
The common methods for assessing caries risk are

by means of univariate or multivariate models that

employ traditional statistical techniques such as

odds ratios and regression analysis. These approa-

ches to longitudinal caries risk analysis are useful

when risk for dental caries is constant over time,

the attrition rate is small and tooth loss occurs

infrequently. These methods, however, do not

incorporate ongoing risk over time in the resultant

risk models.

To analyze ongoing risk over time, we used

Markov models to analyze caries onset in initially

caries-free children. Markov analysis is a dynamic

mathematical modeling technique that is useful for

predicting prognoses and probabilities of diseases

within populations over time. The finite, discrete

Markov process assumes that an individual is

always in one of a finite number of states of health

referred to as Markov states and the process is

described by transition probabilities from one state

to another. The time horizon of the analysis is

divided into equal increments of time, referred to

as Markov cycles. The probability of making a

transition from one state to another during a single

cycle is referred to as a transition probability. A

transition probability is Markovian if it only

depends on the present state and not on the

previous history of the individual, i.e. the transition

probability depends upon the health state persons

are in and not how long they have been in that

health state or how they arrived there (1). In order

for a Markov process to terminate, it must have at

least one state that an individual cannot leave. Such

states are called absorbing states. In medicine, the

absorbing states usually represent death; in our

example the absorbing state is caries onset.

Increasingly, Markov models are being applied

in medical and health services research and also in

social sciences research. For example, a Markov

model was successfully used to project tuberculosis

incidence in the United States for the years 1980–

2010 in disaggregated demographic groups (2). In

the social sciences, Markov models were developed

to study social capital and violence in the United
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Kopycka-Kędzierawski DT, Billings RJ. Application of nonhomogenous Markov
models for analyzing longitudinal caries risk. Community Dent Oral Epidemiol
2006; 34: 123–9. � Blackwell Munksgaard, 2006

Abstract – Objectives: Markov modeling is a useful mathematical procedure for
calculating probabilities of disease prognosis. Increasingly, Markov models are
being applied in medical and health services research and also in social sciences
research. The purpose of our study was to use the Markov process to determine
time-dependent transition probabilities for caries-free children to convert to a
caries-active state and to assess the impact of salivary mutans streptococci (MS)
levels on caries status. Methods: Our analysis was based on data obtained from
a 6-year longitudinal study of risk factors associated with caries onset in
children. Results: Based on a two-state Markov model, the probability that a
caries-free child would convert to a caries-active state during the study ranged
between 0.0046 and 0.0471. The highest probability of converting from a caries-
free state to a caries-active state was 0.0471 at age 8.5 years. Conclusions: In
addition to standard statistical methods of analyzing longitudinal caries data,
Markov models show promise for use in the analysis of caries risk.

D. T. Kopycka-Kędzierawski
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States (3). In cancer research, Markov models were

constructed to estimate the rate at which dysplasia

will progress to cervical cancer (4). Markov mode-

ling has also been used to describe the dynamics of

disease progression in sepsis (5).

Markov models offer a unique advantage in that

they provide a convenient way of modeling data

when decision-making involves a risk that is ongo-

ing over time (6). Thus, they are widely used in cost-

effectiveness research as they allow the incremental

use of resources and the consequent health benefits

to be assessed for any point in time. Despite their

applicability, Markov models have not been exten-

sively used in dentistry. A few examples of its

application exist, nevertheless. Lu (7) suggested

using finite absorbing Markov chains to describe

the caries process. Kay and Nuttall (8) attempted to

determine transition probabilities for predicting the

dental caries status of Scottish children. More

recently, Helfenstein et al. (9) applied a Markov

chain Monte Carlo method to construct elaborate

models in dentistry. Higashi et al. (10) used Markov

modeling to evaluate long-term incremental clinical

and economic outcomes associated with genetic

testing of patients with mild periodontal disease.

Thus, the purpose of this paper is to describe the

utility of time-dependent Markov models for the

analysis of longitudinal caries data and to assess

the impact of mutans streptococcal (MS) levels on

caries status.

Materials and methods

Subjects
A cohort of 631 caries-free children, 6–7 years of

age, from Rochester, New York and the Finger

Lakes region of western New York State who

participated in a longitudinal study to identify risk

factors associated with caries onset formed the

study population for this analysis. Each child was

examined at 6-month intervals for up to 6 years.

