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Abstract
Objectives Endothelial cells play an important role in peri-
implant angiogenesis during early bone formation. Therefore,
interactions between endothelial progenitor cells (EPCs) and
titanium dental implant surfaces are of crucial interest. The
aim of our in vitro study was to investigate the reactions of
EPCs in contact with different commercially available implant
surfaces.
Materials and methods EPCs from buffy coats were isolated
by Ficoll density gradient separation. After cell differentia-
tion, EPC were cultured for a period of 7 days on different
titanium surfaces. The test surfaces varied in roughness and
hydrophilicity: acid-etched (A), sand-blasted-blasted and
acid-etched (SLA), hydrophilic A (modA), and hydrophilic
SLA (modSLA). Plastic and fibronectin-coated plastic
surfaces served as controls. Cell numbers and morphology
were analyzed by confocal laser scanning microscopy.
Secretion of vascular endothelial growth factor (VEGF)-
A was measured by enzyme-linked immunosorbent assay
and expressions of iNOS and eNOS were investigated by
real-time polymerase chain reaction.

Results Cell numbers were higher in the control groups
compared to the cells of titanium surfaces. Initially, hydro-
philic titanium surfaces (modA and modSLA) showed lower
cell numbers than hydrophobic surfaces (A and SLA). After
7 days smoother surfaces (A and modA) showed increased
cell numbers compared to rougher surfaces (SLA and
modSLA). Cell morphology of A, modA, and control
surfaces was characterized by a multitude of pseudopodia
and planar cell soma architecture. SLA and modSLA
promoted small and plump cell soma with little quantity
of pseudopodia. The lowest VEGF level was measured
on A, the highest on modSLA. The highest eNOS and
iNOS expressions were found on modA surfaces.
Conclusions The results of this study demonstrate that
biological behaviors of EPCs can be influenced by different
surfaces. The modSLA surface promotes an undifferentiated
phenotype of EPCs that has the ability to secrete growth
factors in great quantities.
Clinical relevance In correlation with recent clinical studies
these results underline the hypothesis that EPC could
promote and increase neovascularization by secreting
paracrine factors which support osseointegration of dental
implants.
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Introduction

In the last years, various researchers focused on modification
of surface characteristics of dental implants with the objective
of optimizing and precipitating the dental implant healing
cascade. The main goals are immediate implantation,
immediate prosthetic treatment, and immediate exposure
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for the future. There is a demand for bioactive surfaces
that are able to enhance requested properties such as cell
adhesion, cell proliferation, and secretion of paracrine
growth factors. Hydrophilic surfaces were developed,
which showed encouraging results regarding optimized
implant stability and shortened healing time [1–3]. The
exact biological mechanisms on cellular level are still
unclear. Despite the knowledge that implant healing is
exceedingly dependent on the successful establishment of
a vessel network, most of the in vitro studies focus on
the osteogenic potential of implant surfaces [4–7]. Increased
endothelial stimulation may accelerate new bone formation
with increased healing implant osseointegration [8]. Only
a few studies investigate the effect of implant surfaces on
matured endothelial cells [9].

Endothelial progenitor cells (EPC) were first described
by Ashara et al. in 1997 [10]. Different research fields
(e.g., tumor biology or regenerative medicine) have
delved into characterization of EPCs, which display
new hope, e.g., for curing cardiovascular diseases. EPCs
are able to promote neovascularization under hypoxic
conditions in adult humans [11–17] through a process
called vasculogenesis. Vasculogenesis is a de novo blood
vessel development compared to angiogenesis, where
new blood vessels originate from pre-existing vessels
by migration and proliferation of endothelial cells [18].
EPC effects neovascularization by secreting paracrine
factors (cytokines, growth factors) like vascular endothelial
growth factor (VEGF) and by building a primary cell
network through differentiation in endothelial cells or
muscle cells [14, 19, 20].

The characterization of EPCs is very difficult since
different subtypes with various origins and stages of
development are summed up to this group of cells. In
the last few years, hundreds of research groups concen-
trated on role, identity, and characterization of EPCs. In
September 2011, a pubmed-search for “endothelial pro-
genitor cell” resulted in 10,173 articles including 1,760
reviews.

