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The complex genetics of cleft lip and palate

Martyn T. Cobourne
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SUMMARY Clefts of the lip and palate are a common craniofacial anomaly, requiring complex multi-
disciplinary treatment and having lifelong implications for affected individuals. The aetiology of both
cleft lip with or without cleft palate (CLP) and isolated cleft palate (CP) is thought to be multifactorial,
with both genetic and environmental factors playing a role. In recent years, a number of significant
breakthroughs have occurred with respect to the genetics of these conditions, in particular, characterization
of the underlying gene defects associated with several important clefting syndromes. These include the
identification of mutations in the interferon regulatory factor-6 (/RF6) gene as the cause of van der Woude
syndrome and the poliovirus receptor related-1 (PVRL1) gene as being responsible for an autosomal
recessive ectodermal dysplasia syndrome associated with clefting. While no specific disease-causing
gene mutations have been identified in non-syndromic clefting, a number of candidate genes have been
isolated through both linkage and association studies. However, it is clear that environmental factors
also play a role and an important area of future research will be to unravel interactions that occur
between candidate genes and environmental factors during early development of the embryo.
Orthodontists are intimately involved in the therapeutic management of individuals affected by CLP
and it is important that they keep abreast of current knowledge of the aetiology behind these conditions.
This review aims to summarize some of the more significant advances in the genetics of CLP and
highlight current thinking on the modes of inheritance and genetic loci that might be involved in this

complex disorder.

Introduction

Clefts involving the lip and/or palate (CLP) or isolated
clefts of the palate (CP) are a significant congenital
anomaly, requiring complex long-term treatment and
having lifelong implications for those individuals
unfortunate enough to be affected. They represent a
complex phenotype and reflect a breakdown in the
normal mechanisms involved during early embryological
development of the face (Figure 1). The incidence of
these defects varies according to geographical location,
ethnicity and socio-economic status, but in Caucasian
populations it is reasonably uniform, with 1:800 to
1:1000 (CLP) and approximately 1:1000 (CP) live births
affected (Fraser, 1970; Bonaiti-Pellie et al., 1982; Gorlin
et al., 2001). The clinical manifestations of these defects
are diverse, ranging from isolated clefts of the lip to
complete bilateral clefts of the lip, alveolus and palate
(Figure 2). Broadly speaking, approximately 70 per cent
of CLP cases are non-syndromic, occurring as an isolated
condition unassociated with any other recognizable
anomalies, while the remaining 30 per cent of syndromic
cases are present in association with deficits or structural
abnormalities occurring outside the region of the cleft
(Jones, 1988; Schutte and Murray, 1999).

Our understanding of the aetiology and pathogenesis
of these conditions, particularly the non-syndromic
variants, still remains relatively poor. This is a reflection
of the complexity and diversity of the mechanisms
involved at the molecular level during embryogenesis,

with both genetic and environmental factors playing an
important and influential role (Johnson and Bronsky,
1995; Schutte and Murray, 1999; Prescott et al., 2001;
Spritz, 2001; Wilkie and Morriss-Kay, 2001; Murray,
2002). Primary evidence for a genetic role has been
available for some years; the sibling risk for CLP is
approximately 30 times higher than that for the normal
population prevalence, while the concordance rate in
monozygotic twins is approximately 25-45 per cent as
opposed to 3-6 per cent for dizygotic twins (Mitchell
and Risch, 1992; Gorlin et al., 2001). However, this lack
of complete concordance in monozygotic twins also
illustrates the importance of environmental factors in
the aetiology of this condition. With recent advances in
modern molecular biology and methods for the analysis
of population genetics, progress has been made in identi-
fying some of the genes associated with this anomaly
and how they influence the embryonic development of the
facial complex. This review aims to outline some of these
mechanisms and highlight several key advances that
have been made within this field over the last few years.

