
European Journal of Orthodontics 32 (2010) 233–241	 © The Author 2010. Published by Oxford University Press on behalf of the European Orthodontic Society.
doi:10.1093/ejo/cjp099	 All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org
Advance Access Publication 4 March 2010

Introduction

It was not until introduction of the cephalostat (Broadbent, 
1931; Hofrath, 1931) that cephalometric analysis revolution­
ized diagnostics and treatment planning in orthodontics. 
For the first time, it was possible to analyze not only the 
dentoalveolar but also the underlying skeletal characteristics 
of the viscero- and neurocranium. Since then, it has become 
a standardized diagnostic method in everyday orthodontic 
practice and research.

Two approaches may be used for tracing lateral cephalo­
grams: a manual approach and a computer-aided approach. 
The manual approach is the oldest and still most widely used 
and is carried out by placing a sheet of acetate paper over the 
cephalometric radiograph and manually tracing skeletal and 
soft tissue features, identifying landmarks, and measuring 
distances and angles between landmark locations. Computer-
aided cephalometric analysis uses manually identified 
landmarks, based either on transferring landmarks from 
cephalometric radiographs with a digitizing pad connected to 
a computer, or direct landmark identification with a mouse 
cursor on the computer monitor (Baumrind and Miller, 1980; 
Richardson, 1981; Turner and Weerakone, 2001). The 
computer software then completes the cephalometric analysis 
by automatically measuring distances and angles.

It is widely acknowledged that both approaches are time-
consuming and prone to errors, both systematic and random, 
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due to problems and inconsistencies in features and 
landmark identification, drawing lines between landmarks 
and measuring with a ruler and protractor (Baumrind and 
Frantz, 1971; Kamoen et al., 2001). The latter is successfully 
eliminated in computer-aided cephalometric analysis, but the 
greatest error still lies in landmark identification (Houston  
et al., 1986; Nimkarn and Miles, 1995; Kamoen et al., 2001). 
Variability in landmark identification has been determined to 
be five times greater than measurement variability, with both 
methods (Miller et al., 1971; Savage et al., 1987). In addition, 
the process is open to considerable subjectivity, since 
landmarks currently are defined using subjective criteria 
rather than strict mathematical specifications.

It is generally accepted that accuracy in landmark 
identification ideally should be less than 0.5 mm. However, 
measurements with errors within 2 mm are considered 
acceptable, and are often used as a reference to evaluate the 
recognition success rate, but the former level of precision is 
considered desirable (Forsyth and Davis, 1996). Research 
studies on the accuracy of landmark identification have 
also shown that manual landmark identification errors vary 
significantly depending on the landmark, observer, and quality 
of the radiograph (Cohen and Linney, 1986; Parthasarathy 
et al., 1989). In some studies, the mean estimating error of 
expert landmarking identification has been reported to be 
1.26 mm (Parthasarathy et al., 1989).
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Table 1  Characteristics of image sample.

Characteristics Number

Males 37
Females 23
Skeletal Class I 24
Skeletal Class II 27
Skeletal Class III 9
Normal face height 27
Short face height 16
Long face height 17

Ren et al., 1998; Rudolph et al., 1998; Desvignes et al., 
2000; Hutton et al., 2000; Grau et al., 2001; Romaniuk  
et al., 2002). These methods have proved more accurate, 
especially in detecting complex landmarks with less contrast 
characteristics. They also produce consistently better results 
with radiographic images of varying quality. Nevertheless, 
overall accuracy is still far beyond applicability in everyday 
clinical practice and research.

The newer generation of knowledge-based systems make 
use of an additional statistical model that takes into account the 
variation of characteristics in the images. The first attempt was 
undertaken by Hutton et al. (2000), who applied active shape 
models (ASMs) to detect cephalometric landmarks. Those 
authors concluded that even though ASMs were not sufficiently 
accurate for clinical application, they should provide a model 
for future studies and a framework for further improvements.

