
Cluster trials evaluate interventions delivered to

intact social groups or clusters, while outcomes are

measured on individual members of those groups.

Murray et al. (1) recommend the group-random-

ized trial (GRT), which is a specific type of cluster

trial, as the gold standard when allocation of

identifiable groups is undertaken, just as the

randomized controlled trial (RCT) is the gold

standard when the study design requires allocation

of individuals. The GRT is widely used in public

health evaluations. Varnell et al. (2) found 60 such

studies published in just two public health journals

during a 5-year period. Considerable recent

research has also been devoted to the development,

evaluation and synthesis of procedures for their

design and analysis (3, 4).

Like other areas of public health, dentistry has a

strong tradition in the evaluation of community

and practice interventions. Many studies have been

undertaken to assess the effectiveness of public

health interventions such as community water

fluoridation (5), school-based sealant programs (6)

and oral health education programs (7). These

types of interventions, by their very design, target

entire communities or groups, so random assign-

ment of treatment conditions at the level of
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individuals usually is not possible or appropriate.

Often these trials are designed to test the effects of

patient clinical interventions, but they are imple-

mented on a clinic- or practitioner-level for reasons

such as avoiding contamination of treatment effects

(8).

Only a few of the cluster trials reported in the

dental public health literature have used rand-

omization in the assignment of groups to experi-

mental conditions, and most of these have

appeared in the last few years (9–15). Those that

do use random assignment in the implementation

of a cluster trial often do not appropriately apply

GRT design and analytic methods nor do they

provide sufficient details about the analysis used

to obtain the results. The potential for correlation

of clinical measurements taken within the same

mouth to cause a type I error has been recog-

nized for many years (16). Randomizing groups

and analyzing individuals while ignoring intra-

class correlation is a mistake akin to dental

studies randomizing individuals but collecting

and analyzing data at the surface- or site-level

without regard for the intra-mouth correlation of

the data.

The purpose of this paper is to review analytic

methods used for the analysis of GRTs. The paper

considers two- and three-level analysis of binary

outcomes of data from studies using cross-sectional

cluster designs. We illustrate the concepts and

analytical methods included in our review using

data from a school-based study in which students

nested within classrooms nested within schools are

treated as three levels with interventions assigned

to schools. The concepts discussed in the paper also

apply to group trials without randomization, a

more common design in dental public health

studies.

A primer on group-randomized trials

The major characteristics of the GRT and RCT are

contrasted in Table 1. Unlike RCTs where individ-

uals are assigned, groups are the units for random

assignment of interventions in GRTs. However,

like the RCT, the outcomes of interest are measured

at the individual level.

The most important difference between GRTs

and RCTs is the presence of intra-class correlation

(ICC) resulting from the similarity of values for the

outcome measures taken from members of the

same group. The correlation arises because

individuals within the same group tend to be more

alike than do members across different groups.

These similarities arise because group members

share the same environment and interact with each

other.

The impact of the ICC in GRTs is akin to that

of the ICC in surveys where the use of cluster

sampling methods can result in measurements of

interest with larger variances and less precise

estimates than would result from identification of

individuals through simple random sampling.

The degree of extra variation is measured by

the ‘design effect’, which is the ratio of the

variance of an estimator of the intervention effect

in a GRT design to that of the corresponding

estimator from a RCT design. The design effect is

sometimes called the ‘variance inflation factor’

because, as in studies employing complex sample

surveys where the latter term receives common

usage, the extra variation of a GRT relative to a

RCT is evident when the value of the design

effect exceeds one. The design effect should be

considered in the design and analysis of GRTs if

one wants to achieve the same precision as

would be expected in an RCT with randomiza-

tion of individuals (17). Generally, ignoring extra

variation due to intra-cluster correlation leads to

an underestimation of the variance of the inter-

vention effect, which, in turn, leads to inflation of

type I error, or the chances of rejecting a true

null hypothesis (18, 19).

