 5′ ATG AGG GCG CGG TAG AGA C 3′

Antisense: 5′ CGG CTT CCA CAC ATC CTT AT 3′

Collagen type III Sense: 5′ AGG GGA GCT GGC TAC TTC TC 3′

Antisense: 5′ CGG ATC CTG AGT CAC AGA CA 3′

Collagen type V Sense: 5′ CGA TCC TGT GGA TGT CCT G 3′

Antisense: 5′ TGG CCT TCT GGA AAG AGT TC 3′

ALP Sense: 5′ GAG TCA ACG GAT TTG GTC GT 3′

Antisense: 5′ GAC AAG CTT CCC GTT CTC AG 3′

Table 1 Primers used for PCR
and their sequences (sense and
antisense)
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Alkaline phosphatase (ALP) activity

ALP activity was determined by cytochemistry with Sigma
Diagnostic Kit (86-R, Deisenhofen, Germany), as described
previously [19–21].

Osteocalcin synthesis

The expression of osteocalcin was studied using monoclonal
antibodies provided by Takara (Takara Shuzo, Co., Ltd.,
Japan), as described previously [19, 20].

Bisphosphonates (BP)

In order to relate the scientific research to clinical processes,
the decision was made to use the most common drugs
associated with ONJ [9, 13, 16, 22, 23]: zoledronic acid
(ZOL; Zoledronic acid, Zometa, Novartis®, 200 mg, i.v.
Nürnberg, Germany) and pamidronate (PAM; Pamidronate,
Aredia, Novartis®, 506 mg, i.v.); plus inorganic pyrophos-
phate (PP; Pyrophosphorsäure techn., Aldrich, Taufkirchen,
Germany) as a positive control component. Four different
concentrations of each molecular compound were elected
and used in this study (1, 5, 10 and 20 μM).
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Fig. 1 a–c Box plots, relative mean expression levels of collagen
types I at 1 µM in fibroblasts (a, control), osteoblasts (b, PP), and
SaOS-2 cells (c, PP) were significantly higher than with ZOL and
PAM. The number of samples (n=6 for each cells), minimum,
maximum, and median are shown

Fig. 2 a, b Relative expression of GAPDH and collagen type I show
great accordance in fibroblasts (a) and osteoblasts (b) supplemented
with PP. PAM induces an expression increase for GAPDH. Osteo-
blasts have a higher expression of GAPDH than collagen type I as
seen in the control (b). Therefore, the higher GAPDH expression in
PAM-supplemented cell culture medium in osteoblasts is of norm (b).
PAM in 5 µM concentration did not allow sufficient expressions in
fibroblasts (a)
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Four-week cell culture

After seeding of the cells (at 5×104cells per well) of each
cell line, they were cultured in ten groups of six-well plates,
each with different concentrations of supplemented growth
medium, for 4 weeks. Every third day, the medium was
renewed with the three different substrates (ZOL, PAM, PP)
and with the four different concentrations. The used growth
medium from the cell cultures was saved and pooled from
every transfer for further testing. The experiment was
terminated on day 28, and analysis was performed.

Enzyme-linked immunosorbent assay (ELISA)

After each week, a sample of 100 μl cell culture medium
with their specific supplemented concentrations of the
4-week cell culture was collected and further used in the
standardized ELISA. The following assay was performed
for collagen type I and finalized with a flowthrough
spectrometer.

RNA extraction and cDNA synthesis

RNA was extracted from the final cell-medium solution
according to the standard protocols using RNeasy® Plus
Mini Kit (Qiagen, Hilden, Germany). Complementary
DNA (cDNA) was synthesized from 1 µg of RNA using
the QuantiTect Reverse Transcription Kit (Qiagen).

Detection of the transcripts by real-time PCR

Expression of the transcripts was determined by means of
PCR using the QuantiTect SYBR Green PCR Kit (Qiagen).
One undiluted microliter of the exprimed cDNA was added
to 19 µl of SYBR Green PCR Mix (Qiagen), and a real-
time PCR was performed using the LightCycler® (Roche,
Mannheim, Germany). GAPDH was used for normalizing
the threshold cycle (Ct), while H2O was used as negative
control. All measurements were performed six-fold. Every
set of experiments comparing the expression of GAPDH,
osteocalcin, collagen type I, II, III, and V, and alkaline

Fig. 3 a, b Graph of real-time
PCR for collagen type I from
human osteoblasts. a The curves
represent dilution of template
concentrations (1:1; 1:2; 1:10;
1:100). b Logarithmic graph for
standard curve
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phosphatase (ALP) (fibroblasts, osteoblasts) was carried out
with cDNA from the same sample. Primer sequences for
the transcripts investigated are summarized in Table 1.