Active appearance models (AAMs), recently proposed 
by Cootes et al. (2001), Cootes and Taylor (2001), and 
Stegmann (2004), modelling both shape and texture 
variability seen in a training set, should make the search 
more precise and robust.

The aim of this study was to evaluate the accuracy of a 
computerized automatic landmark identification system, 
based on the AAM approach.

Materials and methods

Experimental design

Sixty cephalograms were randomly selected from the records 
of patients who had attended for orthodontic assessment 
and treatment at the Orthodontic Department of the Clinic 
of Dentistry, Medical Faculty, University of Novi Sad, 
Serbia. The subjects were aged between 7.2 and 25.6 years 
(mean age 14.7 years; Table 1).

All the radiographs were taken on Soredex Cranex 
Tome Ceph digital X-ray machine (Soredex, Tuusula, 
Finland) using a phosphorus IP-plate (24 × 30 cm). The 
image plate was processed by a PCT-Digora medical 
image laser scanner (Soredex). This yielded images that 
were 2400 × 3000 pixels, giving a pixel size of 0.1 mm, 
with 256 grey levels in Bitmap format. According to visual 
assessment, the radiographs varied in quality from average 

There have been many attempts to further improve and 
automate cephalometric analysis. Computer systems, which 
automatically identify relevant skeletal and soft tissue 
structures and landmarks have the potential to increase 
accuracy, reduce errors due to subjectivity, provide more 
efficient use of clinician time, and improve the ability to 
correctly diagnose orthodontic cases.

The first attempt at automated landmarking of cephalograms 
was made by Cohen et al. (1984). Since then, automatic 
cephalometric analysis has been the subject of a number of 
studies, and the automatic identification of landmarks has 
been attempted by more than 20 independent researchers 
using different approaches and computer systems, with 
varying degrees of success. All these methods can be divided 
into three categories. The first, pure edge tracking, follows a 
strategy similar to that employed by clinicians and uses a 
combination of image processing techniques to detect and 
extract the important edges, subsequently used to locate 
landmarks on line crossings (Cohen et al., 1984; Cohen and 
Linney, 1986; Lévy-Mandel et al., 1986; Parthasarathy et al., 
1989; Davis and Taylor, 1991; Davis, 1994; Liu et al., 2000). 
The second category, knowledge-based template matching 
methods, implements a grey-level model around each 
landmark to reduce the search area (Cardillo and Sid-Ahmed, 
1994; Ren et al., 1998; Rudolph et al., 1998; Desvignes  
et al., 2000; Hutton et al., 2000; Grau et al., 2001; Romaniuk 
et al., 2002). The third category employs neural networks 
and fuzzy inference systems to locate the landmarks (Uchino 
and Yamakawa, 1995; Sanei et al., 1999; Innes et al., 2002; 
Ciesielski et al., 2003; El-Feghi et al., 2004).

The pure edge-based approach identifies pixels near the 
object boundaries. Boundaries are detected as areas with a 
high gradient value. Landmarks are then found in relation to 
these boundaries. Attempts to use this approach for automatic 
landmark identification have both experimental design flaws 
and very limited results. In most cases, the method was tested 
on the same set of radiographs used to develop the algorithm 
(Lévy-Mandel et al., 1986; Parthasarathy et al., 1989; Davis 
and Taylor, 1991; Liu et al., 2000). Some of the studies used 
a very small number of radiographs (Lévy-Mandel et al., 
1986; Parthasarathy et al., 1989). It was also observed that 
tested methods only worked on high quality images 
(Parthasarathy et al., 1989). These heuristic methods are 
based on ad hoc rules for finding each specific landmark. The 
main problem is that the rules become increasingly difficult 
as more complex landmarks, structures, and variations in 
image quality and contrast are introduced. This may explain 
the limited accuracy of these algorithms and their inability to 
produce a potentially clinically applicable approach.

