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Abstract
Objectives To quantify the effects of risk factors and/or
determinants on disease occurrence, it is important that the
risk factors as well as the variable that measures the disease
outcome are recorded with the least error as possible. When
investigating the factors that influence a binary outcome, a
logistic regression model is often fitted under the assump-
tion that the data are collected without error. However, most
categorical outcomes (e.g., caries experience) are accompa-
nied by misclassification and this needs to be accounted for.
The aim of this research was to adjust for binary outcome
misclassification using an external validation study when
investigating factors influencing caries experience in
schoolchildren.
Materials and methods Data from the Signal Tandmobiel®
study were used. A total of 500 children from the main and
148 from the validation study were included in the analysis.
Regression models (with several covariates) for sensitivity
and specificity were used to adjust for misclassification in
the main data.
Results The use of sensitivity and specificity modeled as
functions of several covariates resulted in a better correction
compared to using point estimates of sensitivity and speci-
ficity. Age, geographical location of the school to which the

child belongs, dentition type, tooth type, and surface type
were significantly associated with the prevalence of caries
experience.
Conclusions Sensitivity and specificity calculated based on
an external validation study may resemble those obtained
from an internal study if conditioned on a rich set of
covariates.
Clinical relevance Main data can be corrected for
misclassification using information obtained from an ex-
ternal validation study when a rich set of covariates is
recorded during calibration.

Keywords Misclassification correction .Caries experience .

Validation

Introduction

Epidemiologic studies aim to explore associations between
risk factors and/or determinants and disease occurrence. To
quantify the effects of risk factors and/or determinants on
disease occurrence, it is important that the risk factors as
well as the variable that measures the disease outcome are
recorded with the least error as possible. Often, the mea-
surements obtained are noisy (error prone) versions of the
true underlying variable of primary interest. When the vari-
ables under consideration are categorical, such error is
termed misclassification error.

It is well documented that the process of scoring caries
experience (CE) is challenging, thereby affecting the quality
of the obtained data due to misclassification. A lot of effort
has been devoted to improve the quality of CE recording by
providing guidelines for caries surveys [1].

To investigate the factors that influence a binary CE
outcome, a logistic regression model is often fitted under
the assumption that the data are collected without error.
When misclassification error is ignored in the analysis, then
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this may lead to biased estimates, hence erroneous conclu-
sions [2, 3]. A possible way of dealing with this is correcting
for misclassification.

When correction for misclassification in the logistic re-
gression is envisaged, one needs to understand better the
underlying misclassification mechanism. In a previous anal-
ysis of the data set considered in this paper, misclassification
was found to be influenced by several factors, i.e., the
process is differential [2].

A vast amount of literature exists on correcting for
misclassification in models for categorical data [4–6], and
for this, a validation data set is most often needed to perform
the correction. In a validation study, a small sample of sub-
jects or study units is scored by both the benchmark scorer
and the examiner(s) enabling the estimation of sensitivity
(SE) and specificity (SP) of the examiners vis-à-vis the
benchmark scorer. Validation data may be internal and
nested within the main study, as is the case when a subset
of the main study sample is reexamined by the benchmark
scorer. This is also referred to as double sampling [7, 8].
Internal validation is regarded as the best possible way to
assess misclassification. It seems plausible to assume that
the misclassification mechanisms in the internal validation
and main data are similar [9]. However, in large or complex
surveys, internal validation data are challenging to obtain in
practice due to several (practical) constraints, e.g., the need
to doubly examine in different locations and at different
time points, especially when several examiners are involved
and spread over different geographical areas [10].

Alternatively, external validation data can be obtained
from a separate independent sample from the main study.
External validation data may be obtained in different ways:
(a) the sample being a random sample from the population
of interest, sampled in addition to the main data and
assessed (or recorded) under identical conditions as the main
data, (b) being a convenience sample (not a random sample
from the population of interest) but scored under identical
conditions as the main data, (c) being a convenience sample
from the population of interest and assessed under (slightly)
different conditions than the main data, (d) being a (random
or nonrandom) sample taken from a different population
examined under identical conditions, and (e) being a
(random) sample taken from a different population and
examined under different conditions. Note that one would
expect the misclassification probabilities from the external
validation type (a) to be least biased since they are based on
a random sample from the same population as the main
study and examined in identical conditions. For cases (b)
to (e), unbiased misclassification probabilities cannot be
guaranteed. Hence, the use of data obtained from such
validation studies needs extra caution.

