
Short-term antimicrobial properties of
mineral trioxide aggregate with incorporated
silver-zeolite

Microorganisms are the main etiological factor in the
development and progression of pulpal and periapical
disease, and they also play a key role in endodontic
treatment failures (1–5). Failure of initial endodontic
therapy can be treated by non-surgical or surgical
treatment modalities. When non-surgical root canal
treatment fails to treat periradicular lesions of endodon-
tic origin or retreatment is not indicated, periradicular
surgery may be indicated (6). The placement of root-end
fillings during periradicular surgery is a procedure of
crucial importance to develop apical seal at the resected
root end (7).

Many materials have been used as root-end fillings,
including amalgam, zincoxide–eugenol, glass ionomer
cement, composite resins, compomers, resin-modified
glass ionomers, and mineral trioxide aggregate (MTA)
(8–11). The ideal root-end filling material should have
good sealing ability and biocompatibility. Besides these
properties, the root-end filling material should have some
antibacterial activity (12). A number of studies have been
conducted on this topic (12–15).

MTA was first described in the dental literature in
1993 and was given approval for endodontic use by the
US Food and Drug Administration in 1998 (16, 17). The
use of MTA as a root-end filling material was identified
because the material is hydrophilic cement that sets in
the presence of water (18). Several studies evaluated the
effect of MTA on microorganisms (13, 14, 19–22), but

these studies have conflicting results. Torabinejad
et al.(12) found that MTA was effective against some
facultative microorganisms but not against other bacte-
rial strains, including Enterococcus faecalis. Similar to
these findings, Estrela et al.(19) also could not detect any
inhibitory effect of MTA against E. faecalis. In other
studies, it has been shown that MTA either delayed or
inhibited the growth of E. faecalis (13, 14, 20, 21). In
addition, to enhance the antimicrobial effect of MTA,
chlorhexidine (CHX) has been used as a mixing agent
instead of sterile water (21).

To enhance the antimicrobial properties of dental
materials, several materials have been used. Metallic
silver is one of the common elements used in dentistry.
Silver is known to possess antibacterial properties.
Among metallic ions, ionic silver has the highest
antibacterial activity (23, 24). Zeolites are aluminum
silicate crystalline structures that present void spaces
within the frameworks, 3–10 angstroms in a diameter
that are capable of hosting cations, water, or organic
molecules. Antimicrobial cations, such as silver and zinc,
may be lodged within the void spaces of the zeolites and
be exchanged over time with other cations from the
environment (25–27). Silver ion–containing zeolite (sil-
ver-zeolite, SZ) can provide antibacterial activity to
resins, glass ionomer cements, and synthetic fibers by
mixing (23, 24, 28–30). Because the zeolite framework
does not readily decompose over time, it can serve as a
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Abstract – The purpose of this in vitro study was to determine whether adding
silver-zeolite (SZ) to mineral trioxide aggregate (MTA) would enhance the
antimicrobial activity of MTA against Staphylococcus aureus (ATCC #25923),
Enterococcus faecalis (ATCC #29212), Escherichia coli (ATCC#25922), Pseu-
domonas aeruginosa (ATCC #27853), Candida albicans (ATCC #90028),
Porphyromonas gingivalis (ATCC #33277), Actinomyces israelii (ATCC #12102),
and Prevotella intermedia (ATCC# 15032). SZ was added at 0.2% and 2% mass
fraction concentration to MTA powder. The control group was MTA powder
with no SZ. The antimicrobial effect test was accomplished by placing freshly
mixed MTA specimens on agar plates inoculated with microorganisms and
comparing the zones of inhibition at 24, 48, and 72 h. The amounts of silver ion
release from MTA specimens were measured with atomic absorption spectro-
photometry at 10-min, 24-, 48-, and 72-h periods. The pH of MTA specimens
was measured with a pH meter at 10-min, 24-, 48-, and 72-h periods. MTA with
2% and 0.2% SZ specimens showed inhibitory effects on some microorganisms
at all time periods, whereas no antimicrobial activity showed for P. intermedia
and A. israelii. MTA without SZ inhibited C. albicans, E. Coli, and P. inter-
media. The highest silver release was detected in 2% SZ MTA at 24 h. The
incorporation of SZ may enhance the antimicrobial activity of MTA.



reservoir of antimicrobial agents. Depending on this
property, it has long-lasting antimicrobial effects (31). In
addition to this, SZ is considered to have no detrimental
effects on tissues (32). Because, silver-zeolite (SZ) has
been incorporated into other dental materials, the
authors wanted to test the hypothesis that the antimi-
crobial properties of MTA would be enhanced with
addition of silver-zeoilte.

