
European Journal of Orthodontics 33 (2011) 365–371 © The Author 2010. Published by Oxford University Press on behalf of the European Orthodontic Society.
doi:10.1093/ejo/cjq084 All rights reserved. For permissions, please email: journals.permissions@oup.com
Advance Access Publication 5 October 2010

Introduction

Bone is a dynamic tissue, which continuously undergoes 
adaptive remodelling, i.e. resorption and apposition, to 
meet the requirements of its functional environment. The 
remodelling rate is a major determinant of the degree of 
mineralization of bone (DMB; Boivin and Meunier, 2002). 
A higher remodelling rate decreases the time available 
for secondary mineralization, which results in bone with a 
lower DMB (Boivin et al., 2009).

The remodelling rate of bone is related to the magnitude 
of intermittent mechanical loading and the resulting dynamic 
strains in the tissue (Lisková and Hert, 1971; Turner, 
1998). In general, more heavily loaded bone has a higher 
remodelling rate and is therefore less mineralized and less 
stiff than lower loaded bone (Rubin and Lanyon, 1985; 
Cullen et al., 2001). Regional differences in the DMB of 
cortical bone have been described in a number of species 
(Riggs et al., 1993; Loveridge et al., 2004; van Ruijven 
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SUMMARY A reduction in mechanical loading of the mandible brought about by mastication of soft food 
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The effect of a reduction in masticatory functional load on the degree and distribution of mineralization 
of mandibular bone was investigated in male juvenile New Zealand White rabbits. The experimental 
animals (n = 8) had been raised on a diet of soft pellets from 8 to 20 weeks of age, while the controls 
(n = 8) had been fed pellets of normal hardness. The degree of mineralization of bone (DMB) was assessed 
at the attachment sites of various jaw muscles, the condylar head, and the alveolar process. Differences 
between groups and among sites were tested for statistical significance using a Student’s t-test and 
one-way analysis of variance, respectively.

The DMB did not differ significantly between the experimental and control animals at any of the sites 
assessed. However, in the rabbits that had been fed soft pellets, both cortical bone at the attachment sites 
of the temporalis and digastric muscles and cortical bone in the alveolar process had a significantly higher 
DMB than cortical bone at the attachment site of the masseter muscle, while there were no significant 
differences among these sites in the control animals.

The results suggest that a moderate reduction in masticatory functional load does not significantly 
affect the remodelling rate and the DMB in areas of the mandible that are loaded during mastication but 
might induce a more heterogeneous mineral distribution.

et al., 2007). This regionally heterogeneous organization of 
bone mineral has been attributed to regional differences in 
the magnitude and mode of strain brought about by 
mechanical loading (Skedros et al., 1994).

Under physiological conditions, intermittent mechanical 
loading of bone is caused predominantly by muscle 
contractions. The muscles thus provide an important 
mechanical stimulus for bone remodelling by inducing 
strains in the skeletal system (Turner, 2000). The significance 
of muscle-generated bone loading is illustrated by the effect 
on the skeleton under conditions of increased or decreased 
muscle activity. For example, the loss of normal physiologic 
loading after spinal cord injury causes rapid severe bone 
loss in the paralyzed extremities of affected individuals, 
which can be counteracted by long-term electrical stimulation 
of muscles (Dudley-Javoroski and Shields, 2008).

In the masticatory system, long-term alterations in the 
pattern of muscular strains can be enforced by changing the 
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consistency of the available food (Yamada and Kimmel, 
1991; Kiliaridis et al., 1996). For instance, the continuous 
intake of a soft diet during growth and development has 
been shown to reduce the functional capacity of jaw muscles 
(Kiliaridis and Shyu, 1988; Liu et al., 1998) and to influence 
the morphology (Abed et al., 2007; Ödman et al., 2008; 
Enomoto et al., 2010) and internal bone structure of 
the mandible (Bresin et al., 1999). The reduction in 
intermittent mechanical loading of the mandible during 
mastication of a soft diet may also decrease the rate of 
bone remodelling (Bouvier and Hylander, 1981), which, in 
turn, would increase the DMB. As mechanical loading 
during mastication is not evenly distributed over the 
mandible, this increase might be regionally different.  
For instance, changes in the DMB as a result of altered 
mechanical stimulation might be most pronounced in areas 
where muscle contractions load mandibular bone directly, 
such as the attachment sites of the jaw muscles or in areas 
where muscle contractions create reaction forces, such as 
the alveolar process and temporomandibular joint.