Several researchers divide EPCs in two main groups:
CD-14+ (so called “early” EPCs) and CD-34+ EPCs (so
called “late” EPCs) [21, 22]. Confusingly several other
research groups call “late” EPCs “ECFCs” (endothelial
colony-forming cells) and still others “OECs” (outgrowth
endothelial cells) [23, 24]. Diverse authors actually talked
about four instead of two subpopulations [25].

In vitro diverse subpopulations of EPCs show functional
differences, but in vivo it seems that they all contribute to
neovascularization [26, 27] for which the exact mechanisms
are unclear.

eNOS and iNOS expression is essential for the functional
activity of EPC and reflects the differentiation level and
angiogenetic potency of these cells [28, 29].

The aim of this in vitro study is to investigate the
interaction and biological behavior of EPC with different
commercially available implant surfaces. Surface modifi-
cation could lead to increased angiogenesis and vasculo-
genesis which influence implants integration and
osseointegration.

Materials and methods

Titanium disks

Instead of inapplicable three-dimensional origin implants,
we used titanium disks (diameter 15 mm, thickness 1 mm)
produced and supplied by the Straumann Group (Basel,
Switzerland). Four different titanium surfaces were ap-
plied: A, SLA, modSLA, and modA. A stands for
“acid-etched” and SLA is the abbreviation for “sand-
blasted, large grit, acid-etched”. In addition to this
modA and modSLA are rinsed under nitrogenic atmo-
sphere and stored in isotonic NaCl to avoid contact
with atmospheric carbonates after SLA-treatment and
have a hydrophilic surface [30]. The commercial name
for modSLA is SLActive. In 2007, Qu et al. reported on
the fabrication and surface characterization of the four
used titanium surfaces [7]. A and modA constitute a
smoother titanium surface (mean roughness 0.6 μm)
compared to SLA and modSLA (mean roughness
1.2 μm) [7]. Cell culture compatible plastic and
fibronectin-coated plastic served as control surface (coat-
ed by 30 min incubation with 10 μl fibronectin per
milliliter PBS).

Isolation and culture of EPCs

Mononuclear cells were isolated from buffy coats from
healthy blood donors by ficoll density gradient separation
as previous described [27, 31]. After that, mononuclear
cells were plated on fibronectin-coated culture bottles at
a concentration of 8×106 cells/ml medium and stored
under following culture conditions: 37°C, 5% CO2, and
95% humidity. The culture medium was endothelial basal
medium (Lonza Group AG, Basel, Switzerland) com-
bined with endothelial growth medium SingleQuots
(0.1% human epidermal growth factor, 0.1% hydrocorti-
sone, 0.1% gentamicin+amphotericin-b, and 0.4% bovine
brain extract; Lonza Group AG, Basel, Switzerland) and
20% fetal calf serum. On the fourth day of culturing
mononuclear cells, nonadherent cells were washed out
with phosphate-buffered saline (Gibco, Cleveland,
USA), while EPCs adhering to the fibronectin-coated
plastic surface were detached by 0.5% trypsin/EDTA
(Gibco, Cleveland, USA).
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Confocal laser scanning microscopy

To detect the number of living EPCs, EPCs were cultured
at a concentration of 300,000 cells/ml medium, stained,
visualized via fluorescence excitation, photographed, and
counted afterwards. EPCs were stained with CellTracker
green CMFDA (Invitrogen, Karlsruhe, Germany) and
visualized by confocal laser scanning microscopy
(CLSM; Leica Group AG, Basel, Switzerland). We investi-
gated nine samples each and took five pictures at a time of 24,
72, and 168 h of each surface (SLA, modSLA, A, modA,
plastic, and fibronectin-coated plastic). In parallel, cell
morphology was analyzed on CLSM images using a
40-fold immersion lens.

Cell count

We investigated the mean cell number of each surface by
counting the cells number on 45 randomized CLSM
pictures.

Enzyme-linked immunosorbent assay

EPCs were cultured at a concentration of 400,000 cells/ml
medium on five different surfaces (SLA, modSLA, A,
modA, and fibronectin-coated plastic) in 24-wells. An
additional medium without cells was analyzed as control.
The experiments were repeated six times. Supernatants were
investigated by Quantikine® Human VEGF Immunoassay
(R&D Systems, Inc. Minneapolis, USA) after 24, 72, and
168 h using a microplate reader (Metertech, Inc., Taipei,
Taiwan).

