
Introduction

The analysis of change in outcome variables mea-

sured on two or more occasions is one of the most

commonly used designs in follow-up studies in oral

health research. Results from the test group are

compared with those from the control group, to

show whether or not changes in the outcome differ

statistically significantly. There are several discus-

sions in the oral health literature on appropriate

statistical methods for follow-up studies; the

concepts and rationale behind the general follow-

up study design therefore seem quite straightfor-

ward. However, despite warnings about the misuse

of statistical methods in the analysis of change (1, 2),

certain inappropriate practices continue.

Oral health researchers frequently overlook three

key issues in the analyses of change: (i) treatment–

baseline interactions, referred to as ‘baseline

effects’; (ii) statistical power and (iii) non-random-

ization. While the power of follow-up studies is

extensively addressed within the medical and
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thus problematic, potentially giving biased estimates, invoking Lord’s paradox
and leading to difficulties in the interpretation of results. Methods: Baseline
interaction issues can be overcome by use of statistical methods; not widely
practiced in dental research: Oldham’s method and multilevel modelling; the
latter is preferred for its greater flexibility to deal with more than one follow-up
occasion as well as additional covariates To illustrate these three key issues,
hypothetical examples are considered from the fields of periodontology,
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statistical literature (3, 4), the impact of baseline

effects, particularly on statistical power, is not

widely appreciated. Furthermore, insufficient con-

sideration is given to the choice of statistical

methods and their consequences in non-random-

ized studies, particularly as non-randomization

reverses otherwise standard advice to use ancova

to generally maximize statistical power within

randomized controlled trials (RCTs).

The aim of this article is to provide a non-

technical introduction to the current problems in

study design and associated analyses of follow-up

studies in oral health research, particularly

addressing the issues of: baseline effects, power

and non-randomization.

Baseline effects

Many studies in the dental literature show an

association between baseline outcome status and

change from baseline, i.e. a treatment–baseline

interaction or baseline effect. For instance, in peri-

odontal follow-up studies, probing pocket depth

(PPD) reductions and clinical attachment level

(CAL) gains have often been found to be positively

associated with baseline measurements of PPD and

CAL (5, 6). Similarly, the effect of orthodontic

treatment of malocclusions, assessed as changes in

the peer assessment rating (PAR) score, has been

found to be positively associated with pre-treat-

ment PAR scores (7–12). This is not unique to

dentistry, and examples are found in studies of

hypertension treatments, showing that patients

with higher-than-average blood pressure might

experience greater blood pressure reduction

following a pharmacological intervention than

those with baseline blood pressures lower than

the study average (13).

The problem is that use of correlation or regres-

sion to test the association between change in an

outcome and its baseline value suffers a serious

statistical artefact: mathematical coupling (MC) (14,

15). MC occurs where there exists a formulaic

relationship between two variables, i.e. one can be

expressed as a function of the other. MC distorts

the perceived relationship between variables, as the

usual statistical testing of the null hypothesis – i.e.

that the correlation coefficient or regression slope is

zero – becomes inappropriate. For instance, sup-

pose, that pre-treatment PPD is x1, post-treatment

PPD x2, and therefore PPD reduction following

treatment is x1 ) x2. To correlate (or regress)

x1 ) x2 with x1 may invalidate the usual null

hypothesis because x1 appears in both variables.

Any association between x1 ) x2 and x1 (i.e. a non-

zero statistical correlation between x1 ) x2 and x1)

may exist, in part, because of MC (as x1 ) x2 and x1

are formulaically related). For instance, if x1 and x2

were two series of random numbers with the same

mean and standard deviation, the expected corre-

lation between x1 and x2 is close to zero. However,

it can be shown that the correlation between x1 ) x2

and x1 in such circumstances will be close to

1 ⁄ �2 � 0.71 (16). This value can be highly signifi-

cant when tested against the (incorrect) null

hypothesis of zero, even with a small sample size

(14). Researchers may thereby be misled to infer an

underlying ‘causal’ relationship between x1 ) x2

and x1, where none exists.

Problematic uses of correlation and ⁄ or regression

in analysing the association between treatment

effects and baseline values have been noted for a

long time now (17–20). One needs to know the

correct null hypothesis, and a method has been

proposed to obtain an estimate of this (21). How-

ever, this approach does not provide a gauge of the

extent of association, as provided by a correlation

coefficient. Alternatively, over 40 years ago, Old-

ham (17) suggested that one solution was to test the

correlation of x1 ) x2 with the average (x1 + x2) ⁄ 2.