The aim of this study was to investigate the effect  
of a reduction in masticatory load on the mineralization 
of mandibular bone. For this purpose, the degree and 
distribution of mineralization was assessed in mandibles 
of rabbits that had been fed diets of different physical 
consistency during late postnatal development. Since the 
DMB is assumed to be related to the mechanical loading 
generated by muscle contractions, it was hypothesized that 
the DMB of mandibular bone would show region-specific 
increases, especially at the sites of muscle attachment, in 
response to reduced food hardness.

Materials and methods

Animal experiment and tissue preparation

The animal experiment has been fully described in Part 1. In 
brief, 16 male New Zealand White rabbits were randomly 
divided into two equal-sized groups at the age of 8 weeks. 
The experimental group was fed a diet of soft pellets 
requiring significantly reduced peak loadings (10 N/cm2) to 
break the pellet in comparison with the standard pellets 
(120 N/cm2) fed to the control group. At 20 weeks of age, 
the animals were killed, their mandibles were dissected, 
carefully freed from soft tissues, and split in half at the 
symphysis. The tooth-bearing fragments were separated 
from the ascending rami by vertical cuts carried out dorsal to 
the crowns of the molars. Care was taken not to cut the bone 
at the attachment sites of the masseter and medial pterygoid 
muscles. All bone samples were obtained within 8 hours 
post mortem and stored in methanol at 4°C before analysis.

Degree and distribution of mineralization

The right hemimandibles were scanned in a micro-computed 
tomography system (mCT 40; Scanco Medical AG, Brüttisellen, 

Switzerland) at an isotropic spatial resolution of 18 mm, as 
described in detail elsewhere (Mulder et al., 2004). The 
computed linear attenuation coefficient of the X-ray beam 
for each volume element (voxel) was represented by a 
grey value in the reconstruction. This attenuation coef-
ficient is proportional to the local DMB (Nuzzo et al., 2002; 
Mulder et al., 2004).

The DMB was determined in eight predefined volumes 
of interest (VOI) of each hemimandible as the mass of the 
mineralized bone tissue relative to the volume of bone. This 
parameter is independent from the total volume or the 
amount of bone present in the VOI. The VOIs were selected 
at the attachment sites of the superficial masseter (M1–M3, 
ventral to dorsal), superficial temporalis, medial pterygoid, 
and digastric muscles, in the alveolar process adjacent to 
the second molar, and within the condylar head (Figure 1). 
The VOIs contained only cortical bone, except for that 
selected at the condylar head, which contained both cortical 
and cancellous bone.

Three-dimensional reconstructions of the VOIs were 
segmented to discriminate bone from background. The 
optimum  thresholds for the VOIs were visually determined 
in four scans by gradual variation and comparison of  
the outcome with the original scan (Renders et al., 2006). 
The mean values were applied as fixed thresholds to the 
segmentation of all VOIs to allow comparison of the samples 
(Ding et al., 1999). This procedure was performed 
separately for the VOIs containing only cortical bone and 
those containing both cortical and cancellous bone. In a 
segmented image, only voxels with a linear attenuation 
value above the threshold, i.e. those representing bone, kept 
their original grey value, while voxels with a linear attenuation 
value below the threshold were transparent. The two outermost 
voxel layers characterized as bone were disregarded as these 
layers were likely to be corrupted by partial volume effects. 
Each grey value was then converted into a DMB value, using 
reference measurements of a calibration phantom containing 
hydroxyapatite in concentrations of 0, 50, 200, 800, and 1200 
mg/cm3 (QRM GmbH, Möhrendorf, Germany). The error of 
the method, determined as the relative difference between the 
measured and actual mineral density, was less than 3 per cent.

Statistical analysis

Mean values, standard deviations (SDs), coefficients of 
variation, and frequency distributions of the DMB were 
calculated for each VOI. The width of each distribution curve 
was calculated as twice the value of the SD. Differences 
between experimental and control groups were tested  
for statistical significance, for each VOI separately, using a 
Student’s t-test, after the data had been tested for normality 
(Kolmogorov-Smirnov test). Differences among VOIs were 
tested for statistical significance, for each group of animals 
separately, using one-way analysis of variance with 
Holm-Sidak’s method as the post hoc pairwise comparison 
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procedure. Statistical analyses were performed using 
SigmaStat 3.5 (Systat Software Inc., Point Richmond, 
California, USA) with P-values of less than 0.05 considered 
statistically significant.

