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Introduction

All physical measurements are approached with some degree 
of error. This is particularly so for anthropometric measurements 
of the type that commonly occur in clinical orthodontic research. 
If the errors are significant in relation to the measurements 
being made, they reduce the usefulness of those measurements. 
In comparative studies, measurement errors complicate 
interpretation of the results by potentially concealing important 
differences between groups or by indicating differences, which, 
in reality, do not exist. For this reason, it has become standard 
practice to include a statistical estimate of the measurement 
error in published reports of laboratory and clinical studies.

For reasons of mathematical and conceptual convenience, 
the total measurement error is generally partitioned into two 
separate classes of error: systematic and random. Systematic 
errors (also known as ‘bias’) are reproducible inaccuracies 
that lead to a measured value that is consistently larger or 
smaller than the true value. Random errors lead to variable 
differences from the true value and give rise, unpredictably, to 
measurements that are greater or smaller than the true value.

Without knowing the true value of the quantity being 
measured, it is not possible to determine the magnitude of any 
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SUMMARY This study examined the effects of different sample sizes and different levels of bias (systematic 
error) between replicated measurements on the accuracy of estimates of random error calculated using 
two common formulae: Dahlberg’s and the ‘method of moments’ estimator (MME). Computer-based 
numerical simulations were used to generate clinically realistic measurements involving random errors 
with a known distribution. For each simulation, two sets of ‘measured values’ were generated to provide 
the replicated data necessary for the estimation of the random error. Dahlberg’s and the MME formula 
were applied to these paired data sets and the resulting estimates of error compared with the ‘true’ error. 
Nine different sample sizes (n = 2, 5, 10, 15, 20, 25, 30, 50, and 100) and two different types of bias (additive 
and multiplicative) were examined for their effect on the estimated error. In each case, the estimates of 
the random error were based on the distribution of 5000 separate simulations.

The results indicate that with a sample of less than 25–30 replicated measurements, the resulting 
estimates of error are potentially unreliable and may under or overestimate the true error, irrespective of 
the formula used in the calculation. Where, however, a bias exists between the replicate measurements, 
Dahlberg’s formula can be expected to overestimate the true value of the random error even where the 
biases are small and difficult to detect by standard statistical tests. No such distorting effect was found for 
the MME formula, which provided estimates of error that were not meaningfully different from the true 
value even where relatively large biases existed between the replicates.

These results suggest the following: 1. A sample of at least 25–30 cases should be replicated to provide 
an estimate of the random error. 2. Where the original study contains fewer than 20 cases, the estimate 
of error will be unreliable. In these circumstances, it would be helpful if a confidence interval for the true 
error was also quoted. 3. Unless one can be absolutely sure that no bias exists between the replicate 
measurements, Dahlberg’s formula should be avoided and the MME formula used instead.

systematic error that may exist. Systematic errors can, 
however, be controlled by careful (and repeated) calibration of 
the observer and measuring apparatus against a known 
standard. This is not the case for random errors, but these can 
be reduced by averaging over a number of observations. 
Nevertheless, random errors set a limit on the ultimate accuracy 
that can be achieved no matter how many observations are 
averaged, and it is random error that is generally meant when 
speaking of ‘experimental’ or ‘method’ error.

The standard approach to estimating the random error is 
to replicate the measurements used in the study and then 
calculate some measure of the spread of the differences 
between them. One popular method of calculation uses the 
following equation originally described by Dahlberg (1940):

2

1

2

n

i

i

D

d

S
n

==
∑

where d is the difference between the pairs of replicate 
measurements, n is the number of cases, and SD is the 
statistical estimate of the ‘true’ error (standard deviation), sr.



159 THE RELIABILITY OF ESTIMATES OF ERROR

However, Houston (1983) cautioned that Dahlberg’s 
formula will only provide a reliable estimate of the error 
where no bias (systematic error) exists between the two sets of 
replicated measurements. Unfortunately, as Houston (1983) 
pointed out, it is very difficult to exclude even quite large 
biases with certainty particularly where the sample is small.

An alternative that provides a reliable estimate of the 
error even when a constant bias exists between the replicates 
is the square root of the ‘method of moments’ variance 
estimator (MME) given by the equation:
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where d is the difference between the pairs of replicate 
measurements, n is the number of cases, d  is the mean of 
the ds, and SM is the statistical estimate of the ‘true’ error 
(standard deviation), sr.