The knowledge-based template matching approach, 
also known as the learning approach, uses mathematical 
models to narrow down the search area for each landmark, 
subsequently applying various pattern-matching algorithms 
to pinpoint the exact location of the landmark (Cardillo 
and Sid-Ahmed, 1994; Uchino and Yamakawa, 1995; 
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where x  is the mean shape, g  the mean texture, and Qs and 
Qg the matrices describing the modes of variation derived 
from the training set.

Subsequently, a full synthetic image of modelled objects 
can be synthesized for a given c by generating a texture 
image from the vector g and warping it using the control 
points described by x (Figure 2).

AAM matching

To identify the landmarks on a new cephalogram, an initial 
template was placed over the image. The method described 
by Cootes et al. (2001) and Cootes and Taylor (2001) was 
used. AAM treat interpretation as an optimization problem in 
which it seeks to minimize the difference between the new 
image and the one synthesized by the appearance model. A 
multi-resolution implementation was used, in which AAMs 
iterate to convergence at each level before projecting the 
current solution to the next level of the model (Figure 3). This 
is more efficient and can converge to the correct solution 

to high, and were overall considered of good rather than 
exceptional quality, and as such represented typical lateral 
cephalograms taken on a modern radiographic machine. 
By applying this non-selective method of sample 
collecting, it was hoped to obtain a wide range of variations 
of both morphological characteristics of skeletal and soft 
tissue structures and quality of the radiographs.

In order to compare the proposed system for automatic 
landmarking with previous studies, the images were reduced 
to 945 × 1181 pixels by pixel averaging. The pixel size in 
the resultant image was increased from 0.1 to 0.22 mm. The 
loss in accuracy due to this resolution reduction was 
considered negligible. The real impact of the full resolution 
AAMs on performance of the proposed method will be 
analyzed in future studies.

For building training sets and testing the accuracy of the 
algorithm, a modified drop-one-out scheme was used (Rudolph 
et al., 1998; Hutton et al., 2000). Instead of removing just one 
radiograph from the initial set of cephalograms, five radiographs 
that were later used for performance testing were removed. 
Thus, not only accuracy of the algorithm could be tested but 
also the accuracy of each AAM.

Building statistical models of shape and texture

The first step in building statistical models of appearance 
is data acquisition. The training set consists of annotated 
images, where key landmark points are marked on each 
example object. Suitable normalization is then undertaken 
after which the data are ready for analysis and can be 
described in terms of statistical models. The process is 
divided into three steps: capture, normalization, and analysis 
(Stegmann, 2000).

In total, 17 standard cephalometric landmarks and 114 
pseudo-landmarks were used to define statistical models of 
shape and texture (Figure 1). For this purpose, the open C++ 
source code set of the AAM tools were partially modified and 
used in this study. Each of the 131 landmarks was manually 
identified by one observer on five occasions. The ‘gold 
standard’ (the closest assessment of a landmark position that 
can be achieved with existing technology and science) was 
defined as the mean of the five recordings. This gold standard 
was also used to assess and compare landmarking errors in 
both the automatic and manual approaches.

Given such a set, a statistical model of shape and texture 
variation can be generated by applying principal component 
analysis to the set of vectors describing the shapes and 
textures in the training set (Cootes et al., 2001; Cootes and 
Taylor, 2001; Vucinic, 2006). The shape of an object can 
be represented as a vector x and the texture (or grey levels) 
as vector g. The appearance model has parameters c 
controlling the shape and texture according to:

,

,
s

g

x x Q c

g g Q c

Figure 1  Example of cephalometric image annotated with 131 landmark 
points.

Figure 2  First mode of variation of an appearance model, describing 
some possible variations in both the shape and the texture component of 
the synthesized image, seen across 60 training images (Left, –28D; centre, 
mean; right, +28D).
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Figure 3  Multi-resolution active appearance model (AAM) search. (a) Initial positioning of the AAM; (b–g) AAM 
search through different resolution levels; (h–j) final convergence of the AAM and image.

faster and from further away than searching at a single 
resolution (Cootes et al., 2001; Stegmann, 2004).