The reason is that to know whether or not a baseline

effect exists, a statistically correct approach is to

test for differences in the variances of the two

measurements, rather than to test the correlation

coefficient between change and baseline. In the latter

(erroneous) approach, MC adds to and exacerbates

the statistical artefact known as regression to the

mean (RTM) (22, 23), as the variables and also their

measurement errors are formulaically related. A

more technical explanation of this is outlined in

more detail elsewhere (15).

It is important to note that Oldham’s method

does not remove MC, rather it uses the fact that if

there is a baseline effect, the follow-up measure-

ments will vary differently from the baseline

measurements, because of the fact that the baseline

effect will decrease the value of the observations.

For example, consider periodontal treatment where

a baseline effect means that initially deeper pocket

depths (PPD) reduce (improve) more than initially

shallower pockets. In statistical terms, this means

that the follow-up measurements have a smaller

standard deviation than the baseline measure-

ments. An illustration adopting vector geometry

is presented here, while the statistical theory is
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provided in brief in Appendix 1. For readers not

wishing to consider vector geometry, the following

section can be omitted without loss of continuity.

Using vector geometry (24), pre-treatment (x1)

and post-treatment (x2) PPD values can be repre-

sented as vectors with lengths equal to their

standard deviations (SDs), positioned such that

the cosine of the angle between them is their

bivariate correlation (Fig. 1). Under the null

hypothesis (H0) of no baseline effect, the SD of

pre- and post-treatment values should be equal (15,

17). In vector-geometrical terms this means that the

two vectors x1 and x2 are perpendicular, and their

lengths the same. (Note: we use bold to distinguish

between vector representation of the variables and

their usual variable representation.) The correlation

between change (x1 ) x2) and baseline (x1) is now

equivalent to the cosine of the angle w between the

vectors x1 ) x2 and x1. This is typically not zero, but

depends upon the angle between x1 and x2, i.e. the

correlation between pre- and post-treatment PPD.

When this is near zero, i.e. the vectors x1 and x2 are

perpendicular, the angle between x1 ) x2 and x1 is

45�, and its cosine is 1 ⁄ �2 � 0.71. Thus, under H0,

the correlation between change and baseline is

generally far from the standard assumption of a

value of zero, and this distortion to the null

hypothesis is a consequence of MC.

Vector geometry also illustrates the rationale

behind Oldham’s method. A relationship between

change and baseline requires that the variances of

the baseline and follow-up measurements are

unequal, i.e. one standard deviation is smaller than

the other. In vector geometrical terms, this would

mean unequal lengths of x1 and x2. However,

under H0 (of no underlying relation), the vectors x1

and x2 are of the same length, and the vectors

x1 ) x2 and x1 + x2 are therefore always perpen-

dicular, irrespective of the angle between x1 and x2

(Fig. 1). Thus, the correlation between x1 ) x2

(change) and (x1 + x2) ⁄ 2 (mean) is always zero,

under H0. Therefore, although MC remains, the use

of Oldham’s method under H0 provides a special

instance where its adverse effect (i.e. distortion to

the null hypothesis) is annulled.

Modelling baseline effects

Simple statistical methods, such as Oldham’s cor-

relation (17), have been recommended to overcome

the problem of testing the interaction between

treatment effects and baseline values. However,

these methods have limited applications. For

instance, Oldham’s method assumes that measure-

ment errors are constant across occasions, and

cannot take into consideration other explanatory

variables, such as treatment group variables. An

alternative approach would be to use multilevel

modelling (MLM) (25, 26), which is more flexible in

dealing with repeated measurement data, avoids

the problems of MC, permits multiple follow-up

time-points, and permits the inclusion of additional

covariates (27–31). MLM is more complex than

Oldham’s method, so we only outline the basic

principles here for the pre- ⁄ post-test study design;

more technical details and discussion are given in

Appendix 2 and elsewhere (32).

The MLM required to analyse change in relation

to baseline, while completely avoiding MC, is where

one specifies baseline and follow-up values as

repeated outcomes (at level 1) clustered within

individuals (at level 2). Within this model, mea-

surement occasion is a covariate, where its coeffi-

cient exhibits random variation about its mean (26).