Only samples of the PCR producing a single DNA
fragment, analyzed by gel electrophoresis, were used for
the statistical analysis.

Statistical analysis

For comparison of the frequencies of extracellular matrix
protein (collagen type I) and RNA expression in gingival
fibroblasts, osteoblasts, and SaOS-2 cells with and without
bisphosphonates, non-parametric median tests were
employed. Statistical analysis was performed by Wilcoxon
signed rank test and a Wilcoxon sum rank test (values
considered significant at p<0.05) (Fig. 1).

Results

The present study investigated the expression of extracel-
lular proteins in gingival fibroblasts, osteoblasts, and SaOS-
2 cells under a constant BP exposure of 28 days. Gene
expression was monitored by real-time PCR after reverse
transcription of the corresponding mRNA. Six groups of
samples were treated and analyzed. The relative mean
expression levels of collagen types I, III, and V, osteocalcin,
ALP, and GAPDH in untreated cells (controls) were
significantly higher than those in treated cells (data not
shown). The relative expression levels are demonstrated for
collagen type I of fibroblasts, osteoblasts, and SaOS-2 cells
treated with the specific growth media (Fig. 1). No
expression of collagen type II was observed in any of the
samples studied. Otherwise, no significant differences
regarding the amounts produced of the different collagen
types I, III, and V within one cell line were observed under
the influence of PP. However, PP influenced collagen types
I, III, and V expression more positively in osteoblast-like
cells than in fibroblasts. (Fig. 1a–c; only collagen type I).
There is a 5 µg threshold for the amplification of RNA,
which was not reached in cell cultures with high concen-
trations of ZOL and PAM, as supplements. Only concen-
trations of 1 µM of ZOL and PAM reached the threshold.
Due to that, the study was able to show a low gene
amplification (<16%) for cells with a 1 µM concentration of
ZOL as a supplement. At 1 mM, PAM allowed a greater
amplification in fibroblasts, osteoblasts, and SaOS-2 cells
(31%, 56%, and 14%, respectively). Consequently, a proper
assessment was only possible with data related to BP
concentrations at 1 µM, because higher concentrations were
toxic to the cells and no sufficient expression of genes was
detectable. Comparing our statistical analysis and the box
plots (Fig. 1a–c) with the RT-PCR and RNA expression

results shows a great resemblance of statistical significance
(p<0.05). Relative expression of collagen type I and the
housekeeping gene GAPDH demonstrates accordance or
minor increase of GAPDH versus collagen type I (Fig. 2a, b).
The quality of real-time PCR experiments was determined
by monitoring reactions with different template concentra-
tions of control collagen type I cDNA (Fig. 3b). There was a
linear logarithmic dependency on template concentration. In
addition, the expression of mRNA for collagen type I was
visualized on a gel electrophoresis scan and supported the set
threshold for no sufficient amplification of samples just
below the threshold (Fig. 4).

The data of ELISA detection of collagen type I support
the findings of reduced mRNA found in the present study
after 4 weeks (Fig. 5a–d). Fibroblasts showed a weekly
reduction in collagen type I production (Fig. 5a, b). In
addition, PAM and ZOL decreased the osteoblastic collagen
type I synthesis, whereas the control production of collagen
type I was constantly increased (Fig. 5c, d).

Discussion

In the present study, the expression of human collagen
types I, II, III, and V, osteocalcin, ALP, and GAPDH from
human gingival fibroblasts, osteoblasts, and SaOS-2 cells

Fig. 4 Expression of mRNA from collagen type I in 22 samples from
human cells detected by RT-PCR. No expression was assessed for
ZOL at 20 µM (lane 6) and only a minor mRNA expression could be
visualized under 1 µM ZOL supplementation (lane 7) compared to
others. M marker. Lanes 1–9: SaOS-2 cells. 1 Control, 2 20 µM
pyrophosphate, 3 10 µM pyrophosphate, 4 5 µM pyrophosphate,
5 1 µM pyrophosphate, 6 20 µM zoledronic acid, 7 1 µM zoledronic
acid, 8 5 µM pamidronate, 9 1 µM pamidronate. Lanes 10–15:
fibroblasts. 10 Control, 11 20 µM pyrophosphate, 12 10 µM
pyrophosphate, 13 5 µM pyrophosphate, 14 1 µM pyrophosphate,
15 1 µM Pamidronate®. Lanes 16–22: osteoblasts. 16 Control, 17
20 µM pyrophosphate, 18 10 µM pyrophosphate, 19 5 µM pyrophos-
phate, 20 1 µM pyrophosphate, 21 5 µM pamidronate, 22 1 µM
pamidronate
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treated for 4 weeks with ZOL, PAM, and PP was
determined by real-time PCR.