The design effect for a one-stage sample of

clusters is defined as / ¼ 1 + (m)1)q, where m

denotes the size of each group or cluster. If

group sizes vary, m is replaced with an ‘adjusted’

mean group size defined below. The ICC,

measuring the magnitude of correlation among

group members, is commonly represented as

q ¼ corrðyij; yij0 Þ ¼ r2

r2 þr2
e
, where i, and j denote

groups and subjects in the groups, respectively;

where j „ j¢; r2 and r2
e denote between-group

Table 1. Comparative characteristics of the group-rand-
omized trial (GRT) and the randomized controlled trial
(RCT)

GRT RCT

Unit of assignment Group Individual
Unit of observation Individual Individual
Relationship of subjects Correlation

within group
Independenta

Adjustment of sample
size for design effect

Needed Not needed

aExceptions such as multiple or repeated measurements
in an individual exist.
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variance and within-group variance, respectively.

This formulation assumes a common ICC across

groups. A small within-group variance relative to

between-group variance will make q, and, in

turn, /, large. The design effect is useful in

relating the sample size needed in a GRT (NGRT)

to the effective sample size (Neffective), or the

sample size needed for a comparative RCT. The

NGRT can be calculated easily by using the

following formula: NGRT ¼ Neffective·/ (20).

A common characteristic of GRTs is the use of

a small number of groups with a relatively large

number of subjects within each group. In this

case, even a small ICC can result in a substantial

design effect (3, 4). Figure 1 depicts the relation-

ship between group size (m) and Neffective, and

demonstrates that even a small ICC (q) of 0.01

could result in an effective sample size (Neffective)

of only about 675 subjects from a total of 1000

subjects in a GRT (NGRT) as the mean group size

approaches 50.

Many estimators of ICC have been proposed

for binary outcomes. Zou and Donner (21) give

closed-form formulae for three different ICC

estimators and their variances including the

widely used anova estimator. They recommend

the kappa type estimator (q̂FC) of Fleiss and

Cuzick that performs well when there are 50 or

more clusters.

Statistical analysis of GRTs
The statistical analysis of data from a GRT requires

a different strategy than does an RCT. A compar-

ison of analytic methods that can be used in the

two types of studies with binary outcomes is

presented in Table 2 and discussed in the following

paragraphs.

Group-level analysis
A common approach for analysis of data from a

GRT is to consider the groups as the units of

analysis and compare the proportion of subjects in

each group with the particular outcome of interest

(3, 4, 22). In this case, the sample size is the number

of groups, and one can simply use a t-test or anova

to compare the proportions (12). Data often do not

satisfy the assumption of a normal distribution with

equal variance, especially if group sizes are varied.

In that situation, nonparametric procedures, such as

the Wilcoxon rank sum test or Kruskal–Wallis test

are more useful than parametric tests.

Adjusted chi-square test for individual-level
analysis
Similar to the standard Pearson chi-square test for

independent samples, one can use an adjusted chi-

square test to compare the event rates in correlated

data derived from a GRT (4, 22–24). If the inter-

vention has three arms (C ¼ 3), as does the

example used in this paper, then the adjusted

chi-square statistic is

v2A ¼
X3
k¼1

Mk P̂k � P̂
� �2

/kP̂ð1� P̂Þ

where intervention k ¼ 1,2,3; Mk is the total

number of individuals receiving intervention k;

mki is the number of individuals in ith group

receiving intervention k; P̂k is the event rate in

intervention k; P̂ is the overall event rate in the total

sample; /k is the design effect for condition k,

Table 2. Analysis methods for the group-randomized trial (GRT) and the randomized controlled trial (RCT) with binary
outcomes

GRT RCT

Group-level analysis Comparison using proportions N/A
Test at individual level Adjusted chi-square test Chi-square test
Multivariable modeling Generalized linear mixed

modeling (GLMM) or
generalized estimating equation (GEE)

Single-level logistic model

N effective

1000

750

500

250

0
0 10 20 30 40 50

r = 0.01;  r = 0.05;  r = 0.1

Group size

Fig. 1. The relationship between effective sample size
(Neffective) and group size by various degrees of intra-class
correlation (ICC or q): The sample size used in group-
randomized trials (NGRT) is fixed at 1000.
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/k ¼ 1 þ ð �mAk � 1Þq̂, where the adjusted group

size is

�mAk ¼
Xnk

i¼ 1

m2
ki=Mk:

Note that if all group sizes within the kth condition

are equal then �mAk reduces to the common group

size, m.