Real-time PCR

EPCs were cultivated in 400,000 cells/ml medium on five
surfaces (SLA, modSLA, A, modA, and fibronectin-coated
plastic) in 24 wells. mRNA was isolated after 24, 72, and
168 h and the iNOS and eNOS expression was measured.
N03 examples of each surface were investigated and
summed up to one PCR run. mRNA was isolated by using
a commercial Qiagen-Kit and QIAshredder (both from
Qiagen, Hilden, Germany) according to the manufacturer’s
information; 1.5 μl of each mRNA was used for an
analysis of concentration and purity of mRNA with
NanoDrop-Spectrophotometer ND-100 (peqLab Biotechno-
logie GmbH, Erlangen, Germany). cDNA was synthesized
by iScript cDNA synthesis kit (BioRad, Hercules, USA) and
expressions were measured with Gene Amp PCR system
2400 (PerkinElmer, Massachusetts, USA). Thereby, 500 ng
RNAwere applied and oligodT primers were used. All steps
were done as specified by the manufacturer.β-Actin served as
a housekeeping gene. The following primer sequences

(Eurofins MWG Operon, Ebersberg, Germany) were used:
β-actin: sense 5′-GGAGCAATGATCTTGATCTT-3′, anti-
sense 5′-CCTTCCTGGGCATGGAGTCCT-3′; eNOS: sense
5′-GCAAGTCCACGAGGGCCACC-3′ antisense 5′-
GCTCAGCAGCGCCTCCACAA-3′; iNOS: sense 5′-
TTTCCTTACGAGGCGAAGAA, an t i s e n s e 5 ′ -
GGCCCTGTGACCTCAGATAA-3′. Quantitative real-time
PCR was run with I-Cycler IQ5 and IQ5 Optical System
software version 2.0 (both from BioRad, Hercules, USA).
Each sample for RT-PCR consisted of 25 μl 2× SYBR Green
Supermix (BioRad, Hercules, USA), 9.5 μl DEPC water, 2 μl
cDNA, and 1 μl primer, which had a concentration of
20 pmol/μl. For the RT-PCR the following protocol was used:
Initial denaturation at 95°C for 5 min, then 40-fold rerun of
this cycle: 95°C 30 s; 58°C 30 s; and 72°C 30 s. At the end of
the run temperature increased from 60°C to 95°C, while
fluorescence intensity was being measured gradually. Relative
quantification of each gene between its control gene was
realized through ΔΔCT method.

Statistical analysis

SPSS 16.0 was used for the statistical analysis. To detect a
difference between the groups in the cell count experiments
and VEGF enzyme-linked immunosorbent assay (ELISA)
data one-way ANOVA was used with the post hoc Tukey
test. A p value of 0.05 was considered statistically signifi-
cant. Cell morphology on different surfaces was described
descriptively. For RT-PCR, differences were detected by the
ΔΔCT method.

Results

Cell numbers

We found significant deviations between different surfaces
in terms of EPC numbers (Fig. 2). At all analyzed time
points, the cell number measured on titanium surfaces were
significantly decreased from days 1 to 7 compared the
control surfaces (p≤0.001). After 24 and 72 h hydrophilic
titanium surfaces (modA and modSLA) had smaller cell
numbers than hydrophobic titanium surfaces (A and SLA).
After 7 days, there were no significant differences detectable.
After 7 days, higher cell numbers on smoother titanium
surfaces (A respectively modA) than on rougher surfaces
(SLA respectively modSLA) were detected (p≤0.001)

Cell morphology

Figure 1 shows representative photos. EPC showed the
following characteristics on all surfaces: EPCs developed
increasing pseudopodia from days 1 to 7; displaying

Clin Oral Invest (2013) 17:301–309 303



Fig. 1 Morphology of vital EPCs on six surfaces (tissue culture
polystyrene (TCPS), fibronectin-coated TCPS, SLA, modSLA, A,
and modA) after 24, 72, and 168 h; detected by confocal laser scanning

microscopy with a 40-fold immersion lens. Green EPCs were stained
with CellTracker green CMFDA (Invitrogen, Karlsruhe, Germany).
Red color displays implant surface
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adherence on the surface. Neither formation of cell clusters
nor formation of tubular structures could be determined. The
fibronectin-coated plastic surface showed biggest cell soma
on the first point of examination and constituted spindle-
shaped, elongated cell soma on the following days. The
grade of roughness played a role for morphology: EPCs on
control surfaces (plastic and fibronectin-coated plastic) to-
gether with A and modA displayed more extensive cell
soma compared with rougher SLA and modSLA which
showed smaller and plump cell soma. Hydrophilic proper-
ties had no influence on cell morphology (Fig. 2).

