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Introduction

Cleidocranial dysplasia (CCD, MIM#119600) is a rare, 
well-defined skeletal disorder with autosomal dominant 
inheritance and complete penetrance. Although it affects the 
whole skeletal system (Spranger, 1974; Gorlin et al., 1990), 
the main clinical manifestations of CCD are malformations 
of the skull and clavicles, which lead to the typical and 
striking appearance of the face and shoulders (De Giorgi, 
1971): brachycephalia with a wide forehead, frontal and 
parietal bossing, hypertelorism, deficiencies in the nasal 
and lachrymal bones with a depressed nasal bridge and a 
broad base of the nose, hypoplastic malar areas with 
deficient pneumatization of the paranasal sinuses, and open 
skull sutures with late closure of wide fontanelles and 
wormian bones (Chitayat et al., 1992; Gorlin and Goldman, 
1977). Other associated skeletal defects are: hypoplasia of 
the pelvis with a wide symphisis pubis, often necessitating 
caesarean section in pregnant females, spina bifida, and 
delayed and deficient ossification of long bones, which 
accounts for a short and broad body build, usually apparent 
between the ages of 4 and 8 years, while birth weight and 
length are normal (Gorlin et al., 1990; Jensen, 1990; 
Chitayat et al., 1992; Richardson and Deussen, 1994).

Oral and dental aspects are particularly evident and often 
eruption difficulties of the permanent incisors are the first 
indication for a patient, who does not present any other 
problem (Calabrese, 1974) and sometimes may not be 
aware of the condition until about 10 years of age (Jensen 
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(a 27-year-old female, her 54-year-old mother and 24-year-old sister) affected by the typical CCD phenotype, 
which was proven to alter splicing of the RUNX2 messenger RNA, underscoring the contribution of novel 
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and Kreiborg, 1990). Dental treatment is difficult and 
time consuming, often requiring surgical, orthodontic, and 
prosthodontic intervention.

It has been established that haploinsufficiency of an 
osteoblast-specific transcription factor, core-binding factor 
alpha 1 (CBFA1), causes CCD and is essential in skeletal 
development by regulating osteoblast differentiation and 
chondrocyte maturation (Lee et al., 1997; Mundlos et al., 
1997; Inada et al., 1999; Kim et al., 1999; Enomoto et al., 
2000; Takeda et al., 2001; Ueta et al., 2001; Lee and Zhou, 
2004). CBFA1 is encoded by the RUNX2 gene 
(GeneBank#AF001450; previously earlier synonyms are 
PEBP2A1 and AML3), located on chromosome 6p21.

Forty-six different human mutations of the RUNX2 gene 
have been described in the literature, including familial and 
sporadic cases (Otto et al., 2002; Lo Muzio et al., 2007). 
Genotype–phenotype correlation is not clear; according to 
some authors, skeletal growth and dental development 
could be related to the type of changes in the RUNX2 gene 
(Zhou et al., 1999; Yoshida et al., 2002), while others found 
no phenotypical difference between patients, and reported 
that the observed variability is within the spectrum of the 
gene (Quack et al., 1999; Golan et al., 2002).

The genetic basis of CCD was found when Lee et al. 
(1997) and Mundlos et al. (1997) identified a microdeletion 
of the short arm of chromosome 6p21, within a region 
containing CBFA1, the master gene whose protein product 
is known to be involved in early prenatal osteogenesis and 
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bone remodelling. Previous studies on mice had highlighted 
a possible role of the different transcription factors 
belonging to Runt family in skeletal development. In 
particular, RUNX2 seemed to act as potent inducer of the 
late stages of chondrocyte and osteoblast differentiation  
(Lee et al., 1997; Mundlos et al., 1997; Inada et al., 1999; 
Kim et al., 1999; Enomoto et al., 2000; Takeda et al., 2001; 
Ueta et al., 2001; Lee and Zhou, 2004), with important 
functions in human endocondral ossification (Zheng et al., 
2005). Further genetic screening of human ortholog gene, 
RUNX2, revealed heterozygous mutations associated with CCD.