This is known as a random slope model because the

estimated slope (randomly) varies across individ-

uals (level 2) (33). The occasion covariate is centred

about 0 to aid model-fitting procedures (32), and its

interval, though arbitrary, is set to 1 so that

interpretation of its regression coefficient becomes

the mean change between occasions. The random

structure of the model comprises subject-level

random intercept, subject-level random slope and

a covariance between them, which is used to derive

θθ

x1

x2 x1+x2

x1–x2

θθ

x1

x2

x1+x2

x1–x2

(a) (b)

Fig. 1. Variables x1 (baseline PPD) and x2 (follow-up
PPD) represented as vectors with lengths equal to their
standard deviation (SD); cosine h is the correlation
between x1 and x2; under H0 (the SDs of x1 and x2 are
equal) the vectors x1 ) x2 and x1 + x2 are always per-
pendicular, irrespective of the correlation between x1 and
x2: (a) the correlation between x1 and x2 is zero, hence
h = 90� and w = 45�; (b) the correlation between x1 and x2

is positive, hence h < 90� and w > 45�. MC is still present
but use of Oldham’s method annuls the effects.
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the correlation between baseline (intercept) and

change (slope) (34), free from the distortion due to

MC. This strategy can be extended to accommodate

observations of multiple sites (e.g. treatment of

different lesions) within the same individual, by

including an extra level for site. Thus, baseline and

follow-up values (level 1) are clustered within sites

(level 2), which in turn are clustered within

individuals (level 3). Furthermore, other factors

such as treatment group may be incorporated in

the MLM as additional covariates. More complex

variations can also be developed to consider

multiple follow-up measures, though this is

beyond the scope of this article to outline these.

As a simple example, consider orthodontic PAR

scores to evaluate the effect of orthodontic treat-

ment of malocclusions: baseline and follow-up

PAR scores form level 1 observations nested within

subjects at level 2. PAR scores from both occasions

are regressed on the occasion covariate and its

coefficient is allowed to exhibit random variation

about an overall mean value. MC is not present in

this model as the dependent variable has no

formulaic relationship with the independent

variable.

Statistical power

When conducting a randomized controlled trial

(RCT), a priori power calculations are necessary to

determine the required sample size. This is often

overlooked or under-reported in the oral health

literature (35). In the repeated measurement study

design, typically adopted by RCTs, it is not well

known among oral health researchers that the

analytical method of choice affects statistical

power. Moreover, the power of most statistical

methods to analyse repeated measurement designs

are affected by baseline effects.

In a separate study (36), only summarized here,

computer simulations were performed to compare

the power of four univariate statistical methods

and two multivariate statistical methods for the

analysis of change in a hypothetical RCT involving

two measurements, one at baseline and the other at

follow-up. The univariate methods considered

were: (a) testing post-treatment scores only using

the two-sample t-test; (b) testing change scores

using the two-sample t-test; (c) testing percentage

change scores using the two-sample t-test; and

(d) analysis of covariance (ancova). The two

multivariate methods considered were: (e) multi-

variate analysis of variance (manova); and (f)

multilevel modelling (MLM). All simulations were

undertaken initially assuming that treatment ef-

fects were not related to baseline values (i.e. there

was no baseline effect) and repeated assuming that

treatment effect would increase for higher baseline

values (i.e. there was a baseline effect). In general,

ancova proved to be the most powerful method

and always had greater power than the other

commonly used methods such as change scores

and percentage change scores. The two multivar-

iate methods did not achieve greater power than

ancova (37).

Many statisticians claim that ancova always

achieves the greatest power unless the correlation

between the pre- and post-treatment measures is

zero, at which point ancova achieves the same

power as using post-treatment values only (3).

However, this is true only when the sample size

is ‘reasonably’ large. In our simulations (36), it

was noted that ancova might achieve less power

than testing post-treatment values only, where

the correlation between the pre- and post-inter-

vention measurements was low (£0.3), corre-

sponding to varying treatment effect across

individuals, and the sample size was small

(£20). The reason for this is that ancova uses

baseline values as a covariate and thus loses one

degree of freedom more than the other methods;

for small sample sizes, one degree of freedom

can have a substantial effect if the correlation

between pre- and post-treatment values is also

small. Given that the average sample size of

RCTs in oral health research is quite small (36),

this finding might be important. Otherwise, in

general, ancova is the preferred method of

analysis for reasonably sized RCTs, as this yields

optimal statistical power.