The study was completed in 1996. Cariogenic

microbiological profiles were among the risk fac-

tors assessed for susceptibility to caries. The com-

plete set of risk factors assessed has been described

elsewhere (11, 12).

Two-state Markov model versus three-state
Markov model
For the purpose of our approach to the analysis of

the data using Markov models, only MS data from

the aforementioned risk studies were utilized.

Thus, to describe the clinical history of caries onset

in initially caries-free children over a 6-year study

period, we developed two Markov models: a two-

state and a three-state model.

The two-state Markov model, as shown in

Fig. 1(a), consists of two health states: (i) a caries-

free state and (ii) a caries-active state. The two-state

model is described by transition probabilities pCF
and pCA. Here, pCF denotes the probability that a

child would remain caries-free during a given

cycle; pCA denotes the probability that a child

would convert from a caries-free to a caries-active

state during a 6-month cycle.

A three-state Markov model was constructed to

assess the impact of salivary MS levels on remain-

ing caries-free and for transitioning between low

and high MS levels over a 6-year study period. The

three-state model, as shown in Fig. 1(b), consists

of three health states: (i) a caries-free and low MS,

(ii) a caries-free and high MS and (iii) a caries-

active state. A high level of MS was defined as ‡106

colony-forming units (CFU)/ml of saliva, based on

the work of Klock and Krasse (13). A low level of

MS was defined as <106 CFU/ml of saliva. There

are six possible transitions in the three-state Mark-

ov model for each cycle. These are: transitions from

a low MS caries-free state to a low MS caries-free

state (pLL), from a low MS caries-free state to a high

(a)

Low MS
caries-
free state 

Caries-
active 
state 

Caries-
active 
state 

Caries-
free

state 
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pCF
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Fig. 1. (a) Two-state Markov model; (b) three-state
Markov model. PCA, transition probability from a car-
ies-free to a caries-active state; PCF, transition probability
from a caries-free to a caries-free state; PLL, transition
probability from a low MS caries-free state to a low MS
caries-free state; PLH, transition probability from a low
MS caries-free state to a high MS caries-free state; PLC,
transition probability from a low MS caries-free state to a
caries-active state; PHH, transition probability from a
high MS caries-free state to a high MS caries-free state;
PHL, transition probability from a high MS caries-free
state to a low MS caries-free state; PHC, transition prob-
ability from a high MS caries-free state to a caries-active
state.
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Kopycka-Kędzierawski & Billings



MS caries-free state (pLH), from a low MS caries-

free to a caries-active state (pLC), from a high MS

caries-free state to a high MS caries-free state (pHH),

from a high MS caries-free state to a low MS caries-

free state (pHL) and from a high MS caries-free to a

caries-active state (pHC). Fig. 1(b) illustrates all

possible transitions among the different states. The

sum of all possible transitions from a low MS

caries-free state equals 1. The sum of all possible

transitions from a high MS caries-free state equals

1, as well. The absorbing state in both of our

models is caries onset in the permanent dentition

(filled and missing teeth were preceded by caries).

In a few occurrences, restorations were not pre-

ceded by a diagnosis of caries in the prior exam-

ination and were excluded from the analysis.

Transition probabilities
To calculate the transition probabilities we used the

maximum likelihood method. That is, each trans-

ition probability was estimated by the number of

observed transitions during a given cycle, divided

by the total number of all possible observations

during that cycle. By definition, the above formula

requires two consecutive clinical examinations and

bacterial screenings per individual to calculate a

transition probability. For example, to calculate the

transition probability pLL from a low MS caries-free

state to a low MS caries-free state in any given

cycle, we would divide the number of observed

transitions from the low caries-free state to the low

caries-free state by the number of observations

within that cycle, i.e. the number of observations of

caries-free children who had a low level of MS at

the start of the cycle. To demonstrate trends in the

transition probabilities more clearly, we smoothed

the empirical data by using the method of moving

averages (14). The transition probabilities in our

models are time-dependent. Such models are called

nonhomogeneous Markov models.

Transition probabilities were calculated for the

permanent dentition in both models (28 permanent

teeth, excluding third molars). Clinical caries was

diagnosed using a modified version of the visual-

tactile criteria of Radike (15), i.e. the dental explorer

was used only to remove plaque or to detect the

presence of translucent sealants. Radiographs were

not taken. For the purpose of this analysis, caries

onset was defined as a transition from a caries-free

state to a caries-active state, i.e. when at least

one caries lesion was present in the permanent

dentition, an individual was determined to have

transitioned to a caries-active state.