Since it is not always feasible to collect internal validation
data, it is worth exploring approaches for using available

external validation data. In fact, in most large-scale epidemi-
ological surveys, inter-examiner agreement will be assessed
using an external sample. In this paper, an approach to deal
with this situation is illustrated on data (main and validation)
obtained from the Signal Tandmobiel® (ST) study [11]. Since
data in this CE survey were recorded at surface level, the
multilevel structure (surfaces nested within teeth within
mouths) is additionally needed to be taken into account.

The aim of this research was to illustrate an approach of
using external validation data to correct for misclassification.
Factors influencing CE in schoolchildren using a multilevel
logistic model were investigated.

Materials and methods

Motivating data set

The Signal Tandmobiel® study is a longitudinal (1996–2001)
oral health intervention project that took place in Flanders
(north of Belgium). At the first examination, the average age
of the children was 7.1 years (SD=0.4). Sixteen trained den-
tists (examiners) conducted annual oral health examinations
on 4,468 children (2,315 boys and 2,153 girls) from 179
primary schools, after parental consent was obtained. Data
on oral hygiene and dietary habits were obtained through
structured questionnaires, completed by the parents. The chil-
dren received a clinical examination based on the diagnostic
criteria for caries prevalence surveys published by the British
Association for the Study of Community Dentistry (BASCD)
[12]. Caries experience was determined at surface level and
expressed using the dmfs/DMFS score [13]. The clinical
examinations took place in a mobile dental clinic, equipped
with a standard dental chair and artificial dental light source.
Recording was performed by a visual–tactile method, using a
mouth mirror and a WHO/CPITN type E probe (Prima In-
struments, Gloucester, UK). No radiographs were taken.More
details of the ST study are given in Declerck et al. [11].

Out of the 4,468 children, a random sample of 500 children
was selected to constitute the main data. We considered only
the data collected at the last visit, i.e., year 2001, when the
children were about 12 years old. In the present work, CE was
binarized at surface level (0 if dmfs/DMFS=0 and 1 if
dmfs/DMFS≠0).

Training sessions for scoring CE were organized parallel to
the study and the scoring behavior (SE and SP) of each of the
16 dental examiners was compared to that of the benchmark
(second author, DD). During the study period (1996–2001),
three calibration exercises (training sessions) (1996, 1998,
2000) for scoring CE, involving 92, 32, and 24 children,
respectively, were organized. The clinical assessment of CE
was undertaken in a way identical to the one used in the main
study, but the children included in these calibration exercises
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were not sampled at random from the main study. Rather, a
school was selected where a relatively high prevalence of
caries experience could be expected in order to guarantee
sufficient variation of pathology. Since there was not much
difference in examiners’ scoring behavior between the differ-
ent calibration exercises, data were combined to form the
external validation data set.

Misclassification for binary data

Misclassification information was compiled in a 2×2 contin-
gency table with the benchmark scores and examiners’ scores.
The entries in this misclassification table allow estimating the
SE and the SP of the dental examiners vis-à-vis the benchmark
scorer. SE and SP are statistical measures of the performance
of a binary classification test. SE measures the proportion of
actual positives which are correctly identified as such (e.g., the
proportion of surfaces with CE that are identified as having the
condition). SP measures the proportion of negatives which are
correctly identified (e.g., the proportion of surfaces without
CE that are identified as not having the condition). Hence, SE
and SP measure the capability of the examiners in detecting
the true prevalence of CE or noting the true absence of the
disease. The higher the SE and SP, the better is the scoring
behavior of the examiner.

Multilevel logistic regression model

The methodology presented in this paper is explained for a
binary outcome of CE of each surface, that is CE is 1 if the
surface shows CE and 0 if not. Since the response is con-
sidered binary, a popular model to apply is logistic regres-
sion. However, this model assumes independence of CE
responses obtained from different sites. However, the CE
of surfaces from a same tooth is correlated since they are
exposed to similar conditions. Similarly, teeth that belong to
one mouth share common characteristics, resulting in a
hierarchical structure of the data. Hence, a multilevel logis-
tic regression was considered for further exploration.