Model and method evaluation

The accuracy of each of the 60 templates was tested on five 
cephalograms that had not been used in the training phase, 
according to the leave-five-out methodology. For each template, 
training was undertaken on 55 cephalograms and testing on the 

five remaining cephalograms. In this way, performance of the 
AAM method was tested 300 times and its accuracy then 
estimated as the average error of all landmark detections.

Error in automatic landmark identification was calculated 
as the Euclidean, x- and y-axis distance from their manually 
determined position (gold standard). The bisecting line from 
the image of the cephalostat through the centre of the machine 
ear rod was defined as the y-axis, and the line perpendicular 
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Table 2  Median and 80th percentile values of landmarking errors for manual landmark identification (in mm).

Cephalometric landmarks Median (Euclidean) Minimum Maximum 80th percentile Median (x-axis) Median (y-axis)

Sella (S) 0.18 0.02 0.45 0.29 0.07 0.12
Nasion (N) 0.38 0.06 3.83 1.36 0.25 0.29
Porion (Po) 0.21 0.03 2.87 0.51 0.20 0.05
Orbitale (Or) 0.24 0.07 2.10 0.70 0.18 0.10
Subspinale (A) 0.92 0.09 16.62 3.30 0.16 0.55
Anterior nasal spine (ANS) 0.47 0.06 8.56 1.12 0.34 0.13
Posterior nasal spine (PNS) 0.40 0.07 2.52 0.78 0.29 0.15
Supramentale (B) 0.80 0.06 4.25 1.52 0.09 0.79
Pogonion (Pg) 0.23 0.00 1.16 0.51 0.04 0.22
Gnathion (Gn) 0.34 0.02 1.28 0.58 0.19 0.17
Menton (Me) 0.66 0.09 2.57 1.02 0.59 0.15
Gonion (Go) 0.83 0.09 4.67 1.62 0.45 0.65
Articulare (Ar) 0.36 0.06 4.93 1.49 0.21 0.28
Incision superior (Is1u) 0.14 0.03 1.48 0.22 0.10 0.07
Apex superior (Ap1u) 1.07 0.09 3.19 1.64 0.38 0.85
Incision inferior (Is1l) 0.19 0.02 2.94 0.30 0.10 0.12
Apex inferior (Ap1l) 0.90 0.22 4.88 2.37 0.44 0.70

X (average) 0.49 0.06 4.02 1.14 0.23 0.32

to the y-axis through the centre of the machine ear rod as the 
x-axis. Thus, it was possible to evaluate if automatic landmark 
identification followed a certain envelope pattern, similar to 
manual detection. The identification of points subspinale (A) 
or supramentale (B), for example, is prone to error in the 
perpendicular rather than in the horizontal plane (Liu et al., 
2000).

Statistical analysis

Statistical evaluation using the Shapiro–Wilk test, frequency 
histogram, and normal probability plot confirmed that the 
collected data were not normally (Gaussian) distributed 
(Stevens and D’Agostino, 1986). Therefore, non-parametric 
statistical analysis was applied to the data: the average 
landmarking errors of repeat measurements for each method 
were determined using the median value and 80th percentile 
as a measure of spread. Differences between methods were 
examined using the non-parametric Wilcoxon signed rank 
test (Conover, 1980; Turner and Weerakone, 2001). Statistical 
analyses were performed using the Analyse-it for Microsoft 
Excel, version 1.62 (Analyse-it Software, Ltd, Leeds, UK) 
and the Statistical Package for Social Sciences, version 13.00 
(SPSS, Inc., Chicago, Illinois, USA).