VEGF-A secretion

No VEGF-Awas found in the medium without cells. VEGF-
A could be observed at all time points in supernatant medi-
um of all tested surfaces cultured with EPC (Fig. 3). VEGF-
A was statistically significant increased in SLA, modSLA,
and modA from days 1 to 7 (p≤0.008). On day 7, the
smallest VEGF-A quantity was measured on A surface, all
other surfaces did not show significant differences. The
highest VEGF-A level were measured on modSLA surface.

eNOS and iNOS expressions

Both eNOS and iNOS expressions showed similar proper-
ties regarding different surfaces (Figs. 4 and 5). In summary,
the highest values of eNOS and iNOS were measured on
hydrophilic smooth modA. The exception was the primary
high level of eNOS and iNOS in the SLA group. This effect
was no longer visible on days 3 and 7. On day 7, the

expression of eNOS and iNOS was higher on smooth tita-
nium surfaces (A and modA) than rough titanium surfaces
(SLA and modSLA). Due to the number of cases, only a
descriptive analysis of the results was possible.

Discussion

Previously, most studies have concentrated on observing
interactions between dental titanium surfaces and solitary
cell lines. Most research groups focused on osteogenic cells
[4, 32, 33], soft tissue cells like fibroblasts [34, 35] and
endothelial cells (e.g., HUVEC) [36]. Based on the
knowledge that sufficient implant healing depends on
the establishment of efficient vascular plexus, implant
surfaces should be tested for their vascular potential
and not for their osteogenic potential alone. Ideal implant
surfaces should promote adhesion and the stimulation of
endothelial progenitor cells in addition stimulation of
osteoblasts. To our knowledge, we investigated the first
time the interaction of EPCs with different titanium surfaces
in the context of implant healing. In the past, several
research groups including us have shown the influence of
microstructure and surface wettability on the adhesion,
proliferation, and differentiation of osteoblasts in vitro
[5–7, 37–39]. An explanation of the good clinical results
of SLA and modSLA might be the microstructure of
SLA/modSLA which is similar to natural osteoclasts lacuna
[40, 41]. Wettability seems to influence direct protein
adsorption on titanium surfaces. While hydrophobic surfaces
trigger an unspecific and irreversible protein adsorption,

Fig. 2 Mean absolute numbers
of EPCs counted out of pictures
of the size 375×375 μm
on six different surfaces
(SLA, modSLA, A, modA,
fibronectin-coated plastic,
and plastic) at the point of 24,
72, and 168 h. Mean values;
error bars show standard
error of the mean. n09
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hydrophilic surfaces are supposed to cause an increased
induction of osteogenesis through controlled adsorption
of plasma proteins [7]. Current clinical studies often
compared SLA with modSLA. The results of these stud-
ies attest that modSLA has better early implant stability
when compared with SLA. This could be a hint that the
healing time of hydrophilic titanium implants could be
shortened compared with hydrophobic surface modifica-
tions [1–3, 42, 43]. In parallel to experiments with osteo-
blasts [4–7], we found that proliferation of EPCs was
higher on hydrophobic than hydrophilic titanium surfaces
at the beginning. In accordance with other research
groups, we found lowest cell numbers on the hydrophilic

rough modSLA at all time points. In a similar experi-
mental setting, An et al. investigated human endothelial
vein cells (HUVECs) on SLA, modSLA, A, and modA.
They found lowest proliferation rates of HUVECs on A
and highest on modA. These results are not coincident
with ours and underline the differences between EPCs
and mature endothelial cells (e.g., HUVECs). Osteoblasts
mostly showed an increase of cluster formation on hydrophilic
surfaces. Some researchers did not find morphological
differences between hydrophilic and hydrophobic titanium
surfaces [6, 7]. HUVECs displayed elongated and more
quantity of cell clusters on modA in comparison to SLA
and modSLA, where no cluster formations had been

Fig. 4 Mean relative eNOS
expression (normalized to
thehousekeeping gene β-actin)
of EPCs after 24, 72,
and 168 h on five surfaces
(SLA, modSLA, A, modA,
and fibronectin-coated plastic)
measured by RT-PCR.
n03. Error bars show
standard error of the mean