A first analysis of the main data was undertaken without
correcting the binary CE outcome variable for misclassification
(also called, the naïve approach). This means that a multilevel
logistic regression model was fitted as if there was no
misclassification present. The covariates included in this model
were gender (girls versus boys), age, geographical location
(represented by the standardized (x,y) coordinate of the munic-
ipality of the school to which the child belongs), dentition type
(permanent versus deciduous), tooth type (canine, incisor, mo-
lar, and premolar), and surface type (distal, mesial, lingual,
occlusal, and buccal). More technical details are given in
Appendix.

The second analysis considered a multilevel logistic model,
extended to account for misclassification using estimates of

SE and SP. This information was obtained from the ST vali-
dation study and a non-differential misclassification correc-
tion approach was used in this second analysis. This
correction is justified if the validation data are internal, i.e., a
random sample of the main sample.

However, the children who participated in the ST calibra-
tion exercises were not sampled at random from the main
study, and therefore, the obtained validation data are of the
external type. This implies that the misclassification mecha-
nism in the main and validation data are likely to be different.
Therefore, a third analysis was undertaken considering the use
of logistic regression models of SE and SP including a rich set
of covariates. In this way, an attempt was made to bring the
characteristics of the external validation data closer to those of
an internal one. More details on this approach are given in
Appendix. The estimates of the regression coefficients for SE
and SP were imputed into the model for the main data in order
to adjust for misclassification. The covariates included in the
SE and SP models were gender (girls versus boys), dentition
type (permanent versus deciduous), tooth type (canine, incisor,
molar, and pre-molar), and surface type (distal, mesial, lingual,
occlusal, and buccal). More details regarding the model for the
main data are given in Appendix.

Estimating the parameters

To estimate the parameters in the models mentioned above,
a Bayesian approach was used since this is better suited for
misclassification problems. In a Bayesian approach, prior
knowledge about the parameters is combined with the ob-
served data (likelihood) to yield the posterior distribution.
From the posterior distribution, we obtain the estimates of
the parameters (posterior mean or median) and the standard
error of the estimate. Further details on the Bayesian ap-
proach can be found in Appendix.

Results

Out of the 53,283 surfaces included in the main data set, 1,675
(3.14 %) showed CE. In the validation data, 519 (5.33 %) of
9,741 surfaces presented CE. Details on the performance of
the dental examiners in the ST study have been reported
elsewhere [14]. SE and SP values of the examiners ranged
between 97–99 and 63–90 %, respectively.

Table 1 shows the estimates obtained from the logistic
models of SE and SP fitted to the validation data set. These
were used for differential misclassification correction of the
main data (model 3). Since the multilevel data structure in
the validation data set was not accounted for (this would
complicate analysis additionally), further interpretation of
these data was not undertaken. Table 2 shows the results of
the three multilevel models for the main data, i.e., (a) no
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correction, which means that the multilevel model was fitted to
the main data without correcting for misclassification, (b) non-
differential correction, which means that SE and SP used for
correction in the main data did not depend on covariates, and
(c) differential correction in which the proposed approach is
applied, i.e., use of SE and SP conditioned on several covari-
ates, i.e., expressed as a logistic regression model of several
covariates. In this table, a positive estimate for a categorical
variable reflects a higher prevalence of CE compared to the
reference level. For a continuous variable, a positive estimate
reflects an increase in the probability of CEwith a unit increase
in that variable on a log scale. Negative estimates reflect the
opposite, i.e., a lower probability of presenting CE.

The parameter estimates obtained with differential correc-
tion are generally higher in absolute value than those with no
correction (smallest) and non-differential correction. Also, the
95 % Bayesian confidence intervals for differential correction
are often wider than for the no correction and non-differential
ones. Under differential correction, a significant effect of the
x-coordinate (0.50 [0.02; 1.00]) was noted, which was not the
case in the two other models. The positive effect of tooth type
(canine versus incisor) (0.32 [−0.65; 1.31]) under non-
differential correction changed into a negative one (−0.69
[−2.05; 0.54]) under differential correction, although the effect
was nonsignificant in both cases. Further, there was a signif-
icant effect of age in all models: no correction (1.27 [0.56;

2.04]), non-differential correction (1.67 [0.61; 2.68]), and
differential correction (2.12 [0.95; 3.29]) with the probability
of presenting CE increasing with an increase in age. Perma-
nent teeth showed significantly less CE prevalence compared
to deciduous teeth in all models: no correction (−2.12 [−2.38;
−1.86]), non-differential correction (−2.79 [−3.20; −2.42]),
and differential correction (−3.26 [−3.81; −2.76]). Regarding
surface type, occlusal surfaces showed significantly more CE
compared to buccal surfaces in all three models: no correction
(3.64 [3.37; 3.90]), non-differential correction (4.65 [4.15;
5.20]), and differential correction (5.17 [4.60; 5.91]). As indi-
cated by the random effects, the clustering effect was higher at
mouth level than at tooth level.