Multivariable regression analysis of
correlated binary data
Two general classes of models are applicable for

the multivariable analysis of correlated binary data:

(i) generalized linear mixed models (GLMM), also

called conditional or cluster-specific models, which

are commonly estimated by maximum likelihood;

and (ii) marginal or population-averaged models,

estimated by generalized estimating equations

(GEE) (1, 4, 22, 25–28). While different link func-

tions are possible (29), we present specific forms

based on the logit link, which is generally applied

for binary outcomes.

Mixed effect models
The GLMM based on the logit link is called the

logistic random effects model or the logistic-normal

model because of the common assumption that

random effects are normally distributed. For a two-

level model there is a single random effect, ui, for

each group i ¼ 1,…,K. The two-level logistic-

normal model is

log
pij

1� pij

� �
¼ X0

ijbþ ui:

Note that pij ¼ E(Yij|ui) is the probability that

the jth subject in the ith group (e.g. school) is an

event case conditional upon the value of the

random effect, ui, for the ith group. In mixed

effects models, b represents within group change

(i.e. conditional on ui) (30, 31). Specifically, we

assume ui � Nð0;r2
bÞ,the common assumption for

the two-level or random intercept logistic-normal

model (31). Assuming normality for the random

effects completes the full-likelihood specification

of the distribution of correlated binary responses

across groups. The ICC is not modeled directly,

but rather heterogeneity of groups is modeled

explicitly via the random effect variance, r2
b,

which is the between-group scaled variance (i.e.

on the logit scale). This is the only variance

component in the model as the residual error is

the theoretical variance for the binary outcome. To

estimate ICC we can estimate r2
e by P̂ð1� P̂Þ.

Next, noting that the unscaled variance r2 has the

approximate relationship r2 � r2
b½P̂ð1� P̂Þ�2, pro-

vides a quick formula for ICC (3, p. 234–240):

q ¼ corrðyij; yij0 Þ ¼
r2

r2 þ r2
e

� r2
b

r2
b þ 1=P̂ð1� P̂Þ

:

Now suppose there are two levels of nesting. The

three-level logistic-normal model is

log
pijs

1� pijs

� �
¼ X0

ijsbþ ui þ uis;

where pijs ¼ E(Yijs|ui,uis) is the probability that

the jth subject (e.g. student) in the sth subcluster

(e.g. classroom) from the ith cluster or group (e.g.

school) is an event case conditional upon the

value of the random effects. We assume the sub-

cluster and cluster random effects are statistically

independent, ui � Nð0;r2
bÞ, and uis � Nð0;r2

sÞ.
Estimation of b in GLMMs is computationally

complex due to the need to handle the random

effects (32).

Generalized estimating equations
The population-averaged logistic model is ex-

pressed by

log
lij

1� lij

 !
¼ X0

ijb
�;

where lij ¼ E(Yij) is the marginal probability

that the jth subject in the ith group is an event

case. The parameter b* represents the population-

averaged change (30, 32) and is generally not

equal to the cluster-specific parameter b (33).