Syndromic CLP

Over 300 syndromes are known to have clefting of the
lip or palate as an associated feature (Online Mendelian
inheritance in man: http://www.ncbi.nlm.gov/omim).
As with all clinically recognizable syndromes, cases of
syndromic CLP or CP can be broadly subdivided into
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Figure 1 Embryological origins of the midline facial structures. (a, b) In the developing
embryo, the lateral nasal processes form the alae and sides of the nose, while the medial
nasal processes form the intermaxillary segment, composed of the upper lip philtrum, the
primary palate and the four incisor teeth. The maxillary process forms the remainder of the
upper lip and the secondary palate, consisting of the hard palate and associated dentition
anteriorly and posteriorly, and the soft palate. Various types of orofacial clefting. (c) Unilateral
cleft lip; (d) bilateral cleft lip; (e) unilateral cleft lip and primary palate; (f) bilateral cleft lip
and primary palate; (g) complete unilateral cleft of the lip and palate; (h) complete bilateral
cleft of the lip and palate; (i) isolated cleft of the secondary palate; (j) isolated cleft of the
soft palate; (k) submucous cleft of the soft palate.

those that occur as part of a characterized Mendelian
disorder (resulting from a single gene defect), those aris-
ing from structural abnormalities of the chromosomes,
syndromes associated with known teratogens or those
whose causation remains obscure and are therefore cur-
rently uncharacterized. Single gene disorders are the
result of specific gene mutations on the autosomes or
sex chromosomes and are inherited following Mendelian
rules (autosomal dominant or recessive and X-linked
dominant or recessive, respectively) with varying levels
of penetrance and expressivity. Cytogenetics, or the
study of chromosomal abnormalities, has revealed a wide
range of physical chromosomal alterations, including
variations in both number and structure, which can cause
perturbations of gene function and congenital malfor-
mations. It has been estimated that 6 per cent of all
congenital malformations are due to visible cytogenetic
abnormalities (Kalter and Warkany, 1983) and approxi-
mately 5 per cent of both the autosomal deletions and

duplications that produce congenital defects have CLP
as a feature (Brewer et al, 1998, 1999). It should be
noted, however, that advances in molecular techniques
now allow the identification of alterations that affect
very small regions of the chromosome and, in some cases,
specific genes responsible for cytogenetic syndromes
are being isolated. Therefore, the distinction between
chromosomal abnormalities per se and single gene
disorders is rapidly becoming indistinct.

Of much recent excitement has been the identification
of some candidate genes thought to be responsible for
several major syndromic clefting disorders. One of the
most common human autosomal dominant disorders
associated with CLP is van der Woude syndrome (VWS),
which contributes to around 1 per cent of syndromic
CLP cases (van der Woude, 1954). This condition is
associated with highly characteristic pitting of the lower
lip mucosa and CLP. The locus for VWS has previously
been identified as a region of chromosome 1 (1q32-g41)
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Figure 2 The clinical spectrum of orofacial clefting deformities.
(a) Left-sided isolated unilateral cleft of the lip; (b) left-sided unilateral
cleft of the lip and alveolus; (c) isolated bilateral cleft of the palate;
(d) complete bilateral cleft of the lip and palate; (e) left-sided
complete unilateral cleft of the lip and palate (the arrow indicates
mild notching of the right lip); (f) the subject in (e) following lip
repair (the arrow indicates persistence of the right lip notch); (g) the
subject in (e) following palate repair (the arrow indicates the
presence of a residual defect in the alveolus).