Discussion

The effects of misclassification have been well addressed in
the literature. Misclassification has been studied for long and
one of the general findings is that it introduces bias in the
obtained results. A detailed discussion can be found in
Neuhaus [3], Brenner and Savitz [15], and Wacholder et al.
[16]. Little work has been done on evaluating the use
of external validation studies to adjust for this type of
misclassification. Analyses presented here revealed that ignor-
ing misclassification can result in erroneous conclusions. Fur-
ther, different misclassification adjustments result in different
conclusions. Hence, the underlying type of misclassification
should be well studied in order to do a proper adjustment. In
the present study, the two correction approaches (no correc-
tion and non-differential) failed to depict a significant effect of
the geographical location of the school which the child attends
(x-coordinate), as was shown in a previous analysis [5].

A fundamental assumption in a validation study is that true
scores are recorded by a gold standard, i.e., an approach
(instrument or examiner) that is 100 % error free. However,
in practice, the scores are often generated by a benchmark
scorer, i.e., an experienced examiner who is assumed to be
error free or nearly so. A benchmark scorer can also be
referred to as an “alloyed gold standard.” The question of
how “alloyed” a benchmark can be in order to maintain valid
statistical inferences is subjective. More discussion on this
matter is given by Wacholder et al. [16]. Indeed, it is possible
that methods correcting for the effect of misclassification that
make use of information gathered by comparing to a bench-
mark scorer might introduce more bias than they are
correcting. The benchmark scorer in the present study had a
vast experience in CE surveys and was trained by a BASCD
trainer in 1990. It is recommended that in longitudinal surveys
at least once every 2 years, benchmark scorers or trainers from
different districts should meet to undertake a training and
calibration amongst themselves [12]. In the survey presented
here, this was not possible due to logistic constraints.

Table 1 Parameter estimates and standard deviations (SD) of the
misclassification model (SE and SP) used for differential misclassification
correction (pooled over all examiners)

Parameter Sensitivity Specificity
Mean (SD) Mean (SD)

Fixed effects

Intercept −0.35 (0.50) 7.12 (0.30)

Gender

Girls 0.41 (0.14) 0.29 (0.11)

Boys – –

Dentition type

Permanent −0.26 (0.27) 0.22 (0.12)

Deciduous – –

Tooth type

Canine 0.27 (0.43) −1.35 (0.40)

Molar 1.74 (0.38) −2.99 (0.34)

Premolar 1.64 (0.51) −0.25 (0.42)

Incisor – –

Surface type

Distal 0.25 (0.32) 0.22 (0.20)

Mesial −0.52 (0.26) 0.11 (0.19)

Lingual −0.08 (0.26) 0.14 (0.17)

Occlusal 0.43 (0.22) −0.99 (0.15)

Buccal – –
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The easiest and probably the most convenient way to correct
for misclassification is to use SE and SP estimates obtained
from independent but comparable studies. In that case, the
values of SE and SP are plugged in to the main model for
correction. However, in this situation, the underlying assump-
tion is that the estimates behave as if they were from an internal
validation study. This may be a problematic strategy since the
settings in the main and validation study are often different.
Agbaje et al. [10] have shown that the misclassification
obtained during field work and in a classical calibration situa-
tion is seldom similar due to differences between both settings.
They also indicated that internal validation is almost impossible
to attain in a large oral health survey, supporting the argument
that we need to make use of external validation data and hence
need to correct for misclassification in a different way. In this
paper, a suggestion is made whereby the misclassification
errors obtained from external validation data (which are usually
available) are used to correct the main model.

The approach presented here is based on expressing SE and
SP as a statistical model that depends on a rich set of covariates.