Unlike the mixed effects model, the GEE ap-

proach does not explicitly account for group-to-

group heterogeneity. The variance function for

binary data, var(Yij) ¼ lij(1)lij), and a working

correlation structure to account for ICC, com-

pletes specification of the model. For the cross-

sectional design, an exchangeable correlation

structure is often assumed, i.e. corr(yij,yij¢) ¼ q.
Estimation of b* is performed by iteratively

reweighted least squares (34). A model-based

variance estimator provides valid inference, in a

large sample sense, when the correlation struc-

ture has been correctly specified; the empirical or

‘robust’ variance estimator is valid even if the

correlation structure is misspecified (34). How-

ever, inflated type I error is common when GEE

is implemented with empirical variance estima-

tors for GRTs with fewer than 40 groups (27, 35).
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A bias-corrected variance estimator improves the

accuracy of inference with GEE when the number

of groups is small (36). GEE estimators of q tend

to underestimate ICC when there are a small

number of clusters and so they are not recom-

mended in most cluster trials situations.

An example: improving response rates
in a school-based dental study

Overview of incentive study
Data used for our example of analytical principles

for GRTs are derived from a study to assess the

effects of teacher and student monetary incentives

on parent–child unit response rates to a school-

based surveywith a clinical examination of the child

and a self-completed questionnaire for the parent.

The rationale for the study is that response rates in

population-based oral health surveys have declined

in recent years, and little empirical evidence is

available to guide public health practitioners in

planning and conducting school-based surveys in

ways that achieve maximum subject participation

(37). Parents and students were assigned to one of

three intervention types (teacher incentive ¼ $20;

student incentive ¼ $1, $2, $5 for 1st, 6th, 10th

grade, respectively; and no monetary incentive). In

addition to the monetary incentives, parents of all

participating students received results of the oral

examination. The clinical examination of the child

required positive consent by a parent.

Because this work was undertaken as a pilot to a

planned larger survey of schoolchildren and their

parents in North Carolina a cost-saving design was

used at the potential loss of some statistical power.

The study employed a stratified, cluster-RCT with

posttest data collection only and where incentive

conditions were randomly assigned to three county

units within each of two strata defined by county

income level (median per capita income >$40 000

vs. <$30 000). In the high income strata, county

units were equivalent to counties and within those

counties, three schools, one of each grade level (1st,

6th, 10th grade), were recruited and assigned the

same intervention; there was one exception as two

grade levels from one school participated. The low

income strata also consisted of three county units,

but the three schools for one of these units were

selected from three different counties. Thus,

schools from eight counties participated in the

study, but the county unit was the unit of

randomization. The final sample included 1482

students from 70 classrooms in 17 schools in six

county units. The number of students per school

varied from a minimum of 60 to a maximum of 160

with a mean of 87.1.

In the terminology of GRTs, this study employed

a four-level, multilevel design with county units as

clusters, schools as sub-clusters, classrooms as sub-

sub-clusters and student-parent pairs as units of

observation. We used this design for a number of

scientific and practical reasons. We felt that rand-

omization of counties and assignment of schools

located within them to the same intervention as a

unit would help limit contamination among groups

that could result from teachers and administrations

within the same school system having contact with

each other. Any knowledge among teachers or

students about the incentive structure could affect

the internal validity of the study by affecting their

behaviors in ways such as ‘resentful demoraliza-

tion’ or ‘compensatory rivalry’ (38). Assignment of

multiple schools within counties also made the trial

more efficient because training in trial implemen-

tation would require less time away from usual

responsibilities for the six county-based dental

hygienists who delivered the intervention. Each

of them needed to become familiar with only one

intervention. We also believed that administrators

within a single school system would be more likely

to approve the trial if it involved the same

intervention for their county.

For the purposes of this paper, we treat the data

as if they came from a three-level nested cross-

sectional GRT with posttest outcome only (3).

Ignoring county units (level 4) as a source of

variation, students (observations, level 1) are

nested within classrooms (sub-clusters, level 2)

within schools clusters (level 3). While the actual

randomization strategy employed provides no

basis for ignoring the potential source of between

county unit variation associated with randomiza-

tion at the county unit level, there is some

empirical motivation for doing so as efforts to

model county unit as an additional random effect

(beyond the three-level structure or selected two-

level structures) were unsuccessful; in other

words, the variance component associated with

county unit was estimated to be zero when added

to the multilevel models described in the next

section. Even so, our main reason for ignoring

county units is to provide illustrative analyses of

three-level data (if hypothetical) and not to pro-

vide a definitive analysis of the incentives study.