(Schutte et al., 2000), but until now the identity of the
offending gene had remained elusive. Recently, a unique
approach has exploited the discovery of monozygotic
twins who demonstrated VWS in one member of the
pair, but not in the other twin or parents (Kondo et al.,
2002). This allowed the identification of a nonsense
mutation in the interferon regulatory factor-6 (/RF6)
gene in the affected twin. /RF6 encodes a transcription
factor belonging to a nine-member family involved
in regulating the expression of Interferon-o. and -B
following viral infection. However, the exact role of
IRF6 during development is unknown. This point
notwithstanding, in the developing mouse embryo, Irf6
demonstrates high levels of expression in a variety of
craniofacial structures, including the medial edges of the
fusing palatal processes, tooth buds, hair follicles and
skin. This expression pattern and the findings that
haploinsufficiency of IRF6 causes VWS suggest an
important role during craniofacial development, with
some suggestion that it mediates interactions between
members of the transforming growth factor-B (TGFp)
superfamily of signalling peptides (Kondo et al., 2002;
Muenke, 2002). Indeed, 45 additional unrelated families
affected by VWS have also been demonstrated to carry
mutations in the /RF6 gene (Kondo et al., 2002).
Another recent breakthrough is the identification of a
homozygous loss-of-function mutation in the poliovirus
receptor related-1 (PVRLI) gene as being responsible
for an autosomal recessive CLP-ectodermal dysplasia
syndrome (CLPED-1) (Suzuki et al., 2000). This discovery
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was made in an isolated population derived from
Margarita Island, situated just north of Venezuela. Within
this population, CLPED-1 is a relatively frequent
condition because it results from homozygosity for a
common nonsense mutation in PVRLI called W185X.
Within the indigenous population of the island, approxi-
mately one in 26 normal people are heterozygous for
W185X. PVRLI encodes a cell adhesion molecule
called nectin-1, which in the mouse embryo is highly
expressed in the medial edge epithelium of the developing
palate (Suzuki et al., 2000). These findings suggest that
normal PVRLI function is important in mediating
fusion of the palatal shelves during the later stages of
palatogenesis.

A mixed clefting type is the rare occurrence of
CLP and CP within members of the same pedigree.
A number of the ectodermal dysplasia-type clefting
syndromes (EDCS) demonstrate a mixed clefting type.
Recently, mutational analysis of some of these syndromes
has begun to unravel the complexities of the genetic
interactions that underlie these disorders. The autosomal
dominant ectrodactyly, ectodermal dysplasia, orofacial
cleft (EEC) syndrome is characterized by central reduc-
tion defects in the hands and feet (ectrodactyly) often
associated with syndactyly, ectodermal dysplasia mani-
festing as dry skin, sparse hair, dystrophic nails and
hypoplastic teeth and CLP. It has been demonstrated
that heterozygous mutations in the P63 gene on
chromosome 3q27 lead to the EEC syndrome (Celli
et al., 1999; Tanakiev et al., 2000). P63 is a homologue of
the transcription factor-encoding P53 tumour suppressor
gene and many of the causative mutations result in
amino acid substitutions that are predicted to abolish
the DNA binding capacity of P63 (Celli et al., 1999;
Ianakiev et al., 2000). In the mouse embryo, p63 is highly
expressed in ectodermal tissue, particularly that of the
limb bud apical ectodermal ridge and the maxillary and
mandibular processes of the first branchial arch (Mills
et al., 1999; Yang et al., 1999). Ablation of p63 function
in homozygous mice results in craniofacial anomalies, limb
truncation and an absence of epidermal appendages
such as hair, sweat glands and tooth follicles (Mills et al.,
1999; Yang et al, 1999). Other EEC-like syndromes
within the EDCS umbrella have also been reported in
association with mutations in P63 and these include
ankyloblepharon, ectodermal dysplasia, clefting syndrome
(AEC or Hay—Wells syndrome) (McGrath et al., 2001)
and limb mammary syndrome (LMS) (van Bokhoven
et al., 2001). Some of the clinical differences between
these various EDCS can be subtle, but they are
important. AEC is characterized by ankyloblepharon
(fused eyelids) in addition to features characteristic of
ectodermal dysplasia and the presence of CLP. LMS is
characterized by the presence of ectrodactyly, mammary
gland/nipple hypoplasia and, importantly, isolated CP
rather than CLP. Overall, the P63 mutations identified
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with EEC, AEC and LMS all demonstrate subtle differ-
ences and, therefore, exhibit clear genotype—phenotype
correlations (McGrath et al., 2001; van Bokhoven et al.,
2001). This high phenotypic variability observed for
specific mutations in P63 demonstrates the importance
of modifying factors during development of the embryo,
not least in the causation of CLP and isolated CP within
members of the same pedigree.