Results

The calculated transition probabilities for the two-

state model are shown in Table 1(a). The transition

probabilities are represented graphically in Fig. 2.

Cycle 1, the initial cycle, represents the transitions

between ages 6.5 and 7 years; cycle 2 represents the

transitions between ages 7 and 7.5 years. Cycle 11,

the final cycle, represents the transitions between

ages 11.5 and 12 years. The probability that a

caries-free child would convert to a caries-active

state during one cycle ranged between 0.0046 and

0.0471. The highest probability of converting from a

caries-free state to a caries-active state was 0.0471 at

age 8.5 years. The lowest probability of developing

caries in the next six months was 0.0046 at age

6.5 years.

The transition probabilities calculated for the

three-state model are shown in Table 1(b). The

transition probabilities are represented graphically

in Fig 3(a,b). The transition probability for a caries-

free child with low levels of salivary MS to remain

in a caries-free state with low levels of salivary MS

during the study ranged between 0.841 and 0.882.

The transition probabilities from a low level to a

high level of MS ranged between 0.105 and 0.147.

Based on our data presented in Table 1(b), we

calculated that children identified with low levels

of MS at baseline, on average (81% of all children

remaining caries-free) would be identified with low

levels of MS during the course of the study. The

probability that a caries-free child with a low level

of MS would convert to a caries-active state during

the study ranged between 0.005, at age 6.5 years

and 0.031 at age 8.5 years. For a caries-free child

with a high level of MS, the probability to convert

to a caries-active state ranged between 0.0028 at age

6.5 years and 0.092 at age 8.5 years. Usually,

children with low levels of salivary MS would

have a lower probability of converting to a caries-

active state than children with high levels of

salivary MS (Fig. 3c). For each cycle, we performed

tests for comparison of two proportions (probabil-

ity of converting to a caries-active state for children

with low levels of salivary MS and probability of

converting to a caries-active state for children with

high levels of salivary MS). Based on these tests

(the probabilities of converting to a caries-active

state for children with low levels of salivary MS vis

a vis children with high levels of salivary MS were

statistically significantly different between ages 7.5

and 10 years) they correspond to cycles from 3 to 7

(P-value < 0.05) (Fig. 3c).
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Discussion

The advantage of Markov models is their simplicity

in modeling the natural history of chronic disease.

Any given disease can be described by a mathemat-

ical model as a series of health states and possible

transitions among them when the risk of disease

onset or death is ongoing over time. One important

limitation of the Markov processes, however, is lack

of memory, i.e. often the previous health states of

the population are not always known. By using a

nonhomogeneous Markov model, an accurate des-

cription of the biological process, even when the

Markovian assumption is not fully satisfied, can be

obtained. We built nonhomogeneous Markov mod-

els with time-dependent transition probabilities to

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11
Cycles

P
ro

b
ab

ili
ti

es

Caries-free to caries-active Caries-free to caries-free

0.95

0.047

Fig. 2. Transition probabilites for
the two-state Markov model.

Table 1. Transition probabilities by age for the two-state (a) and the three-state (b) Markov models

(a) Cycle Age (years) PCA PCF

1 6.5–7 0.0046 0.9954
2 7–7.5 0.0094 0.9906
3 7.5–8 0.0195 0.9805
4 8–8.5 0.0319 0.9681
5 8.5–9 0.0471 0.9529
6 9–9.5 0.0418 0.9582
7 9.5–10 0.031 0.969
8 10–10.5 0.0178 0.9822
9 10.5–11 0.0176 0.9824
10 11–11.5 0.0129 0.9871
11 11.5–12 0.0173 0.9827

(b) Cycle Age (years) PLL PLH PLC PHL PHH PHC

1 6.5–7 0.8766 0.1184 0.005 0.3405 0.6567 0.0028
2 7–7.5 0.8466 0.1463 0.007 0.3433 0.6433 0.0134
3 7.5–8 0.8411 0.1465 0.0124 0.3399 0.624 0.0361
4 8–8.5 0.8488 0.1329 0.0183 0.3909 0.5439 0.0652
5 8.5–9 0.8504 0.1182 0.0314 0.4169 0.4914 0.0916
6 9–9.5 0.8659 0.1073 0.0268 0.474 0.4349 0.0911
7 9.5–10 0.8823 0.0943 0.0234 0.4827 0.4581 0.0593
8 10–10.5 0.8802 0.1051 0.0148 0.4745 0.4955 0.03
9 10.5–11 0.8631 0.119 0.0179 0.4375 0.5466 0.0159
10 11–11.5 0.8678 0.12 0.0122 0.3539 0.6302 0.0159
11 11.5–12 0.8693 0.1108 0.0199 0.3688 0.6231 0.0081