Although the first reference in the dental literature to the 
advantages of the MME formula over Dahlberg’s formula 
was made over 40 years ago (Ingervall, 1964), there seems 
to have been no attempt to calculate the effect of using 
Dahlberg’s formula in the presence of bias between replicate 
measurements. Even the study by Houston (1983), which 
highlighted the danger of using Dahlberg’s formula, did not 
give any clear indication of the effect of using it in the 
presence of an (unidentified) bias. It seems reasonable, 
therefore, to ask if Dahlberg’s formula produces a noticeably 
incorrect value for the true random error or is this simply a 
theoretical problem with no practical consequences?

In addition, in those studies where measurements are 
excessively time consuming or tedious, the researcher will 
usually wish to make replicate measurements of the smallest 
number of cases. A question that naturally arises is ‘how many 
replicate measurements should be made and is there a price to 
be paid for replicating too few?’. Houston (1983) suggested 
that at least 25 cases should be replicated, but otherwise the 
existing orthodontic literature gives little guidance on this point.

The present study was undertaken to examine the performance 
of the two estimators (Dahlberg’s and MME) using different 
sample sizes and in the presence of various biases in the 
replicated data. It was hoped that the findings would allow 
some simple guidelines to be formulated to assist researchers in 
making informed decisions regarding the answers to these 
questions in the different circumstances of each investigation.

Materials and methods

Numerical simulations of the process of measurement 
involving error were carried out by computer using the 
‘common precision model’ (Jaech, 1985) as the basis for 
generating the data (Figure 1). That is, a series of measured 
values were generated by adding a random error and a 
known bias to a series of predetermined ‘true’ values.

Figure 1 The mathematical models of measurement involving error 
employed in the study. a) The standard ‘base model’ for measurement 
error. b) The ‘common precision model’, which in its simplest form 
consists of two instances of the base model representing the two occasions 
of measurement. The term ‘common precision’ derives from the 
requirement that the variance of the random error (the precision) should be 
the same for both measurement occasions.

For each simulation, two sets of ‘measured values’ were 
generated to provide the replicated data necessary for the 
estimation of the error. Statistical estimates of the random 
error were made by applying Dahlberg’s and the MME 
formula to these paired data sets.

To ensure that the simulations were clinically realistic, the 
true values were derived from the frequency distribution of 
anterior cranial base length (S–N distance) for 12-year-old 
females reported in the Kings’ College cephalometric growth 
study (Bhatia and Leighton, 1993). A set of true values (mean 
64.9 mm; standard deviation 1.8 mm) was generated by 
randomly sampling from this distribution. Similarly, realistic 
levels of error were defined by reference to the root mean 
square error (error standard deviation) for S–N distance also 
reported by Bhatia and Leighton (1993). A Gaussian (normal) 
distribution of the random error was generated with a mean of 
zero and standard deviation of 0.5 mm. Samples were drawn 
at random from this distribution and added to the true values.

Two different types of bias were applied to these data: an 
additive offset (constant additive bias) as might occur with 
instrumental drift or a change in how an observer reads the 
measuring instrument and a multiplicative bias (non-constant 
bias) of the type that might occur where the radiographic object-
film distance had altered over time giving a (small) difference 
in magnification between the two sets of measurements.

Three experiments were conducted to determine the 
effect of different sample sizes and different biases on the 
estimates of error.

Experiment 1: the effect of sample size on the estimates of 
error

Nine different sample sizes were used to calculate the 
estimates of random error: n = 2, 5, 10, 15, 20, 25, 30, 50, and 



S. D. SPRINGATE160

100. No bias was applied to any of the measurements in this 
experiment. For each distribution, the mean and (empirical) 
95 per cent confidence limits were calculated. The 95 per 
cent confidence intervals (CI) were determined directly from 
the distributions and centred on the mean value.

Experiment 2: the effect of different levels of additive bias 
on the estimates of error

Using a sample size of n = 50, different additive biases 
were applied and the estimates of the random error were 
calculated for each bias. Four different magnitudes of 
additive bias were applied: 0 (no bias), 0.25, 0.5, and 1 mm.