Msx1 (formerly Hox7) (Hill et al., 1989; Robert et al.,
1989; MacKenzie et al, 1991a, b) is a member of a
distinct subfamily of homeobox genes related to the
Drosophila msh (muscle segment homeobox) gene
(Holland, 1991). MsxI encodes a transcription factor
and also demonstrates a regionally restricted expression
pattern in the developing murine craniofacial complex,
including the palate (MacKenzie et al., 1991a, b). Mice
lacking MsxI function exhibit a variety of craniofacial
defects including clefting of the secondary palate,
complete arrest of tooth development at the bud stage
and anomalies of several facial bones (Satokata and
Maas, 1994). A heterozygous MSXI nonsense mutation
has recently been identified in a three-generation Dutch
family exhibiting various combinations of CLP, CP and
selective tooth agenesis (van den Boogaard et al., 2000).
Significant linkage disequilibrium has also been found
between CLP and neutral polymorphisms within MSX1
and TGFf3 (Lidral et al., 1998). However, in the family
described by van den Boogaard et al. (2001) there was
marked variation in the expressivity of CLP and the
additional presence of non-penetrant cases indicates
that this is a comparatively weak phenotype, almost
certainly modulated by additional genetic and
environmental factors (Wilkie and Morriss-Kay, 2001).

Another malformation disorder associated with CLP
but also characterized by disturbances in development
of the midline facial structures is X-linked Opitz
syndrome, a condition associated with mutations in the
MID1 gene on chromosome Xp22 (Quaderi et al., 1997).
MIDI encodes a RING finger, B-box zinc finger and
coiled—coiled protein, which is associated with cytoplasmic
microtubules. A variety of mutations in MIDI have been
identified in individuals affected by Opitz syndrome, but
the exact developmental role of the encoded protein
remains unclear (Quaderi et al., 1997, Gaudenz et al.,
1998; Schweiger et al., 1999; Cox et al., 2000). However,
the murine Midl gene does demonstrate high expression
in the developing branchial arches, which is consistent
with the craniofacial anomalies seen in patients with
MIDI mutations (Quaderi et al., 1997).

Syndromic CP

In addition to syndromic CLP, progress has also been
made in elucidating the genetic mechanisms behind
several syndromic causes of isolated CP. X-linked CP
(CPX) is a rare semi-dominant X-linked disorder
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characterized by CP and ankyloglossia (Lowry, 1970,
Bjornsson et al., 1989). The causative gene was
originally localized to chromosome Xq21 (Moore et al.,
1987), but recently Braybrook er al. (2001) succeeded
in pinpointing a variety of mutations in the TBX22
gene (which encodes a member of the T-box family
of transcription factors) in individuals from a number of
separate families, as being responsible for CPX. These
mutations, including missense, nonsense, splicesite and
frameshift, were all predicted to result in a complete
loss of function of TBX22. Interestingly, TBX22 is also
expressed in the developing palate and potential target
genes for this transcription factor have been shown to
include members of the fibroblast growth factor and
TGFp families, which are known to encode signalling
molecules heavily implicated in early craniofacial
development (Aldred, 2001; Braybrook et al, 2001;
Casci, 2001; Murray, 2001). TBX22 is the first gene to be
identified for a major CP syndrome and is particularly
significant in view of the fact that targeted disruption of
ThxI in the mouse results in a wide range of developmental
anomalies which encompass almost all of the common
features of the DiGeorge/velocardiofacial syndromes
(Jerome and Papaioannou, 2001; Lindsay et al., 2001).
These syndromes, which arise as manifestations of
deletions in chromosome 22qll, are thought to be
caused by a failure in function or migration of neural
crest cells and predominantly affect derivatives of the
third and fourth branchial arches and their associated
pharyngeal pouches, but affected individuals can also
have CP (Scambler, 2000). Heterozygous null mutant
mice demonstrating haploinsufficiency of 7hx/ have
aortic arch defects, whereas homozygous null mutants
exhibit a more severe phenotype that includes isolated
CP (Lindsay et al, 1998; Jerome and Papaioannou,
2001).