Of comparable significance, another study analyzed the
expression of a messenger polypeptide from osteoblasts.
This polypeptide affects osteoclasts in their bone resorption
characteristics [24]. However, the concentrations of BP and
exposition time were different. Additionally, they did not
notice an expression of any inhibiting factors of fibroblasts.
In contrast, in an in vivo model, slight bone formation was
observed under BP influence in the first week [17].
Interestingly, the formed bone became necrotic from the

second week and an overall reduction in bone formation
was histopathologically registered. More in line with our
study in collagen expression, Santini and colleagues
investigated the gene expressions of VEGF, PDGF, and
βCTX (β-crosslinked type I collagen C telopeptide) [6, 25].
They noted a reduction of gene expression even after one
single infusion of ZOL indicating a possible antiangiogenic
effect and an impaired bone-forming effect of ZOL.

In the present survey, a significant reduction in the
expression of collagens was detected. In cells treated with
high concentrations of ZOL, a quantitative threshold of

Fig. 5 a–d Weekly ELISA
collagen type I production
evaluation of the fibroblasts
(a, b) and osteoblasts (c, d)
treated with ZOL or PAM in the
supplemented culture medium.
Fibroblasts show a constant
decrease in the collagen type I
synthesis in each concentration
of PAM (a) and ZOL (b)
supplemented. Osteoblasts
demonstrated a stronger
decrease over the 4-week period
when supplemented with PAM
(c). ZOL significantly inhibited
the collagen type I production
from the first week on (d).
Control growth proves a weekly
augmentation in all cell lines
(a–d)

56 Clin Oral Invest (2010) 14:51–58



mRNA was not reached in cell cultures; therefore, a real-
time PCR was only possible to execute at 1 µM concen-
tration. We also noted that sufficient threshold levels of
cells treated with PAM were only reached in 1 mM
concentration.

The housekeeping gene GAPDH was being questioned
to be of proper use as a control gene with BP by Valenti et
al. [26]. Their results showed that amino-BP reduced in a
dose-dependent manner the expression of the GAPDH
gene. Nonetheless, their analysis was performed on breast
and prostate cancer cell lines and not on benign human
osteoblasts and fibroblasts. The atypical characteristics of
malign cells are well known and, as various studies [27–29]
show that GAPDH can be up and down-regulated, an
internal control in each study should be performed and
thereafter decided whether it is appropriate to use. The
current study expressed a clear concordance of GAPDH
and collagen type I under BP treatment (Fig. 2a, b).

In addition to the current study of real-time PCR
experiments, minor deviations could be excluded
(Fig. 2a). Any deviation of measuring points from the
standard curve is minimal (Fig. 2b). Consequently, the
method of PCR is not the reason for any of the observed
variations. Furthermore, present ELISA results demonstrate
a reduction pattern of collagen type I over a 4-week period
(Fig. 5a–d) and support the real-time PCR results.

Previously, many clinical observations of ONJ [11–13,
16, 30] have been published, but no analyses of the gene
expressions of human gingival fibroblasts and osteoblasts
with this long exposition time to BP have been performed.
Therefore, it should be of clinical interest that we measured
a reduced expression of collagens in those cells treated with
BP under constant exposure.

With this collected data, we see a possible link and
influence of BP treatment on the gene expression. Further-
more, Sedghizadeh and colleagues [31] recently identified
large areas of biofilms, mostly compromised of bacteria, on
affected specimens from ONJ patients. These bacterial
biofilms additionally compromise the already poor wound
healing processes that have been observed under BP [32,
33]. Therefore, new clinical and therapeutic aspects have to
be taken into account and they need to be monitored and
further analyzed.

In summary, our results indicate a reduction in collagen
expression of fibroblasts, osteoblasts, and SaOS–2 cells,
with the focus on bone and gingival formation. BP
probably acted not only in restricting the collagen expres-
sion but also were most probably toxic to cells in this
constant exposure study. Therefore, a reduction in the
overall gene transcripts is a normal consequence. Compar-
ing the properties of ZOL and PAM, ZOL was shown to be
more potent and confirmed our expectations (Fig. 4). Our
findings could possibly supplement clinical reports discus-

sing why patients under BP treatment develop necrotic
bone, destruction of the surrounding tissue, and have
wound healing difficulties. For that reason, future studies
will have to determine whether altered collagen expression
is the key point, or whether the toxicity of the substrate
itself is, or if the general homeostasis is compromised.
Furthermore, it would be interesting to investigate the time
period when protein production ceases and no active bone
formation or gene expression is noticeable. Lastly, the
influences of additional environmental factors, such as
bacteria or other medications, in addition to the BP
exposure, are of significant interest.
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