Experiment 3: the effect of different levels of multiplicative 
bias on the estimates of error

Using a sample size of n = 50, the effect of four different 
magnitudes of multiplicative bias was examined by 
increasing the true value for one of each pair of replicates 
by: 0 (no bias), 1, 2, and 5 per cent. Estimates of the random 
error were calculated for each bias.

For each experiment, the estimates of the random error 
were based on the distribution of 5000 separate simulations. 
The mean of each distribution was taken as the most 
probable estimate of the random error. The estimates derived 
in this way were then compared with the true random error 
(0.5 mm). However, the differences were not tested for 
statistical significance because with the large samples sizes 
used in the simulations (n = 5000), differences of even a few 
micrometres in the mean values would be highly statistically 
significant but otherwise clinically meaningless.

The simulations were carried out on a desktop personal 
computer using the software program, Resampling Stats 
Version 3 (Resampling Stats Inc., Arlington, Virginia, USA; 
Chernick and Friis, 2003).

Results

Experiment 1: the effect of sample size

The results are shown in Figure 2. Although the mean of each 
distribution was close to the true value of 0.5 mm, for the 
smallest sample sizes, the range of estimates was very large 
with correspondingly wide CIs. The CI narrowed sharply 
with increasing sample size until a sample size of between 25 
and 30 was reached. From then on, there was only a small 
reduction in the width of the CI with increasing sample size 
up to n = 100. No meaningful differences were found between 
the two estimators for any of the sample sizes examined 
(Table 1). As a consequence of this experiment, a sample size 
of n = 50 was chosen for the remaining simulations.

Experiment 2: the effect of different levels of additive bias

As can be seen from Figure 3, although there was no 
detectable effect on the estimates made using the MME 

Figure 2 The effect of sample size on the distributions of the estimates of 
error in the absence of bias between the replicate measurements. The 
distributions of the estimates of random error based on 5000 simulations for 
each of the 9 different sample sizes examined in the first simulation 
experiment (experiment 1). The distributions shown are those for the 
Dahlberg formula. However, the distributions found using the method of 
moments estimator formula were similar in all respects as shown in Table 1.

formula, even the smallest bias of 0.25 mm had a significant 
influence on the estimate derived using Dahlberg’s formula. 
For biases greater than 0.5 mm, the Dahlberg estimates of 
the error were grossly misleading with a magnitude of more 
than twice the true value.

Experiment 3: the effect of different levels of multiplicative 
bias

The results are shown graphically in Figure 4. The effect of 
a multiplicative bias was markedly different for the two 
methods of estimating the random error. For Dahlberg’s 
formula, even the smallest bias (1 per cent) produced an 
estimate of error that was 34 per cent greater than the true 
value, while a 5 per cent bias led to an estimate of error that 
was over four times as great as the true value. For the MME 
formula, the same levels of bias led to estimates of error that 
were greater than the true value by only 4 and 6 per cent, 
respectively.
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Discussion

The use of replicated measurements to establish the likely 
error associated with a particular measurement process relies 
on several assumptions. One of the more important of these is 
that the errors of all replicate pairs can be legitimately pooled 
(Utermohle et al., 1983). In the strictest sense, this requires 
the ‘expected’ error to be the same for all cases in a study, 
which is unlikely to be met in practice. However, because the 

Figure 3 The effect of different levels of additive bias on the estimates of 
error. The distributions of the estimates of random error (each based on 
5000 simulations) for the four different levels of additive bias (including 
zero bias) are shown for the two methods (Dahlberg’s estimator and the 
methods of moments estimator) for estimating the error. The dashed 
vertical line and arrow at the base of the figure indicate the ‘true’ value of 
the random error (0.5 mm).

Table 1 Means and 95 per cent confidence intervals (CIs) of the 
distributions of error for the two estimators.