The purpose of this study is to determine whether
MTA had antimicrobial activity and whether the
incorporation of SZ in MTA would enhance this
antimicrobial activity.

Materials and methods

Preparation of silver-zeolite and MTA specimens

Zeolite 4A, sodium-type zeolite (1Na2O:1Al2O3:2SiO2

XH2O) (X = mole fraction) (Na-Z; Sigma-Aldrich Che-
mie GmbH, Steinheim, Germany), was used as the host
compound. Silver ions were loaded into the zeolite by the
ion-exchange method. The ion exchange was carried out
by the addition of Na-Z powder (10 g) into a 1 M silver
nitrate (Merck KGaA, Darmstadt, Germany) solution
(300 cm3). The suspension was stirred at room temper-
ature in the dark for 24 h, then centrifuged, washed with
deionized water, and air-dried.

SZ was added at a 0.2% or 2% mass fraction to MTA
powder (Dentsply, DeTrey GmbH, Konstanz, Germany).
The control material was MTA powder without SZ.

Test microorganisms and growth conditions

Staphylococcus aureus (ATCC #25923), E. faecalis
(ATCC #29212), Escherichia coli (ATCC#25922), Pseu-
domonas aeruginosa (ATCC #27853), Candida albicans
(ATCC #90028), Porphyromonas gingivalis (ATCC
#33277), Actinomyces israelii (ATCC #12102), and
Prevotella intermedia (ATCC# 15032) strains were used
in this study. Staphylococcus aureus and E. faecalis
strains were cultured on 5% sheep blood agar (Orbak�,
Ankara, Turkey), E. coli and P. aeroginosa were grown
at brain heart infusion agar (Merck�), and C. albicans
were cultured on Sabourraud dextrose agar (SDA)
(Merck�) at 37�C for 24–48 h aerobically. Porphyro-
monas gingivalis, A. israelii, and P. intermedia were
cultured on autoclave-sterilized Schaedler agar (Oxoid,
Hampshire, UK) supplemented with sheep blood
(50 ml l)1), Vit K (1 lg ml)1) and hemin (5 lg ml)1) at
37�C for 4–5 days in an anaerobic chamber (Electrotek,
West Yorkshire, UK). Then, freshly grown bacterial and
fungal suspensions were prepared in the sterilized test
tubes containing brain heart infusion broth for S. aureus,
E. faecalis, E. coli, and P. aeroginosa, Sabourraud dex-
trose broth (Merck�) for C. albicans, and Schaedler
broth (Oxoid) for P. gingivalis, A. israelii, and P. inter-
media. The final concentrations of the bacterial strains
were adjusted to 1.5 · 108CFU ml)1 and the final
concentration of fungal suspension was adjusted to
2.5 · 103CFU ml)1 according to the turbidity of 0.5
McFarland test standard. For S. aureus, P. aeroginosa,
and E. coli Mueller Hinton agar (Merck�), for

E. faecalis 5% sheep blood agar (Orbak�), for C. albi-
cans SDA, and for P. gingivalis, A. israelii, and P. inter-
media Schaedler agar were prepared and poured on the
sterilized petri plates at the equal amount of 20 ml. For
each material, three holes with a diameter of 2 mm were
holed in the agar plates aseptically. Each of strains was
spreaded on their specific agar plates. Then, MTA with
or without additional SZ was mixed with a sterile spatula
on a sterile glass slab according to the manufacturer’s
instructions by using 1 g of powder for every 0.35 ml of
sterile water. The MTA mixtures were placed into wells
using sterile amalgam carriers and gently condensed into
place by using a non-surgical MTA Manual Carrier
(Dentsply/Tulsa, Johnson City, TN, USA). Then, bac-
terial and fungal strains were incubated at 37�C for 24,
48, and 72 h in the aerobic and anaerobic conditions. At
the end of the each incubation time, the diameter of
inhibition zones was measured with a digital caliper
(Mitutoyo, SP, Brazil) by a blinded, independent
observer. The results were subjected to one-way anova,

and Post hoc comparisons were performed using
Tamhane’s T2 test at a significance level of 0.05.