Results

Mean values, SDs, and coefficients of variation of the DMB 
in the VOIs studied are shown in Table 1. Statistical testing 
revealed no significant differences between the experimental 
and control groups. However, in both the experimental and 
control groups, there were statistically significant differences 
in the DMB among the VOIs. In the experimental group, all 

Figure 1 Lateral (top) and medial (bottom) views of a reconstructed 
right hemimandible showing the volumes of interest. C: condylar head. 
Selection cranial to the greatest medio-lateral extent and limited to the 
anterior fourth of the condylar process. M1–M3: attachment site of the 
superficial masseter muscle. Selections are bounded by lines perpendicularly 
intersecting a reference line, which connects the notches ventrocaudal and 
craniodorsal to the mandibular angle, at 25, 50, 75, and 100 per cent of its 
length. T: attachment site of the superficial temporalis muscle. A: alveolar 
bone. Selection medial to the second molar and cranial to a reference line 
parallel to the lower border of the mandible at the height of the incisor 
alveolar process. D: attachment site of the digastric muscle. Selection 
dorsal to the symphysis and between two reference lines parallel to the 
lower border of the mandible at 50 and 100 per cent of the distance between 
the lower border of the mandible and the most cranial part of the 
symphysis. P: attachment site of the medial pterygoid muscle. Selection is 
bounded by lines perpendicularly intersecting a reference line, which 
connects the notches ventrocaudal and craniodorsal to the mandibular 
angle, at 33 and 66 per cent of its length.

VOIs containing only cortical bone, except for those in 
the mid- (M2) and dorsal (M3) parts of the attachment site 
of the masseter muscle, had a higher DMB than that selected 
within the condylar head. In addition, the attachment sites 
of the temporalis and digastric muscles and the alveolar 
bone medial to the second molar had a higher DMB than the 
dorsal part (M3) of the attachment site of the masseter 
muscle. The alveolar bone was also more highly mineralized 
than the mid-part (M2) of the attachment site of the masseter 
muscle. In the control group, all VOIs containing only 
cortical bone, except for that selected in the dorsal part 
(M3) of the attachment site of the masseter muscle, had a 
higher DMB than the VOI in the condylar head. These 
findings were similar to those in the experimental group. In 
contrast to the experimental group, there were no significant 
differences among the VOIs containing only cortical bone 
in the control group.

The frequency distribution curves of the DMB (Figure 2) 
did not differ significantly in width between the groups 
for any of the VOIs, suggesting that the degree of variation 
in DMB within the individual VOIs was similar in the 
experimental and control animals. The difference in their 
relative positions, i.e. the wider spread of the curves, 
indicated a greater heterogeneity in DMB among the sites 
studied in the experimental animals.

Discussion

The present study investigated the effect of a masticatory 
functional change on the mineralization of mandibular 
bone. It was assumed that a reduction in intermittent 

Table 1 Mean values ± standard deviations of degree of 
mineralization of bone (DMB) in the volumes of interest studied. 
HA, hydroxyapatite; CV, coefficient of variation.

Experimental* Control*

DMB (mg HA/cm3) CV (%) DMB (mg HA/cm3) CV (%)

M1** 1151.32 ± 122.44a 10.63 1171.37 ± 80.53a 6.87
M2** 1093.10 ± 79.86b 7.30 1116.08 ± 58.38b 5.23
M3** 1034.55 ± 67.88c,d,e 6.56 1076.34 ± 46.31 4.30
T** 1175.62 ± 77.01c,f 6.55 1154.27 ± 94.94c 8.22
P** 1150.04 ± 94.87g 8.24 1183.04 ± 70.75d 5.98
D** 1236.83 ± 108.63d,h 8.78 1195.46 ± 146.38e 12.24
A** 1277.96 ± 103.78b,e,i 8.12 1212.80 ± 70.24f 5.79
C** 987.60 ± 36.39a,f,g,h,i 3.68 996.62 ± 34.63a,b,c,d,e,f 3.47

*Statistically significant differences among volumes of interest, one-way 
analysis of variance P < 0.05.
**Volumes of interest selected at the attachment sites of the masseter 
(M1–M3), temporalis (T), medial pterygoid (P), and digastric (D) 
muscles, in the alveolar process (A) and within the condylar head (C). 
For detailed explanation, see Figure 1.
Within each column, groups depicted by the same superscript letters 
are statistically significantly different in post hoc pairwise comparison, 
Holm-Sidak’s method P < 0.05.
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mechanical loading during mastication of a soft diet would 
decrease the rate of bone remodelling and increase the DMB. 
The results showed that reduced food hardness did not cause 
significant changes in the DMB at the examined sites. These 
findings differ from the results of other studies, which have 
shown that feeding diets of different consistency to growing 
rats might lead to a reduction in the rate of bone apposition 
(Yamada and Kimmel, 1991), resulting in lower bone mass 
(Bresin et al., 1999) and alveolar bone density (Mavropoulos 
et al., 2004, 2005) as well as in a higher degree of 
mineralization of mandibular bone (Tanaka et al., 2007).