Sample size (n) Dahlberg’s estimator Methods of  
moments estimator

Mean 95% CI Mean 95% CI

2 0.42 0.00–0.92 0.39 0.00–0.99
5 0.48 0.08–0.88 0.49 0.07–0.92
10 0.50 0.19–0.81 0.51 0.19–0.83
15 0.51 0.25–0.76 0.52 0.26–0.77
20 0.48 0.29–0.67 0.49 0.30–0.68
25 0.51 0.31–0.71 0.52 0.32–0.71
30 0.51 0.33–0.69 0.51 0.33–0.70
50 0.49 0.37–0.62 0.49 0.37–0.62
100 0.50 0.43–0.57 0.50 0.44–0.57

For each sample size, the mean and 95% CIs are based on 5000 separate 
simulations.

error statistic is calculated using squared differences, it will 
not be a simple average of the individual errors but will 
instead be weighted towards the higher magnitude errors 
(Utermohle et al., 1983). Consequently, unless the sample 
selected for replication is as representative as possible of the 
cases in the original study, the pooling of the individual errors 
will not provide an accurate estimate of the true random error.

In practice, this means that the sample must not only be 
selected at random but also be large enough to avoid major 
sampling errors that would lead to the inclusion of 
disproportionate numbers of cases with high or low magnitude 
errors. So how large should the sample be? The first simulation 
experiment was undertaken in an attempt to answer this question.

As can be seen in Figure 2, small samples (n < 15) have 
very wide distributions with a high proportion of the values 
in the tails. Consequently, such small samples run a serious 
risk of including unrepresentative numbers of extreme 
values (extremely high or extremely low). As the sample 
size increases towards 30, the distribution narrows rapidly 
towards the mean value. Above 30 cases, further narrowing 
of the distribution occurs only slowly with increasing 
sample sizes even up to n = 100.

The suggestion by Houston (1983) that a minimum of 25 
cases must be replicated is therefore broadly supported by the 
results of this study. Greater numbers of cases will provide a 
more reliable result but replicating more than 50 cases 
provides almost no meaningful advantage. This result was 
true regardless of which formula is used to estimate the error.

For studies with fewer than 25–30 cases, measurements 
from all the cases should therefore be replicated but where 
there are fewer than approximately 20 cases, the resulting 
error statistic cannot be relied upon to provide an accurate 
representation of the true error. In these cases, it would be 
helpful to include the upper and lower bounds of the 95 per 
cent CI when quoting the error statistic. The formulae for 
the 95 per cent CIs and a simplified method for their 
calculation are given in the Appendix.

Unfortunately, where there are only a small number of 
cases in the original study, it is almost impossible to exclude 
the presence of even a relatively large bias between pairs of 
replicate measurements as pointed out by Houston (1983). 
In such circumstances, the Dahlberg statistic should be 
treated with suspicion because of its sensitivity to such 
biases. This sensitivity can be seen in the results of the 
remaining simulation studies where in every case, regardless 
of whether the bias was additive or multiplicative, 
Dahlberg’s formula overestimated the magnitude of the true 
random error. On the other hand, the MME formula 
provided an error statistic that was very close to the true 
random error.

This effect of overestimation (rather than underestimation) 
with even quite small biases (0.25 mm additive bias or 1 per 
cent multiplicative bias) arises directly from the way the 
statistic is calculated (by squaring the differences between 
the replicates). That is, on average, Dahlberg’s formula will 
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always overestimate and never underestimate the true error 
where a bias exists.

The distorting effect of bias between replicate 
measurements is likely to have its greatest impact where the 
true random error is very small in relation to the average 
size of the original measurements. That is, for those 
measurements that are, in reality, most precise. In such 
cases, where a particular measurement is believed to be 
very precise, the MME formula should be used in preference 
to Dahlberg’s formula even where the sample size is 
considered adequate (25 < n > 30) because of the difficulty 
of excluding the presence of small biases with certainty.

Where a bias between the replicate measurements is known 
or believed to exist, it is clear that the MME formula should 
be used in preference to Dahlberg’s formula. However, this 
should not be taken to imply that any pre-existing bias can be 
safely ignored or that it is unnecessary to test for bias if the 
MME formula is employed. The existence of bias between the 
replicate measurements not only indicates that an inaccuracy 
has arisen in the process of estimating the error, it should also 
alert the researcher to a possible problem in the measurement 
process of the original study. It should, therefore, be standard 
practice to examine the replicate data for the presence of bias 
and to test this using a single-sample Student’s t-test.