ANCOVA and Lord’s paradox

Although ancova is recommended for RCT data

(3, 4, 37), and is typically described as useful

because it ‘adjusts for baseline differences’, the

implicit assumption underlying ancova is often

overlooked or misunderstood. Consequently, many

researchers have developed the naı̈ve view that

ancova adjusts for baseline differences between

groups, when the reality is that it adjusts only for

baseline differences within groups. ancova

achieves this adjustment within treatment groups

by using baseline values as a covariate, and it is this
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that increases statistical power. If there is an

interaction between baseline values and treatment

groups, i.e. the patient selection process causes

differences in the baseline values between treat-

ment groups, the assumptions for ancova may be

violated and subsequent conclusions drawn could

be erroneous.

For RCTs, no substantial differences in the mean

baseline values across groups should exist, because

(appropriate) randomization ensures that the dis-

tributions of baseline variables are very similar. In

reality, small differences might be found, though

these are assumed to be caused by chance alone

and will not bias the ancova estimates. By impli-

cation, within observational studies, i.e. where

randomization is not performed, or randomization

is not conducted appropriately, using ancova to

adjust for baseline differences could mislead by

introducing bias into the ancova estimates, giving

rise to Lord’s paradox (38) and yielding difficulties

in the interpretation of results.

Lord’s paradox occurs where baseline differ-

ences cannot be attributed to chance alone. Lord’s

paradox dictates that in instances where real

baseline differences exist, it is erroneous to attempt

to adjust for baseline differences, because ancova

has the potential to yield biased estimates of

treatment differences (see Fig. 2). The original

example described by Lord (38) is where one

examines differences between males and females

in the changes in body mass. Suppose, for instance,

we wish to know if a special diet has a differential

impact by sex on weight loss. Males and females

will have different mean body mass at baseline and

this cannot be attributed to chance, as sex cannot be

assigned randomly. Controlling for baseline body

mass in this instance is questionable and will

invoke Lord’s paradox.

To visually explain this phenomenon with

respect to follow-up studies, consider an investi-

gation into the effect of water fluoridation on

dental caries (DMFT) increments. Researchers

might use data retrospectively or prospectively,

collected from one geographical area with water

fluoridation and another without fluoridation.

Suppose repeated oral examinations are performed

on children in both areas at an interval of 5 years

and there are substantial differences in baseline

caries rates. Even if the two areas had been

randomly selected from fluoridated and non-fluo-

ridated areas, there would remain the possibility

that baseline differences occur due to the lack of

‘appropriate’ randomization. Here we imply that

appropriate randomization warrants random allo-

cation of fluoridation to previously non-fluoridated

areas – which is not the same as randomly selecting

fluoridated and non-fluoridated areas. Moreover,

even with appropriate random allocation of fluo-

ridation to areas, the study sample size would be

only two! The problem is whether or not the

DMFT-increment over the 5-year period can be

compared between the two areas; and if there is a

significant difference between areas, can this be

attributed to water fluoridation?

Many researchers might seek some form of

statistical adjustment for differences in baseline

DMFT. However, this would be inappropriate.

Under the null hypothesis (H0) of the same 5-year

change in DMFT among all children (i.e. irrespec-

tive of area), without any biological variation

and ⁄ or measurement error, the follow-up DMFT

(x1) plotted against baseline DMFT (x2) would yield

a straight line (Fig. 2; the 45� dotted line). However,

because of biological variation and ⁄ or measure-

ment error, the reality is that the data form a

‘cloud’ of points around the 45� incline. Further-

more, as baseline DMFT differs between areas,

there are two such ‘clouds’, one for each area

(Fig. 2: the data points form ellipsoids). Because of

RTM, the slope of the fitted line for follow-up

DMFT regressed on baseline DMFT is not coinci-

dent with the 45� incline. Thus, the ancova

estimate of the difference between fluoridated

and non-fluoridated areas is not zero, as required

under H0. This artefactual effect of area on the

changes in DMFT (which some could erroneously

interpret as being due to fluoridation) is due to

RTM, thereby yielding Lord’s paradox.