There are a number of possible reasons for this difference. 
One possibility is that the experimental period in the present 
research might have been too short to induce significant 
changes in the DMB. However, in the current study, the 
rabbits were fed diets of different consistency for 12 weeks, 
which, considering their life span, was comparable with 
experimental periods of 4–6 weeks typically used in similar 
studies on rats (Bresin et al., 1999; Maki et al., 2002; 
Mavropoulos et al., 2004, 2005). Furthermore, changes in 
mandibular morphology resulting from decreased masticatory 
function have been reported in rabbits as early as 40 days after 
a reduction in dietary consistency (Tuominen et al., 1993). 
Taking these considerations together, the duration of diet 

Figure 2 Mean distributions of the degree of mineralization of bone 
in the various volumes of interest studied in the experimental (top) and 
control (bottom) groups. For explanation of legend see Figure 1. HA, 
hydroxyapatite.

change in the present study was considered sufficiently long 
to induce changes in mandibular bone properties.

Another possible reason for the above difference in the 
findings might be a greater interindividual difference, which 
would mask the changes produced by the alteration in 
masticatory load, particularly with regard to the very 
small differences in the DMB between the experimental 
and control groups reported elsewhere (Tanaka et al., 
2007). This, however, is probably not the case because 
interindividual variation in the DMB (Table 1) was low, as 
shown by the low coefficients of variation, and was comparable 
with the results of the study of Tanaka et al. (2007). This 
finding supports the hypothesis proposed by Reid and 
Boyde (1987) that under physiological conditions, the rate 
of bone remodelling at a particular site can be considered a 
constant biological parameter.

Similar to earlier studies, the present investigation was 
carried out on juvenile animals as functional alterations 
influence bone tissue more effectively during adolescence 
(Parfitt, 1994). However, it has to be noted that changes in 
the properties of growing bones cannot, other than in a 
mature organism, solely be attributed to adaptive remodelling, 
i.e. resorption and apposition, but may be influenced by 
modelling, i.e. bone deposition during growth.

Most likely, the above disparity in results is based on 
the difference in food hardness used in various studies. 
Significant changes in mandibular bone properties in 
response to reduced food consistency have been reported 
in animals fed powdered (Maki et al., 2002; Tanaka et al., 
2007) or liquefied (Yamada and Kimmel, 1991; Bresin et al., 
1999; Mavropoulos et al., 2004, 2005) food. Although this 
experimental approach imposes greater differences in 
masticatory functional loads on experimental and control 
animals, it also alters more than just the dietary consistency. 
Powdered or liquefied food eliminates the need for 
mastication (Mavropoulos et al., 2004) and changes the 
pattern of food uptake from incising and chewing into 
licking and sucking (Kitagawa et al., 2004). In contrast 
to this experimental approach, the present study used 
purpose-made soft pellets, which did not change the 
feeding behaviour of the experimental animals. With regard 
to the difference in the consistency of the standard pellets 
fed to the control animals, these pellets mimic a 10-fold 
difference in the compressive strength between hard and 
soft foods normally eaten by humans (Yanagisawa et al., 
1985). The continuous intake of these pellets did not 
induce a significant alteration in the DMB in the present 
study. This result is in accordance with the finding of Maki 
et al. (2002) who, comparing powdered and kneaded diets 
with pellets of normal hardness, found a significantly 
different mandibular DMB in the animals fed a powdered 
diet, but not in those fed a kneaded diet with a consistency 
similar to the soft pellets used in the present study. 
Considering these findings, it appears that the DMB 
tends to increase only as a result of a significant reduction 
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in masticatory activity induced by an unusually soft diet, 
such as a powdered diet.

The importance of bone remodelling in determining the 
average level of bone mineralization is generally accepted. In 
adult bone, the rate of remodelling is the major biological 
determinant of the DMB (Boivin et al., 2009). The DMB 
increases when bone formation is suppressed and decreases  
when new bone formation is increased (Boivin and 
Meunier, 2002). The significantly higher DMB in the 
mandibles of rats raised on a powdered diet has been 
attributed to a reduction in the strain stimulus for new bone 
formation (Tanaka et al., 2007). This reduction may have 
led to a preponderance of bone resorption as a result of 
disuse atrophy (Ferretti et al., 2003), which is always 
observed in periods of physical inactivity (Forsén et al., 
1994). The findings of the present study suggest that the 
gentle loading during mastication of the softer pellets 
might have been sufficient exercise to prevent disuse 
atrophy. These considerations are in accordance with the 
finding that low-level mechanical signals can inhibit 
osteoclastic activity in the growing skeleton (Xie et al., 2006).