A wide variety of other syndromic disorders exhibit
varying levels of CP as part of their phenotype (Gorlin
et al., 2001) and many of the causative genes have now
been identified. Treacher Collins syndrome (TCS) is an
autosomal dominant disorder of craniofacial development,
which occurs with an incidence of around 1:50 000 live
births (Gorlin et al., 2001). The features of TCS are highly
variable, but essentially consist of external and middle
ear malformations, downsloping palpebral fissures with
colobomas of the lower eyelids, zygomatic and mandibular
hypoplasia and CP in 28-35 per cent of affected individuals
(Franceschetti and Klein, 1949; Stovin et al., 1960; Peterson-
Falzone and Pruzansky, 1976). A large-scale collaborative
effort has used positional cloning to localize the TCS
gene (TCOFI) to human chromosome 5q32-q33.1
(Treacher Collins Syndrome Collaborative Group, 1996).
TCOFI encodes a protein called treacle, which shows
weak homology to a family of nucleolar phosphoproteins
(Dixon et al., 1997, Wise et al., 1997). A number of
largely family-specific mutations have been identified in
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affected individuals, which have been predicted to result
in the creation of a premature termination codon in the
transcribed protein (Gladwin et al., 1996; Edwards et al.,
1997). The exact function of treacle is currently unknown,
but it has been hypothesized to be involved in the
shuttling of proteins between the nucleolus and cytoplasm
of the cell. This is based largely on its predicted
sequence and the findings that mutations can lead to
altered localization from the nucleolus to different
compartments of the cell (Marsh et al., 1998; Winokur
and Shiang, 1998). How these functions relate specifically
to the control of craniofacial development is at present
unknown.

Holoprosencephaly (HPE) is a developmental disorder
that encompasses a spectrum of defects ranging from
mild anomalies of midline patterning to a complete
failure of forebrain division, with associated cyclopia
(Muenke et al., 1994). HPE is comparatively rare in live
births (around 1:15000), but in early pregnancy this
figure is much higher (around 1:250) with the majority
of these foetuses being miscarried (Wilkie and Morriss-
Kay, 2001). This makes HPE a significant congenital
anomaly and foetuses that do go to term can exhibit CP.
Mutations in the gene encoding the Sonic hedgehog
(SHH) signalling peptide have been associated with a
holoprosencephalic phenotype in both mice (Chiang
et al., 1996) and humans (Belloni et al., 1996; Roessler
et al., 1996). Interestingly, there are dosage-dependent
differences in susceptibility between mice and humans.
Heterozygous Shh —/— mice are phenotypically normal,
whereas heterozygous mutations in human families
produce HPE with a range of phenotypes (Belloni et al.,
1996; Chiang et al., 1996; Roessler et al., 1996). These
findings highlight the key role that the SHH signalling
peptide plays in midline patterning of the human
embryo.

Stickler syndrome (hereditary arthro-ophthalmopathy)
is an autosomal dominant disorder of collagen connective
tissue associated with ocular, auditory, articular and
craniofacial manifestations (Herrman et al, 1975).
Stickler syndrome is subdivided into types 1 and 2 on
the basis of the vitreoretinal phenotype in the eye, but
the systemic features are essentially similar for both
groups, with approximately 25 per cent of cases
exhibiting some form of midline clefting, including CP
(Snead and Yates, 1999). Approximately 75 per cent of
subjects with Stickler syndrome are type 1 and demonstrate
linkage to the COL2AI gene, which encodes type 11
collagen (Snead et al., 1999). Type XI collagen is a more
minor fibrillar collagen and mutations in the COLIIA]
gene, which encodes the ol chain of type XI procollagen,
have been demonstrated in patients with the type 2
Stickler phenotype (Richards et al., 1996). One of the
effects of these varying defects in collagen biosynthesis
is abnormal skeletal morphogenesis, which can then
manifest as isolated CP.