Silver release test

Each composition of the MTA powder was mixed with
the recommended liquid according to manufacturer’s
instruction. Five teflon molds per group with a thickness
of 2 mm and a diameter of 4 mm were filled with the
freshly mixedMTA. Each specimen was immersed in vials
containing 20 ml of deionized water at 37�C. After the
deionized water was acidified by adding 1 ml of concen-
trated HNO3, the specimens were removed from the
solution immediately. The amounts of silver released
from the specimen in deionized water were measured with
an atomic absorption spectrophotometer (AA-6300;
Shimadzu Scientific Instruments, Columbia, MD,
USA). The instrument was calibrated using standards
containing 1, 2, 3, and 4 ppm silver ion in deionized
water. The specimens were removed from the vials, rinsed
with deionized water, and reimmersed in fresh deionized
water. Silver release was measured at 10 min, 24-, 48-, and
72-h periods. The results were statistically analyzed using
anova and Scheffe’s test at a significance level of 0.05.

pH measurement

Five specimens of each group, prepared similarly like for
the silver release test, were immersed in vials containing
10 ml of deionized water at 37�C. The pH was measured
with a pH meter (Expandomatic SS-2; Beckman Instru-
ments, Fullerton, CA, USA) at 10-min, 24-, 48-, and 72-h
periods. The results were statistically analyzed using
anova at a significance level of 0.05.

Results

Antimicrobial effect

Table 1 shows the antimicrobial activity of MTA groups
expressed by means and standard deviation of zones of
inhibition in millimeters. In the E. faecalis, S. aureus,
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P. intermedia, A. israelii, and P. gingivalis groups MTA
without SZ did not demonstrate any antimicrobial
activity at all time periods. MTA with 2% and 0.2%
SZ specimens had antibacterial effect on some microor-
ganisms at all time periods, whereas no antimicrobial
activity was found for P. intermedia and A. israelii.
No significant differences were found between the
inhibitory effects of 2% and 0.2% SZ MTA against
inhibited strains. In the C. Albicans groups, all the MTA
specimens showed antimicrobial activity at all time
period. At all time period, 2% SZ MTA specimens had
significantly higher inhibition than the MTA without SZ
(P < 0.05).

Silver release test

The release rates of silver from the MTA specimens are
summarized in Table 2. Two percentage of SZ MTA
produced the highest amount of silver within each of the
four times. The amount of silver release increased with the
increase in the ratios of incorporated SZ (P < 0.05). The
highest silver release was detected in 2% SZMTA at 24 h.

pH measurement

Figure 1 shows changes in pH of the MTA specimens.
Adding SZ to MTA specimens decreased the initial pH

of SZ MTA specimens. Twenty-four hours later, the pH
of SZ MTA specimens increased to a pH of 11.0 and
stabilized for all time period.

Discussion

The antimicrobial activity of endodontic sealers can be
evaluated in vitro by the agar diffusion method (33–35).
Agar diffusion, despite limitations, such as lack of
standardization of inoculum density, adequate culture,
size and number of specimens per plate, and time and
temperature of incubation (36), is still the most widely
used in vitro method of evaluation of antimicrobial
activity. The advantage of the agar diffusion test is that it
allows direct comparisons of materials against the test
microorganisms. A great disadvantage of this method is
that it does not distinguish between microbiostatic and
microbicidal properties of the materials (33). In addition,
the result of agar diffusion test does not depend only on
the toxicity of the material for the particular microor-
ganism, but is also highly influenced by the diffusibility

Table 1. Antibacterial activity, in millimeter inhibition (mean ± SD) zones of 2% and 0.2% incorporated SZ MTA specimens of
microorganisms

MTA specimens

24 h 48 h 72 h

Microorganisms 2% SZ 0.2% SZ Control 2% SZ 0.2% SZ Control 2% SZ 0.2% SZ Control

Enterococcus

faecalis

6.03 ± 0.32 5.21 ± 0.53 0.00 ± 0.00 6.92 ± 0.20 5.93 ± 0.53 0.00 ± 0.00 7.06 ± 0.36 6.40 ± 0.45 0.00 ± 0.00