The aim of this presentation is to report the molecular 
characterization of a novel RUNX2 gene mutation in an 
Italian family showing a typical CCD phenotype, which 
emphasizes the contribution of a novel altered splicing 
mechanism to the aetiology of this disease.

Subjects and methods

The index case was a 27-year-old female patient referred 
for treatment to the Ortognatodonzia Service of ‘San 
Giovanni Battista’ Hospital, Torino, Italy. Treatment was 
directed to orthodontic traction of the impacted teeth visible 
on a Panorex (Figure 1A) and a three-dimensional computed 
tomography (Figure 1B).

Intra and extraoral appearance was suggestive of CCD: a 
large number of unerupted teeth, a brachycephal aspect of 
the face, sloping shoulders, and a short and broad body 
build. CCD was confirmed by a chest radiograph showing 
clavicular hypoplasia (Figure 1C) and by a familial history 
of CCD in the 54-year-old mother and the 24-year-old 
sister, both radiographically examined to confirm the 
diagnosis. All three patients were referred to the Medical 
Genetics Service of IRCCS ‘Casa Sollievo della Sofferenza’ 
Hospital for RUNX2 gene analysis.

After written informed consent, peripheral blood was 
collected from the three patients. DNA was extracted from 
lymphocyte using a standard phenol–chloroform protocol 
(Sambrook et al., 1989) and a mutation in the RUNX2 gene 
was performed. Polymerase chain reaction (PCR) 
amplifications for all seven RUNX2 coding regions, 
including the exon–intron boundaries, in all subjects were 
established as previously described by Mundlos et al. 
(1997). Amplifications were carried out in 25 ml reaction 
volume containing 2.5 ml 10× PCR buffer (Applied 
Biosystems, Foster City, California, USA), 0.25 nM/ml 
deoxynucleoside-3-phosphates, 20 pmol of each primer,  
1 U AmpliTaq Gold DNA polymerase (Applied Biosystems), 
and 100 ng of DNA. Cycling conditions consisted of an 
initial 12 minutes denaturation at 95°C, followed by 35 
cycles at 95°C for 30 seconds, annealing at 60°C for 30 
seconds, and extension at 72°C for 30 seconds, with final 
extension at 72°C for 7 minutes. PCR products were 
visualized by ethidium bromide staining on 2 per cent 
agarose gel, purified using the GFX PCR and Band 

Figure 1  (A) Panorex radiograph. (B) Three-dimensional computed 
tomographic reconstruction. (C) Chest radiograph of the index case.

Purification Kit (GE Healthcare, Amersham, 
Buckinghamshire, UK) and then sequenced using the 
BigDye Terminator Cycle Sequencing Kit v.1.1 (Applied 
Biosystems). Sequencing reactions were loaded on ABI 
3100 capillaries (Applied Biosystems) and analysed using 
the Sequencing Analysis software v2.0 (Applied 
Biosystems).

Whole blood RNA was collected in a PAXgene RNA 
tube (PreAnalytix; Qiagen Sciences, Germantown, 
Maryland, USA) and extracted using the corresponding RNA 
purification kit (PAXgene Blood RNA kit, PreAnalytix;  
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Qiagen) following the manufacturer’s instructions. 
Complementary DNA (cDNA) synthesis was performed 
with the QuantiTect Reverse Transcription Kit (Qiagen) 
according to the manufacturer’s instructions and the reverse 
transcription (RT)–PCR was performed using the following 
primers: forward 5′-ACAACCGCACCATGGTGGAGAT-3′ 
and reverse 5′-AGAGAACAAACTAGGTTTAGAGTC-3′, 
located in exons 1 and 4, respectively, with a PCR product 
of 437 bp. The RT–PCR products were purified and 
sequenced using the PCR forward primers.