11
Non-syndromic clefting

The study of causative factors in non-syndromic CLP/CP
in humans has been considerably hampered by the nature
of the condition. Non-syndromic orofacial clefting arises
as a complex multifactorial trait, being a myriad of
Mendelian patterns exhibiting varying levels of penetrance,
sex differences and environmental overlays, with the
result that gene identification is difficult (Murray, 1995).

Large-scale family linkage analysis has provided
a statistical method of detecting the chromosomal
location of possible loci within a population where gene
defects might result in a predisposition to CLP. The first
report of such an analysis suggested possible linkage
between CLP and the blood clotting factor XIII gene
(FI3A) on chromosome 6p (Eiberg et al, 1987).
Unfortunately, further evidence for support of the F13A
gene has been more equivocal (Hecht er al, 1993;
Vintiner et al., 1993). However, successive linkage studies
have provided further indications for the involvement in
CLP of regions on the 6p chromosome. These include
6p23-24 (Prescott et al., 2000), 6p24.3 (Davies et al.,
1995) and 6p23 (Carinci et al., 1995). Together, these
findings present a real possibility that a gene on human
chromosome 6p may play a role in non-syndromic
clefting (Murray, 1995). Linkage has also been reported
for CLP to endothelin-1 (ET1), which encodes a vaso-
active peptide expressed in vascular endothelial cells
(Carinci et al., 1995). ET1 is involved in the regulation
of blood pressure and E71 —/— mice carrying a targeted
disruption of this gene do have hypertension. However,
they also exhibit craniofacial defects, including a
marked reduction in tongue size, micrognathia and CP
(Kurihara et al., 1994). In addition, one of the G-protein
coupled endothelin receptors, ETA, is known to be
expressed in neural crest-derived ectomesenchyme of
the branchial arches. Targeted disruption of ETA or
ETI in mice produces craniofacial defects that resemble
a broad human condition called CATCH-22 (cardiac
defects, abnormal facies, thymic hypoplasia, CP, hypo-
calcaemia, associated with chromosome 22 microdeletion)
(Wilson et al., 1993). CATCH-22 represents a spectrum
of human malformation syndromes resulting from
abnormal development of the third and fourth branchial
arches. It has recently been shown that the craniofacial
defects in ETA —/— mice are, in part, due to an absence
of the goosecoid transcription factor (Clouthier et al.,
1998).

In addition to FI3A and ETI, a number of other
candidate genes have also demonstrated linkage to CLP,
but the results have been contradictory. These include
the proto-oncogene BCL3 on chromosome 19 (Stein
et al., 1995; Maestri et al., 1997; Wyszynski et al., 1997a)
and the retinoic acid receptor alpha gene (RARA) on
chromosome 17 (Shaw et al., 1993; Vintiner et al., 1993).
A more recent genome-wide linkage study in families
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with multiple cases of non-syndromic CLP concluded
that no single major CLP locus exists and a multifactorial
model was the most likely explanation of the genetic
component of this disorder (Prescott et al., 2000, 2001).
A putative role for these candidate genes therefore
remains to be firmly established, but it is not unreasonable
to suggest that both together and individually they
might have a modifying or additive role within the
aetiology of non-syndromic CLP (Carinci et al., 2000).
More recently, association studies using the candidate
gene approach have become an important method of
genetic analysis for non-syndromic CLP/CP (Hodge,
1993). The suggestion that abnormal function of a
particular gene might play a role in the aetiology of
these conditions can arise for a variety of reasons;
the presence of a CLP/CP phenotype in knockout mice
generated with targeted disruption of a particular gene
(Table 1), the specific embryonic expression domain or
chromosomal location of a newly cloned gene or the
predicted functional properties of a known protein can
all provide clues. Having selected a particular candidate
gene, it is then possible to analyse epidemiologically the
frequencies of different genetic variants of the gene or
nearby chromosomal markers and provide evidence
of association for their aetiological role in a particular
condition, for example non-syndromic CLP/CP (Prescott
et al.,2001). This approach has provided some evidence
to show an association between TGFa and non-syndromic
CLP (Ardinger et al., 1989; Chenevix-Trench et al., 1992;
Holder et al., 1992; Stoll et al., 1992; Feng et al., 1994;
Field et al., 1994). TGFa is one member of a large group
of developmentally important intercellular signalling
molecules and in the mouse, Tgfo. protein has been
localized in the epithelium of the palatal shelves prior to

Table 1 Mouse knockouts associated with cleft palate.