Hence, the higher the number of (relevant) variables one can
collect during validation exercises, the better the correction will
be. From previous research, we have learned that the following
variables are useful to record: dentition type, tooth type, surface
type, examiner experience, and the position of the tooth in the
mouth [10, 14]. It might be useful to collect following addi-
tional information: level of oral hygiene and type of restora-
tions. The suggested idea of conditioning can be used in
different kinds of studies, e.g., cross-sectional studies, longitu-
dinal studies, case–control studies, etc. The approach suggested
in this work considers a binary outcome. In principle, nothing
changes in the approach when the outcome has more categories
except that the correction procedures become more involved.

Other approaches to correct for misclassification have
been suggested in literature. For example, when historical
data or expert opinion is available about misclassification
probabilities, prior information can be incorporated in a
Bayesian framework to provide a prior distribution of the
misclassification parameters [17]. Since the children in the
validation study were selected from one single school, one

Table 2 Parameter estimates
and 95 % credible intervals of
the main model for cross-sec-
tional data without correction
and with non-differential and
with differential correction

Parameter Model 1 Model 2 Model 3
No correction Non-differential Differential
Estimate [2.5 %; 97.5 %] Estimate [2.5 %; 97.5 %] Estimate [2.5 %; 97.5 %]

Fixed effects

Intercept −8.86 [−9.79; −8.12] −10.86 [−12.31; −9.53] −10.73 [−12.78; −9.23]

Gender

Girls −0.07 [−0.63; 0.48] −0.18 [−0.85; 0.57] −0.07 [−1.00; 0.87]

Boys – – –

Age 1.27 [0.56; 2.04] 1.67 [0.61; 2.68] 2.12 [0.95; 3.29]

Geographical location

x-coordinate 0.27 [−0.05; 0.59] 0.37 [−0.01; 0.77] 0.50 [0.02; 1.00]

y-coordinate −0.18 [−0.46; 0.10] −0.30 [−0.71; 0.14] −0.35 [−0.84; 0.14]

Dentition type

Permanent −2.12 [−2.38; −1.86] −2.79 [−3.20; −2.42] −3.26 [−3.81; −2.76]

Deciduous – – –

Tooth type

Canine −0.14 [−0.83; 0.56] 0.32 [−0.65; 1.31] −0.69 [−2.05; 0.54]

Molar 3.98 [3.51; 4.60] 5.46 [4.54; 6.43] 3.99 [2.88; 5.09]

Premolar −1.95 [−2.70; −1.18] −2.14 [−2.80; −1.48] −4.17 [−5.71; −2.84]

Incisor – – –

Surface type

Distal 0.86 [0.58; 1.12] 1.17 [0.81; 1.55] 1.42 [0.89; 2.05]

Mesial 1.55 [1.29; 1.80] 2.13 [1.74; 2.55] 2.96 [2.35; 3.82]

Lingual 0.13 [−0.16; 0.40] 0.19 [−0.20; 0.56] 0.47 [−0.05; 0.99]

Occlusal 3.64 [3.37; 3.90] 4.65 [4.15; 5.20] 5.17 [4.60; 5.91]

Buccal – – –

Random effects

σ2
mouth 6.50 [5.20; 8.18] 10.82 [8.12; 14.44] 15.92 [11.97; 21.90]

σ2
tooth 3.35 [2.86; 3.96] 4.75 [3.42; 6.45] 6.50 [4.97; 9.36]

σ2
examiner 0.13 [0.0004; 0.72] 0.27 [0.0001; 1.44] 0.30 [0.002; 1.69]
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would possibly adjust for misclassification using the inverse
probability selection weighting, a technique which is com-
monly used in survey sampling. The propensity score meth-
od is another approach that may be used when covariate
information between groups differs [18].