Staphylococcus

aureus

7.03 ± 0.34 6.27 ± 0.47 0.00 ± 0.00 7.34 ± 0.94 6.96 ± 0.47 0.00 ± 0.00 7.54 ± 0.36 6.98 ± 0.45 0.00 ± 0.00

Candida albicans 11.10 ± 0.96 6.93 ± 0.32 6.54 ± 0.22 10.90 ± 0.69 6.43 ± 0.56 6.22 ± 0.15 10.73 ± 0.54 6.13 ± 0.47 6.04 ± 0.23

Escherichia coli 10.42 ± 0.74 7.64 ± 0.88 6.28 ± 0.32 9.74 ± 0.34 7.02 ± 0.28 6.12 ± 0.12 9.44 ± 0.18 6.12 ± 0.98 6.02 ± 0.22

Pseudomonas

aeruginosa

11.51 ± 0.24 8.68 ± 0.65 7.58 ± 0.36 11.20 ± 0.76 8.22 ± 0.54 7.02 ± 0.78 11.00 ± 0.34 7.91 ± 0.11 6.41 ± 0.54

Porphyromonas

gingivalis

10.86 ± 0.76 7.72 ± 0.22 0.00 ± 0.00 9.14 ± 0.78 7.12 ± 0.16 0.00 ± 0.00 8.84 ± 0.88 6.56 ± 0.76 0.00 ± 0.00

Actinomyces

israelii

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Prevotella

intermedia

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MTA, mineral trioxide aggregate; SZ, silver-zeolite.

Table 2. Silver releases from 2% MTA SZ and 0.2% MTA SZ

MTA Specimens

2% SZ 0.2% SZ Control

10 min 0.59 ± 0.08 0.47 ± 0.16 0.00 ± 0.00

24 h 0.86 ± 0.20 0.47 ± 0.36 0.00 ± 0.00

48 h 0.28 ± 0.08 0.27 ± 0.84 0.00 ± 0.00

72 h 0.23 ± 0.02 0.12 ± 0.04 0.00 ± 0.00

Mean values expressed in ppm (Mean ± SD).

MTA, mineral trioxide aggregate; SZ, silver-zeolite.

Fig. 1. The pH values of mineral trioxide aggregate specimens
at different time intervals.
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of the material across the medium (37). A material that
diffuses more easily will probably provide larger zones of
microbial growth inhibition (38, 39).

The microorganisms in this study were selected to
represent aerobes, anaerobes, and a yeast found in
infected canals. These microorganisms commonly found
in infected root canals and that are usually resistant to
routinely used endodontic intracanal medicaments (34,
40).

MTA with SZ inhibited growth of some microor-
ganisms tested, and no antimicrobial activity was dem-
onstrated for P. intermedia and A. israelii in this study.
The incorporation of SZ enhanced the antimicrobial
activity of MTA. In particulary, the inhibition of
E. faecalis is very important because this bacteria is the
most frequently isolated microorganism recovered from
endodontically treated cases (41). In the present study, it
has been shown that MTA without SZ did not have an
inhibitory effect against E. faecalis and S. aureus.
Similar to our findings, Torabinejad et al.(12) reported
that MTA did not have an inhibitory effect against
E. faecalis and S. aureus. In addition, Estrela et al. (19)
also could not detect any inhibitory effect of MTA
against E. faecalis.

Many studies evaluated the effect of MTA on micro-
organisms associated with endodontic disease, but these
studies have conflicting results (12–14, 20, 21). Ribeiro
et al.(42) suggested that these variations might be the
results of the methodology used, such as aerobic and
anaerobic incubations. It has been shown that MTA in
an aerobic atmosphere could generate reactive oxygen
species (ROS), which have antimicrobial activity. How-
ever, under anaerobic conditions, a decrease in the
generation of ROS was observed (43). Ribeiro et al.(44)
reported that in an anaerobic atmosphere, MTA was
incapable of generating the ROS responsible for the
antimicrobial effect on the different bacterial strains. In
addition, Torabinejad et al. found that MTA had no
antibacterial effect against on any of the strict anaerobic
bacteria. Similar to our results, these authors observed
no antibacterial activity for P. intermedia.