Error of the method

Ten cephalograms were randomly selected and the gold 
standard for all the landmarks reassessed 1 month after the 
original recordings. As recommended by Houston (1983) 
and Battagel (1993), the error of the method was assessed 
for random error using Dahlberg’s formula. A paired t-test 
was also performed to assess systematic error. Dahlberg’s 
values demonstrated that random error ranged from 0.11 to 
0.35 mm for manual landmark identification. A paired t-test 
of the repeated measures showed no systematic errors.

Results

Average Euclidean, x- and y-axis landmarking errors for 
manual, and automatic landmark identification are shown 
in Tables 2 and 3. Best recognition performances were 
for Apex inferior (Ap1l) and Supramental (B) and the 
lowest were for Porion (Po) and Articulare (Ar). These 
results were compared with the manual method (Table 4) 
and with those obtained in previous studies (Tables 5–7). 
The overall success rate for all landmark detection 
attempts for automatic recognition was 28 per cent within 
1 mm, 61 per cent within 2 mm, and 95 per cent within 5 
mm precision (radii).

Discussion

Unlike previously tested methods (edge tracking and the 
ASM approach) where the search is made around the current 
position of each point using models of the image texture in 
small regions around each landmark, the AAM manipulates 
a full model of appearance, which represents both shape 
variation and the texture of the region covered by the model. 
This was used to generate full synthetic images of the 
modelled objects. AAM then uses the difference between 
the current synthesized image and the target image to update 
its parameters (Cootes et al., 1999). After initial testing of 
the system, the shape-based modification of the AAM 
algorithm was used, in which linear shape update is 
predicted from current texture error, since it was able to 
locate the points slightly more accurately than the original 
formulation.

The manual method for landmark detection is still 
considered the most accurate. Differences in accuracy 
between the manual and proposed method varied from 0.17 
to 3.06 mm. It was negligible for three of the 17 landmarks 
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Table 4  Wilcoxon signed rank test comparing manual and 
automatic landmark identification.

Cephalometric landmarks Difference  
(mm)

Wilcoxon  
test

P

Sella (S) 1.70 1829 <0.0001 ***
Nasion (N) 1.04 1506 <0.0001 ***
Porion (Po) 3.06 1829 <0.0001 ***
Orbitale (Or) 1.98 1816 <0.0001 ***
Subspinale (A) 0.49 1074 0.2418 NS
Anterior nasal spine (ANS) 1.53 1435 0.0001 ***
Posterior nasal spine (PNS) 1.16 1674 <0.0001 ***
Supramentale (B) 0.40 1139 0.0991 NS
Pogonion (Pg) 1.10 1774 <0.0001 ***
Gnathion (Gn) 0.97 1702 <0.0001 ***
Menton (Me) 0.57 1547 <0.0001 ***
Gonion (Go) 1.31 1645 <0.0001 ***
Articulare (Ar) 1.94 1679 <0.0001 ***
Incision superior (Is1u) 1.19 1819 <0.0001 ***
Apex superior (Ap1u) 0.65 1266 0.0098 **
Incision inferior (Is1l) 1.05 1693 <0.0001 ***
Apex inferior (Ap1l) 0.17 893 0.8713 NS

**P < 0.01; ***P < 0.001; NS, not significant.

Table 3  Median and 80th percentile values of landmarking errors for automatic landmark identification (in mm).

Cephalometric landmarks Median (Euclidean) Minimum Maximum 80th percentile Median (x-axis) Median (y-axis)