PCA, transition probability from a caries-free to a caries-active state; PCF, transition probability from a caries-free to a
caries-free state; PLL, transition probability from a low MS caries-free state to a low MS caries-free state; PLH, transition
probability from a low MS caries-free state to a high MS caries-free state; PLC, transition probability from a low MS
caries-free state to a caries-active state; PHH, transition probability from a high MS caries-free state to a high MS caries-
free state; PHL, transition probability from a high MS caries-free state to a low MS caries-free state; PHC, transition
probability from a high MS caries-free state to a caries-active state.
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avoid discrepancies between the predictions of our

model and observed data. In contrast to standard

statistical methods such as regression analysis,

Markov models show the dynamics of the disease

process over time. Additionally, they incorporate

ongoing risk over time.

By using Markov modeling techniques, we cal-

culated transition probabilities for caries onset for

different age groups of initially caries-free children.

We determined transition probabilities for convert-

ing from a caries-free state to a caries-active state;

remaining caries-free; and for transitioning

between low and high MS levels over a 6-year

study period. By incorporating low and high

salivary MS states into our model we were able to

assess the effect of salivary MS levels on caries
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onset in initially caries-free children. Our results

suggest that Markov models show promise as an

alternative statistical approach to identify children

at risk for caries and these methods may be used as

additional research tools when presenting dental

data. The advantage of Markov models is in their

simplicity of describing dynamic disease processes,

as in our example, describing caries onset in

initially caries-free children. Markov modeling

techniques are convenient and simple to imple-

ment. They are often used in cost-effectiveness

analyses to compare two or more treatment strat-

egies in terms of their costs and effectiveness. The

data upon which we based our Markov models

were analyzed previously by means of the Kaplan–

Meier survival method. Based on that analysis, we

concluded that caries-free children who had high

salivary MS levels at baseline would have a greater

risk of caries onset at any given time than caries-

free children who had low salivary MS levels at

baseline (16). By using a three-state Markov model,

we observed that in general, children with low

levels of salivary MS would have a high probability

to stay in this state and lower probability of

converting to a caries-active state than children

with high levels of salivary MS, thus children who

were caries-free at baseline and who had high

salivary MS levels at baseline would be at greater

risk, i.e. more susceptible to caries onset, at any

given time than caries-free children who had low

salivary MS levels at baseline during the course of

the study.

Transition probabilities can also be used to

compare the cost-effectiveness of two or more

treatment strategies when end points of the analy-

sis other than mortality are studied. For example,

Higashi and colleagues used Markov models to

evaluate different clinical scenarios for progression

from mild to severe periodontal disease (10). We

used a Markov model to assess the cost-effective-

ness of a hypothetical intervention strategy to

reduce the risk of caries onset in initially caries-

free children, as compared to a nonintervention

strategy (17). In that model, we suggested that the

cost-effectiveness of a hypothetical caries prevent-

ive strategy, based on a univariate approach or

single risk factor model, i.e. salivary MS levels, was

clinically beneficial, as 9.5% fewer children in the

intervention group would have became caries-

active when compared with the control group.

In summary, the model outlined in this paper

describes an alternative statistical method that

enhances and expands our ability to predict caries

risk. At a conceptual level, this approach incorpor-

ates ongoing risk over time and, on the statistical

level, use of the Markov process may lead to new

ways of modeling caries risk. Our aim in this study

was to apply the Markov process in the analysis of

longitudinal caries data and to present this method

as an additional way of analyzing dental data. By

estimating the proportions of individuals who

would be in the specified health states up to

6 years from baseline, we obtained a comprehen-

sive view of the risk of caries onset. We used caries

onset, independent of severity, as a case definition

in both models. Future multivariate models will be

built to assess the utility of the Markov process to

predict caries progression once the transition from

a disease-free state to a disease-active state has

occurred. For example, we will assess the utility of

the Markov process when previously identified

variables associated with caries risk are incorpor-

ated into the model (11, 12) and we will explore the

possibility of using stochastic processes in mode-

ling caries data (18).
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