In conclusion, in this research work, an external validation
data set was used to correct for misclassification in the main
data whereby SE and SP were modeled as a function of
several covariates. This approach might be useful to make
optimal use of available external validation data to correct for
misclassification in the main model.
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Appendix

Multilevel model assuming error-free CE data

Let YM, stme be the true CE score of surface s, (s=1, …, nt)
nested in tooth t=1, …, nm, which is nested in child/mouth
m=1,…,NM according to examiner e, (e=1,…, ne) in the main
study. The model uses pstme ¼ Pr YM;stme ¼ 1 b; xstme;j�

um;

utm; ueÞ , which is the true conditional probability for CE on
surface s nested in tooth t in mouth m by examiner e. The
multilevel logistic model for the true main data is then given by:

logit pstmeð Þ ¼ xTstmebþ um þ utm þ ue

where xstme represents the risk factors and/or determinants, β
is a vector of regression coefficients and it quantifies the effect
of the risk factors/or determinants. The quantities um, utm, and
ue are random intercepts at mouth, tooth, and examiner level
and they are independently distributed with mean zero and
variances σ2

m;σ
2
tm; and σ2

e, at mouth, tooth (nested in mouth),
and examiner level, respectively, i.e., (um, utm, ue) ~ N(0, D)
where D ¼ diag σ2

m;σ
2
tm;σ

2
e

� �
. They take into account the

clustering of teeth within mouths, surfaces within teeth, and
an examiner recording many surfaces, respectively.

Dealing with external validation data

There are two types of misclassification, i.e., differential and
non-differential. Non-differential misclassification occurs when

the misclassification does not depend on determinants [19, 20].
Differential misclassification occurs when misclassification is
different in boys and girls.

If scoring in the main and validation studies is done by the
same fallible dental examiners, then either the misclassification
probabilities are the same in the two studies or the
misclassification process is differential (misclassification
depending on covariates), but given a rich set of covariates
(e.g., gender, dentition type, tooth type, and surface type as for
the ST validation study), they become the same in the two
studies. If the misclassification probabilities between the two
studies are equal, then the external validation data can be
immediately used to correct for misclassification in the main
model. However, if these misclassification probabilities do
differ between the main data and validation data, then the
misclassification process is differential and, conditional on a
rich set of covariates, the scoring in the two data sets may
become identical.

Consider an external validation data set as in the ST
study. Assume P1 and P2 are the misclassification processes
in the main study and validation study, respectively. Sup-
pose that subjects are well characterized by a rich covariate
vector, z, then under the settings described above, our claim
is that often P1 Y* Y ; zj� � ¼ P2 Y* Y ; zj� �

when P1 Y* Yj� �
6¼ P2 Y* Yj� �

. Inequality of the (assumed non-differential)
misclassification process P1 and P2 occurs because f1(z) ≠
f2(z) in Pj Y * Yj� � ¼ R

Pj Y * Y ; zj� �
fj zð Þd zð Þ for j=1,2. As a

result, the misclassification probabilities become identical
given z.

Multilevel model for cross-sectional CE data adjusting
for misclassification

Using the estimates of parameters for logistic models of SE
and SP from validation data, say α and η, a corrected
multilevel logistic model for the main observed data uses

p*stme ¼ Pr Y*
M;stme ¼ 1 b; xstme; um; utm; ue;α;η; zj

� �
, which

is the observed (corrected for misclassification) probability
for CE on surface s nested in tooth t in mouth m from the
main data set given xstme and z, a vector of covariates from the
main data and validation data, respectively, and random ef-
fects um, utm, and ue and estimates of SE and SP α and η,
respectively. This processing was done in one joint model,
i.e., a model that encompasses the estimation of SE and SP
and at the same time correcting for misclassification. The
corrected model is given by:

p*stme ¼ 1� t00ð Þ þ t11 þ t00 � 1½ �
� g�1 xTstmebbbþ um þ utm þ ue

� �� �

where τ11=τ11(z) and τ00=τ00(z) are the differential SE
and SP.
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Bayesian estimation approach

The posterior summary measures of the parameters are
obtained using a sampling approach called the Markov
Chain Monte Carlo (MCMC) approach [21]. Here, non-
informative or vague priors were used which express that
there is no prior information on the parameters. For this
purpose, JAGS 3.1.0 [22] software was used. Three MCMC
chains were run, each for 100,000 iterations for each model.
The convergence of these MCMC chains was checked using
the CODA package (see [23]) in R. In particular, the

Gelman and Rubin diagnostics measure bR was used and this
value was close to 1 for all the parameters, which means
there was no evidence against convergence. Finally, a sen-
sitivity analysis on the model corrected for misclassification
was performed. Specifically, a sensitivity analysis was
performed by changing the prior distributions for fixed
effects. This was done in order to check whether the model
was robust to some perturbations.
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