Gene Gene product Reference
Gad67 y-aminobutyric acid-producing  Condie ef al. (1997)
enzyme
Gabrf3 y-aminobutyric acid receptor Culiat et al. (1995)
TgfB3 Signalling peptide Proetzel et al. (1995)
ActivinBA  Signalling peptide Matzuk et al. (1995)
ETI Vasoactive peptide Kurihara ez al. (1994)
Hoxa2 Transcription factor Gendron-Maguire
et al. (1993)
Rijli et al. (1993)
Dix2 Transcription factor Qiu et al. (1997)
Lhx8 Transcription factor Zhao et al. (1999)
Msx1 Transcription factor Satokata and Maas
(1994)
Pax9 Transcription factor Peters et al. (1998)
Pitx1 Transcription factor Szeto et al. (1999)
Thx1 Transcription factor Lindsay et al. (2001)
Jerome and
Papaioannou (2001)
po3 Transcription factor Mills et al. (1999)

Yang et al. (1999)
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fusion (Dixon et al, 1991). However, while targeted
disruption of Tgfo produces defects in the hair follicles
and eyes of the mouse, it does not produce CLP
(Luetteke et al., 1993; Mann et al., 1993). In addition,
more classical linkage-based genetic studies, albeit
carried out on relatively small numbers of families, have
failed to detect an association between TGFo and CLP
(Hecht et al., 1991; Vintiner et al., 1992). Together, all
these investigations suggest that TGFa is not a major
dominant gene for CLP, but probably acts as a modifier
(Murray, 1995; Prescott et al, 2001). Unfortunately,
disagreement between different genetic studies carried
out on populations of varying size and ethnic
background has become a recurring theme in the
investigation of non-syndromic CLP/CP over the years
(Spritz, 2001). Another locus that has been identified
in association with non-syndromic CLP encodes the
TGFB3 gene on chromosome 14q24 (Maestri et al.,
1997; Lidral et al., 1998). In the case of Tgf33, the mouse
knockout does have a CP phenotype (Proetzel et al.,
1995) and the Tgfp3 signalling protein would appear to
have an important role during fusion of the secondary
palate, directly controlling the differentiation of
epithelium to mesenchyme in the midline seam between
the adjacent palatal shelves in the mouse (Kaartinen
et al., 1997). In addition, exogenous TGFf protein can
correct the palatal fusion defect in Tgf33 —/— embryos
in vitro (Taya et al., 1999) and promote scarless healing
following surgical cleft lip repair in mice embryos
in utero (Kohama et al., 2002).

The recent finding of a W185X PVRLI mutation
being responsible for CLPED-1 on Margarita Island has
been the starting point to determine whether this
mutation might also be an aetiological factor in isolated
CLP. The basis for this investigation is the fact that
the incidence of CLP is also known to be high within
this population (Suzuki ez al, 2000). While the high
heterozygosity trait for W185X PVRLI and the limited
population size on Margarita Island precluded the study
of this mutation with respect to isolated CLP in these
islanders, a larger geographically adjacent population in
northern Venezuela did demonstrate significant increases
in this mutation in individuals with isolated CLP (S6zen
et al.,2001). While this mutation is only a moderate risk
factor for CLP (the majority of individuals with isolated
CLP studied in the population did not carry the
mutation), this study is important because it has
provided the first evidence of a specific mutation of
pathological significance as a genetic risk factor for
non-syndromic CLP (Aldred, 2001; Casci, 2001; Spritz,
2001; Wilkie and Morriss-Kay, 2001).