DMFT at baseline

DMFT at follow-up

Difference between areas in baseline DMFT

‘Apparent’ 
difference is 

not zero: 
Lord’s paradox

Area 2

Area 1 

Both groups of observations fall ‘around’ the 45º gradient line: 
there are no genuine area differences in change in DMFT 

Fig. 2. Plot of baseline DMFT (x1) versus follow-up DMFT
(x2) for children in a follow-up study of 5 years, follow-
ing an implicit ‘intervention’ of water fluoridation in
one area.
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Contradictory findings from different
statistical methods

To illustrate contradictory results that might be

obtained using different statistical methods, where

Lord’s paradox occurs for non-randomized (obser-

vational) studies, consider a hypothetical example

from oral implantology. Dental surgeons wish to

know whether or not using a membrane barrier in

conjunction with bone grafts gives a better resolu-

tion of dehiscence defects in immediate oral implan-

tation compared to using bone grafts alone. To

address this research question, the clinical team

search their patients’ records and find 30 cases with a

combination treatment (membrane plus bone grafts)

and 30 cases with bone grafts alone. Crucially, the

decision to use a membrane or not was based on each

clinicians’ clinical judgement during the surgery

and was not therefore randomized. The study data

were submitted to two statisticians.

The first statistician was informed and compared

the dehiscence fill (i.e. the change) between the two

treatment groups using the two-sample t-test. The

mean difference was 1.4 mm (95% CI 0.9–1.9) and

the conclusion was that combination therapy

achieved better outcomes than bone grafts alone

(Table 1). The second statistician spotted that there

was a difference in the baseline defect depth

between treatment groups. To adjust for this

imbalance in baseline defect depth, ancova was

used, taking post-treatment defect depth as the

outcome and baseline defect depth as a covariate.

The results showed that after adjustment for the

imbalance in baseline defect depth the difference in

treatment effects was no longer statistically signif-

icant (Table 1).

The problem of using ancova in this simulated

example is that the cause of imbalance in baseline

defect depth between the two treatment groups is

unclear. The allocation of patients to the treatment

groups was not random, but based on clinicians’

judgement, where the greater baseline defect depth

in the combination therapy group could be due to

clinicians believing that greater defects need mem-

branes to create space for regeneration or prevent

the loss of the bone graft. The imbalance in baseline

defect depth might therefore be just one of many

differences in the defect characteristics between the

two groups, because of the selection process of the

patients. This hypothetical study reveals how the

use of ancova for non-randomized (observational)

studies can give rise to difficulties in the interpre-

tation. This also reminds us that making causal

inferences from observational (non-randomized)

data should be very cautious (if not avoided).

Concluding remarks

This article highlights several common problems in

the analyses of data from follow-up studies in oral

health research. Although these problems are well

known within the statistical sciences, with most of

the issues surrounding power well documented in

the general medical literature, the aspects of base-

line effects affecting power are relatively unknown.

Furthermore, the dental research community

frequently overlooks the problems associated with

ancova for non-randomized study designs. Con-

sequently, some of the evidence purported in

the oral health science literature needs to be (re-)

evaluated with caution. Oral health researchers

need to be aware of these potential problems in

study design and associated data analyses to avoid

generating misleading evidence in the future.

Appendix 1

Suppose that within a follow-up study, pre-treat-

ment PPD is x1, post-treatment PPD x2, it can be

shown that the Pearson correlation between the

change (x1 ) x2) and the pre-treatment baseline value

(x1) is (17):

rx1�x2;x1 ¼
r1 � r12r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ r2

2 � 2r12r1r2

q ; ðA1Þ

where r2
1 is the observed variance (standard devi-

ation squared) of x1, r2
2the observed variance of x2,

and r12 the correlation between x1 and x2. Because

of measurement errors or heterogeneous response

Table 1. Summary of hypothetical data in a study to test
the difference in the treatment efficacy (mm) between
combination therapy (group 1) and single therapy
(group 2)

Group 1
(membrane +
bone graft)

Group 2
(bone graft only)

Mean SD Mean SD

Baseline defect
depth

3.90 0.89 2.37 1.07

Follow-up
depth

2.67 0.92 1.27 1.17

Change in
depth

1.23 1.17 1.10 0.80
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to the treatment, giving rise to RTM, the correlation

between baseline and post-treatment values (r12)

will be smaller than 1, and, therefore, the correla-

tion between change and baseline tends to be greater

than 0, unless r2
2is much greater than r2

1. It is

directly the consequence of the formulaic relation-

ship between x1 ) x2 and x1 (i.e. MC) that the

numerator in A1 depends upon r12, and when this

is not unity (i.e. when RTM operates), the usual

null hypothesis of zero correlation is effectively

‘distorted’ (away from zero). Consequently, to

correctly test the association between change and

baseline, the impact of RTM needs to be estimated

and then explicitly accommodated, and, unfortu-

nately, this is not always achievable.