A more costly but definitive follow-up GRT to the
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pilot with adequate power to address study

questions would recruit schools from different

counties and randomize interventions at the

school level. Therefore, analyses presented are

those that would be applicable to such a study.

Conclusions as they pertain to the actual pilot

study should be viewed with caution.

Outcome and ICC estimate
The main interest of this study was to determine

whether parent–child units respond differently

according to three different types and amounts of

monetary incentives. The outcome is a binary

variable, whether parent–child units respond or

not to both the questionnaire and clinical oral

examination. We obtained an unadjusted ICC

estimator of 0.07 using the Fleiss-Cuzick estimator

and 95% confidence interval, 0.01–0.32, by the

method of inverting a modified Wald test (21).

The design effect is computed as / ¼
1 + (87.1)1)·0.07 ¼ 7.02. Similarly, we obtained

a model-adjusted ICC estimate of 0.075 from the

two-level GLMM model applied below.

Application of analysis strategies to
incentive study
Group-level analysis using proportions

The overall unadjusted response rates were 0.35,

0.43 and 0.34 for the teacher incentive, student

incentive and no incentive groups, respectively.

Differences in response rates were not significant

(P ¼ 0.5417) using the Kruskal–Wallis test

applied to school-level proportions.

Individual-level analysis using adjusted chi-square test

Wecompared the unadjusted and adjusted standard

Pearson chi-square tests to evaluate the effect of

incentives on response rates at the individual level.

The difference between the two resulting statistics

was large. The adjusted two-degrees of freedom chi-

square statistic and corresponding P-value

(v22 ¼ 1.37; P ¼ 0.50) indicated lack of a statisti-

cally significant difference in contrast to a significant

difference obtained from the unadjusted statistic

(v22 ¼ 12.86; P ¼ 0.002) in favor of student incen-

tives. The statistical significance of the unadjusted

chi-square test may be attributed to inflated type I

error resulting from a failure to adjust for ICC.

Multivariable analysis
Initially, we define the two-level logistic-normal

model to explain the response rate, pij, of the jth

student, in the ith school:

log
pij

1� pij

� �
¼ b0 þ b11ðincentive = teacherÞ

þ b12ðincentive = studentÞ
þ b21ðincome=highÞ þ b31ðgrade = 1Þ
þ b32ðgrade=6Þ þ b41½ðincome=highÞ
� ðgrade = 1Þ� þ b42½ðincome=highÞ
� ðgrade = 6Þ� þ ui

where, ui � Nð0;r2
bÞ. Thus b0 represents the

baseline log odds of response associated with

the control incentive condition for schools with

the 10th grade from the strata of low income

counties; b11 and b12 are the cluster-specific log

odds ratios of response (relative to the control

condition) for teacher and student incentives,

respectively, adjusting for income and grade. In

view of the stratification of the study design, we

retained income, grade, and their interactions in

the model, as well as the two incentive dummy

variables, regardless of their statistical signifi-

cance.

To estimate parameters of the GLMM for our

example, we used the SAS GLIMMIX procedure,

which provides approximate maximum likelihood

estimates (39). We also used PROC GLIMMIX to

fit the three-level model that treats classrooms as

sub-clusters through specification of a second

random effect. Finally, we used the SAS GEN-

MOD procedure with repeated statement to fit

the population-averaged model with the same

covariates by GEE. For GEE, we used a working

exchangeable correlation structure and bias-cor-

rected standard errors for the estimated para-

meters because the empirical sandwich standard

errors or model-based errors may be comparat-

ively unstable for GRTs with relatively small

numbers of 17 groups (40).