Environmental influences

A number of observations also suggest a significant
environmental contribution in the aetiology of CLP/CP;
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the lack of total concordance in monozygotic twins, the
relatively rare findings of non-syndromic cases being
present throughout large family groups and the varying
social, geographical and ethnic incidence of these
malformations (Spritz, 2001). The majority of CLP cases
are, therefore, multifactorial, and a variety of environ-
mental factors have been implicated (Wyszynski and
Beaty, 1996). It is logical to state that the true aetiology
relevant to these conditions cannot be treated in
isolation, but it should be remembered that intrauterine
environmental factors will influence foetal development
in combination with the individual genetic background
of the embryo (Prescott et al., 2001).

Maternal cigarette smoking, leading to embryonic
hypoxia, has been associated with an increased incidence
of non-syndromic CLP. However, the current evidence
for an association is far from overwhelming. A relatively
recent meta-analysis of relevant studies produced
over the 20 years prior to 1996 suggested a small, but
statistically significant, association between maternal
cigarette smoking during the first trimester of gestation
and an increased risk of having a child with CLP or CP
(Wyszynski et al., 1997b). Interestingly, there is some
suggestion that the risk of clefting associated with
maternal smoking can be increased in infants carrying
the cleft-associated TG Fo mutation (Shaw et al., 1996),
but potential synergism between these two factors has
also been refuted (Christensen et al, 1999). Some
evidence also exists to suggest that altitude hypoxia
during pregnancy might also be associated with an
increased incidence of several birth defects, including
CLP (Castilla et al., 1999). Maternal alcohol (ethanol)
ingestion (frequently associated with cigarette smoking)
can result in an increased risk of CLP (Romitti et al.,
1999). Interestingly, this latter study also found evidence
for gene—environment interactions in non-syndromic
CLP aetiology, with a greater incidence of CLP in children
carrying allelic variants at the MSX7 site (Romitti et al.,
1999). Certainly, women who abuse alcohol during
pregnancy are at significant risk of bearing a child with
the manifestation termed foetal alcohol syndrome (FAS)
(Jones et al., 1973). Affected individuals exhibit pre- and
post-natal growth retardation, craniofacial anomalies
and dysfunction of the central nervous system. FAS
represents the mild end of the HPE spectrum of
anomalies, which can exhibit clefting, and the heavier
the consumption, the more likely a CLP/CP phenotype
will form a component of the craniofacial defect
(Shaw and Lammer, 1999). It is alarming to think that
approximately one in 30 women are thought to abuse
alcohol during pregnancy and that around 6 per cent of
these will have children with clinically recognizable FAS
(Gorlin et al., 2001).

Some attention has also been paid to the nutritional
status of pregnant mothers with respect to incidences
of clefting phenotypes in their offspring, in particular,
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a role for folic acid supplementation as a method of
reducing CLP incidence. Certainly, there is conclusive
evidence for maternal folate supplementation in the
prevention of neural tube defects (Medical Research
Council, 1991) and some epidemiological investigations
have suggested that deficient maternal folic acid intake
may predispose to orofacial clefting. However, other
studies have failed to find an association. At the present
time, a relationship would therefore appear to be incon-
clusive and it is currently not proven whether folate
deficiency is a major contributor to non-syndromic CLP
(Hartridge et al., 1999).

Conclusions

It is likely that advances in our understanding of both
the genetic and environmental aetiology of CLP will
continue. With the recent draft sequencing of both
the human and mouse genomes and the introduction
of gene micro-array technology, further identification of
the candidate genes and genetic pathways involved in
syndromic clefting can be expected. More complex and
widespread multifactorial genetic analyses are likely to
be required to dissect further the aetiology of non-
syndromic CLP and, in particular, the emergence of
studies linking environmental influences with the
genetic background of susceptible embryos. Ultimately,
all of these advances will allow more accurate methods
of genetic screening, the identification of high-risk
individuals or family groups and improved pre-natal
diagnosis. In turn, we may witness the introduction of
both preventative and in vivo foetal therapy for these
debilitating conditions.
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