Sella (S) 1.87 0.12 9.13 3.27 1.24 0.91
Nasion (N) 1.42 0.04 13.34 2.66 0.94 0.99
Porion (Po) 3.27 0.14 9.46 4.69 2.12 1.73
Orbitale (Or) 2.22 0.22 6.44 3.81 1.59 1.05
Subspinale (A) 1.41 0.03 12.27 3.09 0.62 1.01
Anterior nasal spine (ANS) 1.99 0.14 11.75 3.49 1.31 1.00
Posterior nasal spine (PNS) 1.56 0.02 8.76 2.46 0.81 0.92
Supramentale (B) 1.20 0.04 9.77 2.15 0.59 0.68
Pogonion (Pg) 1.33 0.17 9.54 2.41 0.71 0.84
Gnathion (Gn) 1.31 0.04 9.39 2.34 0.74 0.76
Menton (Me) 1.23 0.09 10.49 2.33 1.01 0.45
Gonion (Go) 2.13 0.13 9.94 3.58 1.15 1.15
Articulare (Ar) 2.31 0.36 6.96 3.56 1.31 1.28
Incision superior (Is1u) 1.34 0.09 15.19 2.22 0.84 0.85
Apex superior (Ap1u) 1.72 0.03 12.90 2.58 0.66 1.23
Incision inferior (Is1l) 1.24 0.06 10.45 2.56 0.93 0.72
Apex inferior (Ap1l) 1.07 0.07 12.48 1.93 0.62 0.70

X (average) 1.68 0.11 10.49 2.89 1.01 0.96

(subspinale, supramentale, and apex inferior; Table 4). On 
average, for all the cephalometric landmarks, the proposed 
system had a precision of 1.68 mm, which is a considerable 
improvement with regard to other complementary automatic 
systems (Table 5; Rudolph et al., 1998; Hutton et al., 2000; 
Liu et al., 2000; Grau et al., 2001). However, care must be 
taken when comparing and interpreting such results, since 
the training data and validation data differs for all published 
studies.

Taking into account the nature of multivariate linear 
regression, it is anticipated that using a larger number of 
sample images for model training and building will lead to 

a better prediction model and consequently more accurate 
results. Therefore, the real impact of increasing the number 
of training images (potentially capturing more variations 
of morphological structures of the human skull and quality 
of cephalograms) on the performance of the proposed 
method requires further investigation. Considering that the 
accepted normal range of error for most cephalometric 
measurements is approximately ±2 mm and that inter-
expert variability can vary up to 5 mm (Liu et al., 2000), 
these results justify the potential of the studied method for 
clinical application. The AAM approach provides the 
opportunity for building more robust and precise systems 
for automatic landmark detection, as suggested by Hutton 
et al. (2000).

The magnitude of error in landmark identification 
depends on the position of the landmark. If the landmark 
is in a clear border of the craniofacial structure, such as 
sella (S) or pogonion (Pg), the error will be smaller. On 
the other hand, if the landmark is located on poorly 
defined structures which have a low signal to noise 
ratio, with many craniofacial structures overlying each 
other, such as porion (Po) and orbitale (Or), the error 
will be larger (Baumrind and Frantz, 1971). Experienced 
clinicians may be able to infer the position of landmarks 
from their background knowledge of cephalometry, 
even poorly defined ones, whereas the automatic 
systems are still unable to compete in this capacity. 
However, the results of the present research showed a 
significant improvement in locating low-contrast 
landmarks over other methods (Table 7), except the 
approaches presented by Grau et al. (2001) and Liu  
et al. (2000), but their systems were tested on a very 
small number of low resolution radiographs, making  
the results statistically unreliable. This can be attributed 
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Table 5  Comparison of the average automatic landmarking errors (mm) in different studies.

Cephalometric landmarks Rudolph et al. (1998) Hutton et al. (2000) Liu et al. (2000) Grau et al. (2001) Present study