Results from single-level logistic regression mod-

els are compared with those of the two two-level

GEE models considering schools or classrooms as

the second level (Table 3). Relative to the multilevel

models, the standard errors from the single-level

logistic regression are much smaller and lead to an

erroneous finding of a statistically significant effect

due to student incentives. In contrast, neither the

GEE nor mixed model approaches in Table 4

identified a statistically significant incentive effect.

From the two-level GEE model adjusting for

schools, the estimated population averaged odds

ratio of response to student incentive relative to

control was e0.260 ¼ 1.29. No effect of teacher

incentive was found.
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Results from two-level GLMM models adjusting

schools or classrooms as the second level, and

three-level GLMM models regarding both school-

levels and classroom-levels are presented in Ta-

ble 4. The estimated school-specific odds ratios of

response to student incentive relative to control

was e0.434 ¼ 1.54 for the three-level GLMMs.

Generally, the two-level mixed models produced

overall results similar to the three-level model in

terms of statistical significance, albeit with a

tendency to produce smaller standard errors. This

similarity is particularly true for the two-level

model that specifies classroom as cluster and

ignores potential intraclass correlation at the school

level. As in the GEE analyses, no effect of teacher

incentive was found in any of the GLMMs.

The estimated variance of the cluster-specific

random effects was r̂2 ¼ 0.35 for the two-level

logistic-normal model giving an estimated ICC of

0.075. In contrast, the estimated exchangeable

correlation (ICC) was q̂ ¼ 0.019 for the model

based on GEE. Parameters from logistic-normal

models and those from GEE have the approximate

relationship bLogistic�Normal � b�GEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 0:35r2

p

(30, 31). The estimates in Tables 3 and 4 reflect this

relationship with the mixed model parameter

estimates generally being greater in absolute value

than the GEE estimates for most variables.

Sample size calculation for future study
Assuming an ICC of 0.07 obtained from this pilot

study, and applying the usual sample size formu-

lae for a two-sided test of binary outcomes in a

GRT (i.e. equation (6) of reference (41), a two-

condition GRT comparing student incentives (with

assumed response rate 0.43) to no incentives

(response rate 0.34) with randomization of incen-

tives to schools (instead of county-units), and

Table 3. Comparison of a naı̈ve (incorrect) single-level logistic regression model and two-level logistic regression
models fitted with GEE adjusting for either the classroom level or school level, predicting probability of response

Logistic GEE

Level(s) Single Two

Adjustment None Classroom School

b (SE) P-value b (SE)a P-value b (SE)b P-value

Incentive (teacher) 0.0315 (0.1349) 0.8156 0.0837 (0.2078) 0.6870 )0.0512 (0.4577) 0.9124
Incentive (student) 0.4230 (0.1361) 0.0019 0.4334 (0.2406) 0.0717 0.2601 (0.4216) 0.5418
Income (high) 0.1126 (0.2029) 0.5790 0.0645 (0.4068) 0.8740 0.0490 (0.6751) 0.9442
Grade (1st) 0.7332 (0.2011) 0.0003 0.7646 (0.3941) 0.0523 0.8122 (0.6676) 0.2225
Grade (6th) 0.8296 (0.2048) <.0001 0.8711 (0.4326) 0.0440 0.7670 (0.5439) 0.1586
Income (high) · Grade (1st) 0.1175 (0.2737) 0.6677 0.1511 (0.4862) 0.7561 0.0610 (0.8916) 0.9442
Income (high) · Grade (6th) )1.0222 (0.2764) 0.0002 )1.0653 (0.5281) 0.0437 )0.9354 (0.9549) 0.3174
Intercept )1.0630 (0.1722) <.0001 )1.0998 (0.3252) 0.0007 )0.9712 (0.4758) 0.0444
q̂ 0. 1029 0.0191

aRobust standard errors shown.
bBias-corrected standard errors shown.