The antifungal activity of MTA was shown in several
studies (21, 22, 45, 46). Similar to previous studies, we
found good antifungal effect of MTA specimens on the
tested C. albicans. The incorporation of SZ enhanced the
antifungal activity of MTA. Two percentage of SZ MTA
specimens had significantly higher inhibition than the
other MTA specimens (P < 0.05). However, the anti-
fungal activity of MTA specimens, in this study, insig-
nificantly decreased at 72-h periods.

Although silver is known to possess antibacterial
properties, the exact mechanism of action is not fully
understood. Three possible suggestions could be consid-
ered: (i) silver ions destroy the cell wall; (ii) silver
interrupts the RNA replication process of the microbe,
thereby preventing cell multiplication; (iii) silver ions
cause cellular respiration to be blocked, effectively
choking the microbe (32). Another possible antibacterial
mechanism of silver ions is the interaction with thiol
groups in proteins, which induce the inactivation of the
bacterial proteins (47). In addition, the catalytic action of
silver causes oxygen to change into oxygen radicals by

the action of light energy and/or H2O in the air or water
only at polar surfaces and this active oxygen causes
structural damage in bacteria (48). These phenomena
lead to the damage or even the death of the microor-
ganism.

For the preparation of silver-containing materials,
zeolites have been used as the host inorganic compound.
Silver ions bind particularly to zeolite, resulting in a
gradual, stable, and long-lasting release of silver ions
from zeolite (ca.10 ppb into water). Similar to our
results, Hotta et al. (27) showed that the increase in the
zeolite content increased the release of silver into
ambient solution. In the presented study, 2% and 0.2%
of SZ MTA did not show any difference for the
antimicrobial activity. The current results confirm the
study by Hotta et al.(27) in which he stated that the large
amounts of silver were not needed to produce an
antibacterial effect.

An important consideration with regard to the use of
silver as an antimicrobial is the potential for the
development of resistance. Silver resistance was found
in both Gram-positive and Gram-negative bacteria,
mediated by plasmid and transposon mechanisms (49).
However, silver sulphadiazine continues to be the anti-
microbial agent most often used in burn care facilities.

The MTA is a Portland-type cement that contains
calcium oxide, which in contact with tissue fluid or water
is converted to calcium hydroxide. The MTA hydration
results in the calcium hydroxide dissociating into calcium
and hydroxyl ions, increasing the pH and calcium
concentrations (50). In the present study, the pH of SZ
MTA specimens increased to a pH of 11.0 and stabilized
for all time period, and the pH value for MTA specimens
did not exhibit any statistical difference. Many investi-
gations explained the antimicrobial action of MTA by its
high pH (14, 22, 45, 51). However, it has been shown that
the conditions under which several endodontic microor-
ganisms were killed, were not pH mediated (52).

To enhance antimicrobial activity of MTA, some
investigations replaced distilled water with other liquids
to mix with MTA powder (21). Another study mixed 2%
CHX with MTA powders (20). On the basis of these
results, it appears that enhancing antibacterial property
of MTA by adding various liquids might adversely affect
other properties of the material (53). Therefore, MTA
powder without SZ was used as control group in this
study.

It is important to recognize the limitations of in vitro
antimicrobial testing per se and the difficulty in corre-
lating in vitro results with the in vivo activity (54). To
fully assess the viability of SZ MTA, further studies are
needed to gauge the physical properties, e.g., setting and
working time. In addition, adding SZ to MTA may affect
the material’s properties. On the other hand, considering
MTA is placed in patients with the expectation that it
will remain in place for years, long-term effects of adding
SZ to MTA should be investigated.

In summary, adding to SZ to MTA may enhance the
antimicrobial activity of MTA in vitro. Apparently,
inhibition of the growth of some microorganisms is
related the existence of silver. However, increases in the
silver level did not enhance the antimicrobial properties
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of MTA. It can be assumed that incorporating a small
amount SZ into MTA was sufficient for enhancing its
antimicrobial activity.

Acknowledgement

The authors thank Mrs Kerime Güney for her technical
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