Regional differences in the DMB have been reported for 
various bones and species (Riggs et al., 1993; Loveridge et al., 
2004; van Ruijven et al., 2007). The present investigation 
revealed significant differences in the DMB among the 
mandibular sites studied. In both the experimental and 
control groups, the DMB in the condylar head was lower 
than that at the cortical sites of the mandibular body, most 
probably because of the presence of cancellous bone in the 
condylar head. Differences in the DMB between cancellous 
and cortical mandibular bone are well documented (Mulder 
et al., 2006; van Ruijven et al., 2007; Willems et al., 2007) 
and have been attributed to a higher remodelling rate in 
cancellous bone compared with cortical bone (Renders 
et al., 2006). The DMB also differed significantly among 
cortical sites of the mandible but only in the experimental 
group. The attachment site of the masseter muscle was less 
highly mineralized than those of the temporalis and digastric 
muscles and the alveolar bone site. These findings suggest a 
greater heterogeneity in the DMB in the mandibles of the 
experimental animals.

Regional adaptations in material organization of bone 
reflect regional variations in strain magnitude (Skedros 
et al., 1994). It is plausible that the attachment site of the 
masseter muscle, which is the main generator of force 
during mastication (Weijs et al., 1989), is more heavily 
loaded than the attachment sites of the digastric and 
temporalis muscles or the bone of the alveolar process. In 
the present study, a lower DMB was found at the attachment 
site of the masseter muscle, which most likely resulted from 
a higher remodelling rate. It has been suggested that any 
adaptive remodelling influences the material properties of 
bone so as to achieve some mechanical advantage or to 
minimize material while maintaining a constant safety 
factor between peak functional stress and appropriate yield 

stress (Lanyon et al., 1979). By rendering the bone more 
elastic, the lower DMB at the attachment site of the masseter 
muscle might constitute an advantage as it allows more 
bending of the bone during muscle contractions. The higher 
DMB at the attachment sites of the digastric and 
temporalis muscles and in the alveolar process might 
have been caused by suppression of bone formation relative 
to bone resorption. As it is advantageous to maintain bone 
weight as low as possible, this might reflect the body’s 
endeavour to optimize energy use by minimizing the amount 
of material needed to maintain structural integrity under 
altered loading conditions.

Bone mineralization is influenced by the strain distribution 
in cortical and cancellous bone (van Ruijven et al., 2007). 
The greater heterogeneity in the DMB in the experimental 
group might also have resulted from a relative strain 
distribution in the mandible, which was different from that in 
the control group. It is reasonable to assume that the intake of 
soft pellets led to less deformation of the mandible during 
mastication, and the local strains at the attachment sites of 
jaw muscles had, therefore, more influence on the DMB.

Adaptive responses depend on timing, duration, and 
intensity of a given stimulus. In the present investigation, 
the experimental stimulus, i.e. the reduction in masticatory 
load, induced significant changes in the phenotypic properties 
of the less recruited jaw muscles (see Part 1) but did not 
cause significant changes in the DMB of the less loaded 
mandibular bone. Studies using similar experimental stimuli 
have shown that reducing the mechanical loading of the 
mandible during growth and development can be effective 
in increasing the DMB in the mandible (Tanaka et al., 
2007). It seems, therefore, unlikely that the timing or the 
duration of the stimulus was ineligible to induce an adaptive 
change in the DMB of mandibular bone. However, it is 
possible that the stimulus was not sufficiently intense to 
cause significant changes in the mandibular DMB. The 
remodelling rate of mandibular bone, which is the main 
determinant of its DMB, might be under stronger genetic 
control and less easily influenced by environmental factors 
than the phenotypic properties of the jaw muscles. For 
this reason, a more intensive stimulus might be required 
to induce changes in the DMB of the mandible. Taken 
together, these considerations lend support to the idea 
that different intensities of a given stimulus might  
be necessary to modify the properties of muscular and 
skeletal craniofacial tissues.

Conclusions

The results of the present study suggest that a reduction in 
masticatory load within the range of physical consistency of 
foods eaten under normal life conditions does not strongly 
affect the DMB of mandibular bone in areas in which muscle 
contractions load mandibular bone directly or indirectly but 
might induce a more heterogeneous mineral distribution.
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