Table 4. Two-level GLMM and three-level GLMM models predicting probability of response

Levels Two Three

Adjustment Classroom School Both

b (SE) P-value b (SE) P-value b (SE) P-value

Incentive (teacher) )0.015 (0.2721) 0.9663 0.0670 (0.3893) 0.8633 0.0138 (0.4119) 0.9733
Incentive (student) 0.4015 (0.2681) 0.1345 0.4934 (0.3704) 0.1830 0.4337 (0.3968) 0.2746
Income (high) 0.1180 (0.3949) 0.7651 0.1213 (0.5282) 0.8184 0.1186 (0.5709) 0.8355
Grade (1st) 1.1229 (0.3833) 0.0035 1.1138 (0.4956) 0.0248 1.2898 (0.5385) 0.0167
Grade (6th) 0.5758 (0.3915) 0.1415 0.5693 (0.4959) 0.2511 0.5011 (0.5422) 0.3555
Income (high) · Grade (1st) )0.1414 (0.5288) 0.7892 )0.2360 (0.7190) 0.7428 )0.3032 (0.7704) 0.6940
Income (high) · Grade (6th) )0.7582 (0.5343) 0.1561 )0.7495 (0.7196) 0.2978 )0.6571 (0.7730) 0.3955
Intercept )1.1785 (0.3305) 0.0007 )1.1353 (0.4373) 0.0267 )1.2023 (0.4731) 0.0293
r̂2
b (classroom) 0.5756 (0.1615) 0.0004 0.4292 (0.1380) 0.0018

r̂2
s (school) 0.3532 (0.1991) 0.0768 0.2923 (0.2351) 0.3150
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enrolling 87 students per school, requires 37 clus-

ters (schools) per condition to achieve a power of

0.8 with type I error a ¼ 0.05.

Discussion

A comparison of results from the single- and

multilevel regression models presented in this

paper demonstrated that the use of a standard

logit model in the analysis of GRTs can underes-

timate the uncertainty of estimates of intervention

effects and lead to faulty conclusions. While the

effects of student incentives (P ¼ 0.002) on

parent–child participation was highly statistically

significant in the single-level model, it was not

significant in other multilevel models. This finding

supports the conclusion that single-level ordinary

logistic regression analysis is not appropriate for

the analysis of the correlated binary outcomes from

GRTs.

While it is clear that single-level ordinary logistic

regression is not appropriate for binary data from

GRTs, the better choice of a modeling strategy

between GEE for marginal models and the condi-

tional GLMM model is less clear. These alternative

modeling approaches have received a lot of atten-

tion in research, particularly the interpretation of

model parameters and the performance of statisti-

cal procedures for their estimation. Because both

approaches account for the correlation of outcomes

within a group, the choice of which approach to

use primarily depends on consideration of the

characteristics of a particular trial.

The conditional model is appealing because it

explicitly models the between-group heterogeneity

via group-level random effects, while marginal

models consider it as a nuisance factor. For a trial

using a linear model for a continuous outcome

variable, interpretation of the parameter estimates

is the same in both methods; however for non-

identity link models (i.e. nonlinear models) such as

the logistic model for binary data, both the relative

magnitude of parameters as well as their respective

interpretations are generally different. If one is

interested in group differences for binary out-

comes, the marginal model is more relevant

because it gives parameter estimates related

directly to the average response. The conditional

model is used when the intervention effect on a

particular community is desired (18, 31) because

these models provide estimates of the effectiveness

of the intervention that is conditional on the value

of the group-specific random effects. This commu-

nity-specific effect is not directly observable in the

data, as each community is only observed under

one intervention condition, but rather it is only

obtained through distributional assumptions about

the random effects. On the basis of the statistical

properties (such as control for type I error) of the

estimation procedures when the number of clusters

is small, the GLMM model has generally been

preferred over GEE for GRTs (18). Many software

packages implement the methods discussed here

for GRTs with a binary outcome including HLM,

several SAS procedures including GLIMMIX and

NLMIXED, MIXOR, MLwiN, SPSS, Stata (42) and

SUDAAN (43).