Results

Sequence analysis of the RUNX2 gene revealed, in the index 
case, a heterozygotic nucleotide change, not previously 
detected, in the intron 2 (Figure 2A and 2B) described as 
c.580 + 1G > A and consisting of a transition G > A of the 
first base of the splicing acceptor site. The presence of 
mutation was also investigated in the other two affected 
family members, the mother and the sister (Figure 2A).

Falling into the splicing donor site of intron 2, the RUNX2 
c.580 + 1G > A mutation suggested a possible interference 
with messenger RNA (mRNA) splicing. The RUNX2 
mRNA extracted from the blood cells of the index case was 
analysed. The variation was shown to alter splicing of the 
RUNX2 mRNA since sequencing of the RT–PCR product 
obtained from the RUNX2 cDNA of the index case (Figure 3A) 
revealed the complete exclusion of the exon 2 and the 
junction of exon 1 to exon 3 (Figure 3B and 3C) leading to 
a premature predicted stop codon at position 184.

Discussion

A novel splicing mutation of the RUNX2 gene, affecting the 
donor site of intron 2 and leading to the complete skipping 

of exon 2 is reported. The final outcome of this aberrant 
splicing process is the expected truncation of the RUNX2 
protein of 323 amino acids. This genomic variation 
represents a classic example of splicing errors, described as 
a frequent molecular cause of several human disease 
phenotypes (Kim et al., 1999; Enomoto et al., 2000) and 
stresses the importance of carefully examining all point 
mutations, deletions, and splicing site substitutions 
including intronic ones to determine whether they may 
activate a canonical/noncanonical cryptic splice site. 
Mutations resulting in exon skipping account for 15–20  
per cent of mutations leading to human disease (Takeda 
et al., 2001) and, therefore, cDNA analysis is essential for 
full evaluation of the effect of putative splicing mutations, 
as well as of nucleotide changes close to the exon/intron 
boundaries in the RUNX2 gene.

CCD is a severe rare bone disorder characterized by 
skeletal system malformations due to an abnormal osteoblast 
differentiation and chondrocyte maturation (Lee et al., 1997; 
Mundlos et al., 1997; Inada et al., 1999, Kim et al., 1999; 
Enomoto et al., 2000; Takeda et al., 2001; Ueta et al., 
2001; Lee and Zhou, 2004). While the primary dentition 
seems to develop normally, the permanent dentition presents 
an evident delay in eruption with ectopia, malformations 
mostly involving the roots and supernumerary teeth (Jensen 
and Kreiborg, 1990; Richardson and Deussen, 1994). 
According to Jensen and Kreiborg (1990), the greatest 
frequency of supernumerary teeth (22 per cent) is observed in 
the maxillary incisor region and the lowest in the molar 
region (5 per cent for upper and lower jaws).

These defects are caused by derangement of ossification 
and bone resorption, which, although affecting the entire 
skeleton, tend to express themselves most strongly in bones 
ossifying in membrane. The extreme delay or arrest of 
physiologic root resorption and exfoliation of the primary 

Figure 2  (A) Pedigree of the family: Filled circles, affected, subjects I:two mother, II:one index 
case, and II:two sister; open square, I:one unaffected father and asterisk indicates the presence of the 
mutation. (B) Sequencing profile of normal (bottom) and mutated (top) DNA, showing the c.580 + 1G > 
A mutation.
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teeth are probably related to the generalized reduced bone 
resorption observed in the jaws of CCD subjects (Kreiborg 
et al., 1981). The formation of supernumerary teeth can be 
explained by incomplete or severely delayed resorption of 
the dental lamina, which is then reactivated at the time of 
crown completion of the normal permanent teeth. This 
hypothesis has previously been suggested (Hitchin and 
Fairley, 1974; Migliorisi and Blenkinsopp, 1980).

Conclusions

A molecular genetic screening programme would be helpful 
in the management of CCD patients. The dentist has a key 
role in identifying CCD patients and arranging a mutation 
search by a genetic counselling.
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