Fig. 3 Mean VEGF-A
secretion in supernatant liquor
of five surfaces colonized with
EPCs (SLA, modSLA, A,
modA, and fibronectin-coated
plastic) and pure medium
as control after 24, 72,
and 168 h measured by ELISA.
Data given in picograms
per milliliter. n06.
Error bars show standard
error of the mean
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observed and cell soma seemed more nodular [36]. These
findings coincide with our results: Rough titanium surfa-
ces (SLA/modSLA) promoted nodular cell soma with
only wispy pseudopodia, smoother surfaces promoted
planar cell soma with lots of pseudopodia. Cytokine
release plays an important role in implant osseointegra-
tion. Researchers found highest secretion of osteoblast-
specific factors (e.g., TGF-β1 and PGE2) on modSLA
[5, 6]; HUVECs showed highest expressions of angio-
genic factors (e.g., von Willebrand factor) on modSLA
[36]. Our experiments also indicate a trend that EPCs
secrete the most amount of VEGF on modSLA. VEGF
plays a central role in neovascularization and bone healing:
VEGF stimulates mature endothelial cells for migration
and differentiation [44]. Furthermore, it promotes mobi-
lization, recruitment, extravasation, and differentiation of
EPCs [45–47]. In addition to that, it promotes recruit-
ment, activation, and differentiation of osteoblast cells
[48]. Compared to fibronectin-coated plastic surface,
which is usually used as culture surface for EPCs, we
found significant higher VEGF values on titanium surfa-
ces. Researchers look for techniques to multiply secretion
of paracrine factors by EPCs for cytokine therapies [25].
Our study could be a stimulus to investigate different
culture surfaces to find out how to increase secretion of
paracrine factors by EPCs. The majority of research
groups determined that the differentiation grade of osteo-
blasts on different titanium surfaces is in inverse propor-
tion to proliferation grade [4–7, 49], i.e., that rough and
hydrophilic modSLA showed highest differentiation
grade. This osteoblast type is often called “post-mitotic
mature osteoblast” and is attributed to a high potential to
build new bone [4, 50]. In our study, we investigated

eNOS and iNOS expressions of EPCs as differentiation
markers. eNOS is a commonly used marker of differen-
tiation but correlation of iNOS and the grade of differ-
entiation is still unclear [51–55]. We found that iNOS
and eNOS behaved in a very similar way on different
surfaces. This supports the hypothesis that iNOS is also a
marker for advanced differentiation. eNOS as well as
iNOS expressions were highest on smooth hydrophilic
surfaces.

In summary, the results of this study show that different
surfaces influenced interactions with EPCs significantly.
The grade of roughness seems to be more important than
grade of wettability. Smoother surfaces promoted a more
differentiated polymorphic phenotype with high differentia-
tion grade and permanent stable proliferation rate. Rougher
titanium surfaces promoted an undifferentiated plump phe-
notype with low proliferation rates and eNOS/iNOS rates.
They tended to show higher VEGF-A secretion rates.
Taken together with clinical trials, which demonstrate
modSLA very good implant stability and shortened healing
period [1–3, 42, 43], our study supports the hypothesis
that cytokine secretion by EPCs is more important than
their direct vascular incorporation [20, 56]. EPCs could
be an interesting key in implantology in the future.
Novel implant surfaces could stimulate EPCs cytokine
secretion. Osseointegration of implants could be increased
in patients with reduced neovascularization capacity, e.g.,
after radiation therapy or bisphosphonate treatment. Local
stem cell therapy with EPCs during implantation could
be helpful in this condition, too. EPCs or their ex vivo
extracted cytokines as cell-free alternative could be
added to the local bone wound together with implant.
This could result in a quicker and more effective

Fig. 5 Mean relative iNOS
expression (normalized to the
housekeeping gene β-actin) of
EPCs after 24, 72, and 168 h on
five surfaces (SLA, modSLA,
A, modA, and fibronectin-
coated plastic) measured by RT-
PCR. n03. Error bars show
standard error of the mean
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neovascularization with higher success implantation rates
even in disadvantageous bone situations. Before the use
of EPCs in dental medicine can take place, a lot of
fundamental questions must be clarified first. A risk–benefit
analysis should be done before stem cell takes place in dental
implantology. As a next step, the results of this study should
be transfer to an in vivo model to underline the findings and to
exclude negative effects of stem cell therapy [57].
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