With respect to fitting GLMMs to three-level

binary data, when possible it is best to fit three-level

models as opposed to two-level models because the

latter approachmay introduce bias at some level (32,

44). However, given occasional difficulties in fitting

three-level mixed models to data with two levels of

clustering, researchers sometimes ignore one level of

clustering and adjust only for the other cluster factor.

In an application of a smoking prevention and

cessation project where conditions were random-

ized at the school level and interventions delivered

at the classroom level, standard errors of regression

coefficients for the two-levelmodels (either ignoring

classroom or school as cluster factors) tended to be

smaller than standard errors from the three-level

model (32). Their result is consistent with the mixed

model results for our dental study presented here

and suggests that the statistical significance of fixed

effects may be overstated with a simpler two-level

model.

Among two-level models applied to three-level

data, a simulation study motivated by develop-

mental toxicity data sets (e.g. multiple outcomes

nested within pups nested with litters) suggests

that the second-level mixed model (e.g. if applied

to a GRT it would specify a random effect for

classroom, but ignore school as a cluster factor)

may also overstate statistical significance of third-

level fixed effects (e.g. condition factor in a GRT)

(44). On the other hand, the same study showed

that the third-level mixed model (e.g. a two-level

model that specifies a random effect at the third

level for schools, but ignores the second-level

cluster factor of classrooms) is preferable for

assessing interventions in a GRT but may perform

worse for assessing the statistical significance of

first-level (e.g. student) and second-level (e.g.

classroom) factors.
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Although these simulations were not designed

with large cluster sizes and small numbers of

clusters, the primary characteristics of GRTs, the

results suggest preference for the third-level over

the second-level mixed model for GRTs when a

three-level model can not be fit, with the caveat that

secondary findings regarding any first- or second-

level effects may be biased. We note the third-level

model is appropriate for the dental study in this

regard because only third-level effects were collec-

ted and analyzed.

The effect of the ICC estimate of 0.07 on sample

size requirements was substantial compared to

what would be required for an RCT. While it is

common to use the unadjusted ICC values for

estimation of sample size requirements, some

investigators have reported around a 50% reduc-

tion in ICC estimates by adjustment for individual-

and cluster-level variables along with baseline

values for the outcome variable (45, 46). Generally,

a good strategy is to use relevant stratification in

order to address imbalances in outcomes across

strata and to obtain a smaller design effect. Gen-

erally, the problem of estimating ICCs from GRTs

is a difficult one as precision is often poor because

of the small number of clusters upon which the

estimate is based.

In planning a GRT, the anticipated value for

ICC usually is, by necessity, based on the most

relevant published studies. Yet, attention to

appropriate analysis and reporting of GRTs in

the public health literature is less than optimal

(47), and we have few examples of ICC values

derived from evaluations of community-based

interventions in dentistry. Therefore, it is very

important not only to consider the appropriate-

ness of the research design and its analysis, as is

the case with all research, but to make ICC

estimates available to other researchers consider-

ing implementation of cluster studies.

Some recent publications have documented

ICC estimates for several nondental outcomes in

various contexts (46, 48). Campbell et al. (49)

suggested three dimensions should be considered

when reporting an ICC – a description of the

dataset, including characteristics of the outcome

and the intervention; information on how the ICC

was calculated; and information on the precision

of the ICC. It also is important that investigators

report other factors related to the design of GRTs,

such as number of clusters, their average size,

and specific estimation procedures used in the

analysis (50).

Conclusion

Many studies have been implemented in dental

health research to assess the effectiveness of a

community- or group-based intervention such as

community water fluoridation or school-based

dental health programs. Most of these studies do

not apply the appropriate principles for the design

and analysis of cluster trials. The most important

feature of cluster trials is the existence of ICC

caused by correlation among members of the same

group. Ignoring the ICC can lead to false conclu-

sions. Special consideration is needed in designing

cluster trials and analyzing data from them. Fur-

ther, groups rarely are randomized to interventions

in these trials. The randomized group trial (GRT),

as the alternative gold standard for the RCT,

should be emphasized in dental public health

research.
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