The Pearson correlation coefficient for Oldham’s

method is given by (17):

rx1�x2;ðx1þx2Þ=2 ¼
r2

1 � r2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

r2
1 þ r2

2

�2 � 4r12r2
1r

2
2

q : ðA2Þ

Clearly, the correlation between (x1 ) x2) and

(x1 + x2) ⁄ 2 will be zero if the variances of x1 and

x2 are equal, and positive if and only if r2
1is

greater than r2
2.The impact of MC has been

annulled, even though there remains a formulaic

relationship between (x1 ) x2) and (x1 + x2) ⁄ 2
because, in this special instance, the numerator

of equation (A2) no longer contains r12, and is

therefore unaffected by RTM (when r12 is not

unity).

Appendix 2

In order to illustrate the MLM approach in

determining a baseline effect (i.e. interaction

between change following treatment and baseline),

while completely avoiding MC, consider the use

of orthodontic PAR scores to evaluate the mal-

occlusion of patients pre- and post-treatment.

Baseline and follow-up PAR scores form level 1

observations (i ¼ 1; 2) nested within subjects at

level 2 (j ¼ 1; . . . ;N), where N is the number of

study subjects. PAR scores from both occasions

are then regressed on the occasion covariate, say

T, which is centred about zero [to avoid inducing

the bias: see Blance et al. (32) for details] and

adopts values such that it spans an interval of

one (T = ±1 ⁄ 2). The coefficient for T exhibits

random variation about its mean, yielding a

multilevel regression model of the following

form:

PARij ¼ B0ij þ B1jT; B0ij ¼ B0 þ u0j þ e0ij;

B1j ¼ B1 þ u1j;

where B0 is the mean intercept of the sample values

at a time point midway between baseline (pre-

intervention) and follow-up (post-intervention);

B1 is the slope of the change in PAR score between

measurement occasions; u0j is the residual variation

for individual j about the mean intercept due to

population biological variation (heterogeneity

between individuals of a population); e0ij is the

residual variation for individual j about the mean

outcome on measurement occasion i, due to

instantaneous biological variation (variation within

an individual) and ⁄ or measurement error (which

may differ between occasions though it is assumed

at least for this illustration to be independent across

occasions); u1j is the responsive biological variation

between subjects, i.e. the variation of the regression

slope; and all variation is assumed to be normally

distributed with zero mean.

Allowing for instantaneous biological variation

and ⁄ or measurement error to differ across mea-

surement occasions, there are five random param-

eters to be estimated, yet only three degrees of

freedom: one for each occasion and one between

occasions (change). It is therefore necessary to

reduce the number of random parameters by

making various model assumptions. The final

model is contingent on these assumptions. For

instance, if we were to acknowledge that we are

unable to distinguish between population biolog-

ical variation and instantaneous biological varia-

tion and ⁄ or measurement error, and we further

assume the latter to have constant variance across

occasions, we may estimate either the subject-

level random intercept or the occasion-level

random intercept, though not both. It does not

affect our interpretation of the model whichever

we choose (constraining the other to be zero), as

the chosen estimate represents the combined

effects of population and instantaneous biological

variation and measurement error across the study

period.

While the MLM strategy removes MC, it does

not remove the impact of measurement error, i.e.

the remaining effects of RTM. However, if an

estimate of the error variance were obtained (or

estimated), adjustment can then be made for the

effects of measurement error. Although the work-

ing details of this are beyond the scope of this

article, it can be shown that, providing the

measurement error variance is constant across
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occasions and it is independent of both population

variation (random intercept) and responsive vari-

ation (random slope), the error-free correlation

between baseline and change, Pu01, is related to the

observed correlation, qu01, according to formula

Pu01 ¼ qu01

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ R
p

,where R is the ratio of the error

variance to that of the population variance

(the latter is estimated from the sample). Under

these restricted assumptions, the observed correla-

tion between change and baseline is always

biased towards zero due to measurement

error, as
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ R
p

� 1. More complex MLMs

can address non-constant biological variation

and ⁄ or measurement error across multiple follow-

up occasions. The formulation of models where

variation is dependent on unobserved outcomes is

ongoing.
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