Sella (S) 5.06 5.5 0.94 1.92 1.87
Nasion (N) 2.57 5.6 2.32 1.40 1.42
Porion (Po) 5.67 7.3 2.43 — 3.27
Orbitale (Or) 2.46 5.5 5.28 1.92 2.22
Subspinale (A) 2.33 3.3 4.29 0.90 1.41
Anterior nasal spine (ANS) 2.64 3.8 2.90 0.75 1.99
Posterior nasal spine (PNS) — 5.0 — 1.13 1.56
Supramentale (B) 1.85 2.6 3.69 — 1.20
Pogonion (Pg) 1.85 2.7 2.53 0.95 1.33
Gnathion (Gn) — 2.7 1.74 1.44 1.31
Menton (Me) 3.09 2.7 1.90 0.48 1.23
Gonion (Go) — 5.8 4.53 1.10 2.13
Articulare (Ar) — — — — 2.31
Incision superior (Is1u) 2.02 2.9 2.36 0.84 1.34
Apex superior (Ap1u) 2.17 2.9 — 0.89 1.72
Incision inferior (Is1l) 2.46 3.1 2.86 0.90 1.24
Apex inferior (Ap1l) 2.67 3.9 — 0.54 1.07

X (average) 2.83 4.08 2.91 1.08 1.68

Table 6  Comparison of the overall success rate of all landmark 
detection attempts, within 1, 2, and 5 mm precision (radii) of the 
active shape model (ASM) and active appearance model (AAM) 
approach.

Present study Hutton et al. (2000)  
automatic ASM %

Manual % Automatic AAM %

<1 mm 72 28 13
<2 mm 87 61 35
<5 mm 98 95 74

the subject showed a more extreme shape variation from the 
mean. Due to this variation, the model was not able to locate 
the outer boundaries. This is because the model only samples 
the image under its current location and within variation 
limits. There is not always sufficient information to drive the 
model outward to the correct outer boundary. This can be 
overcome by modelling the whole surface of the radiograph 
or by using a larger number of sample images for model 
training that will capture even these extreme variations. 
Alternatively, it may be possible to combine different 
methods and include explicit searching outside the current 
patch, for instance by searching along normal to current 
boundaries as in the ASM (Cootes and Taylor, 2001).

Conclusions

Based on the obtained results, the following conclusions 
were made:
 

	1.	 The AAM approach can adequately represent the average 
shape and texture variations of craniofacial structures on 
digital radiographs. As such it can successfully be 
implemented for automatic localization of cephalometric 
landmarks.

	2.	 An increase in overall precision and detection of low-
contrast cephalometric landmarks was achieved in 
comparison with other automatic systems.

 

Considering the established potentials and advantages of 
the AAM, it is expected that by creating more precise 
statistical models of shape and texture (based on a larger 
number of radiographs), and refining the AAM algorithm in 
the final adaptation phase, it will be possible to use it as a 
completely automatic system for automatic detection of 
cephalometric landmarks.

to the fact that cephalometric images are very rich in 
subtle grey-level variations and in such cases an 
appearance model can represent both the shape and 
texture variability seen in a training set, better than 
edge-tracking methods.

The pattern of errors for most landmarks was similar to 
that found with manual tracing. Distribution of detection 
attempts for landmarks located on edges follows the shape 
of the border of the craniofacial structures. Landmarks lying 
on vertical borders, such as nasion (Na), are more accurately 
located in the horizontal dimension as opposed to the 
vertical dimension (Figure 4). Similarly, landmarks lying 
on horizontal edges are more accurately located in the 
vertical dimension. This is in accordance with the findings 
of Forsyth and Davis (1996).

Example of failure

Figure 5 shows an example where the AAM failed to locate 
boundaries correctly on images used for testing. In this case, 
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Figure 4  Distribution of automatic detection attempts (a) for the 
landmark nasion (N) (b).

Table 7  Comparison of mean landmarking errors (mm) of low (L)- and high (H)-contrast  cephalometric landmarks.

Rudolph et al. (1997) Rudolph et al. (1998) Liu et al. (2000) Hutton et al. (2000) Grau et al. (2001) Present study

L H L H L H L H L H L H

Mean error 4.30 2.65 3.85 2.56 2.88 2.91 5.02 3.52 1.32 0.91 2.03 1.47
Difference 1.65 1.29 −0.03 1.50 0.41 0.56

Figure 5  An example of a search failure, where the active appearance 
model did not locate the correct outer boundaries of the lower jaw.
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