The results of this study appear to indicate that Dahlberg’s 
formula offers no advantage over the MME formula. There 
is, however, a theoretical advantage in using Dahlberg’s 

formula where the sample size is very small and where the 
researcher can be certain that no bias exists. Under these 
circumstances, it should provide a more reliable estimate of 
the error than the MME formula because there are fewer 
degrees of freedom in the denominator—2n as opposed to 
2(n − 1). This advantage is only likely to occur where fewer 
than 10 cases existed in the original study, but, as indicated 
above, with such small numbers, it becomes almost 
impossible to rule out the presence of bias.

Some evidence of this theoretical advantage was found in 
the present simulation study. In the absence of bias, the 
empirical 95 per cent CIs for n = 2, 5, and 10 were slightly 
narrower for Dahlberg’s statistic than for the MME statistic 
by 0.07, 0.05, and 0.02 mm, respectively (Table 1). 
Nevertheless, such a small advantage is unlikely to confer 
any clinical or practical benefit.

A further advantage that is sometimes claimed for 
Dahlberg’s formula is that it provides a measure of the total 
effect of both systematic and random errors (Krarup et al., 
2005). This view is incorrect and appears to result from a 
misunderstanding of Houston’s use of the term ‘systematic 
error’ (Houston, 1983), which he used to indicate that part 
of the total error that was not random and also the bias 
between the replicate measurements used in estimating the 
random error. It is simply not possible to determine the true 
level of any systematic error that might have existed in the 
original study.

Figure 4 The effect of different levels of multiplicative bias on the estimates of error. The 
distributions of the estimates of random error (each based on 5000 simulations) for the four different 
levels of multiplicative bias (including zero bias) are shown for the two methods (Dahlberg’s 
estimator and the methods of moments estimators) for estimating the error. The dashed vertical line 
and arrow at the base of the figure indicate the ‘true’ value of the random error (0.5 mm).
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Table 1A Simplified calculation of the 95 per cent confidence 
limits for the ‘true’ error

Sample size (n) Lower 95% confidence  
limit multiplication  
factor

Upper 95% confidence  
limit multiplication  
factor

2 0.260 4.446
3 0.327 3.043
4 0.367 2.490
5 0.395 2.194
6 0.416 2.008
7 0.433 1.884
8 0.447 1.792
9 0.459 1.721
10 0.469 1.664
11 0.478 1.618
12 0.485 1.581
13 0.492 1.548
14 0.499 1.520
15 0.505 1.495
16 0.510 1.473
17 0.515 1.454
18 0.519 1.437
19 0.523 1.421
20 0.527 1.408

Appendix
A CI estimate for the true random error, sr, can be calculated 
using the following formulae to determine the upper and 
lower limits of the 95 per cent CI:
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 where n is the number of cases used to estimate the error, 
2

dS  is the mean squared difference between the replicate 
measurements for the n cases [using (n − 1) as the 
denominator], 

2
0.025( )vχ  is the 2.5 percentile of the c2 

distribution with n degrees of freedom, and 
2
0.975( )vχ  is the 

97.5 percentile of the c2 distribution with n degrees of 
freedom (where n = n − 1).

For any given sample size, the expression 2
0.975( )( 1) / vn χ−  

will be a constant, as will the expression 2
0.025( )( 1) / vn χ− . In 

addition, 2 / 2dS  is simply 2
MS  (the MME of the random error 

variance). Consequently, the confidence limits can be 
calculated more simply from SM (the MME estimate of the 
random error) using Table 1A.

To calculate the 95 per cent CI for a sample of less than 
20 pairs of replicated measurements: first, find the row 
corresponding to the sample size and then multiply the 
calculated random error by the numbers in the lower and 
upper 95 per cent CI limit columns to establish the lower 
and upper limits of the CI.

For example, if the random error is calculated as 0.50 
mm (using the MME formula) for a sample of 17 replicated 
measurements: the lower 95 per cent confidence limit will 
be 0.26 mm (=0.5 × 0.515) and the upper 95 per cent 
confidence limit will be 0.73 mm (=0.5 × 1.454). The 
random error should then be quoted thus: 0.50 mm (95% CI 
0.26–0.73 mm).

Conclusions

The results of this study indicate the following:
 

 1. A sample of at least 25–30 cases should be replicated to 
provide an estimate of the random error. Where the 
original study contains fewer than 20 cases, the estimate 
of error will be unreliable regardless of which formula is 
used in the calculation. In such cases, it would be helpful 
if an estimated CI for the true error was also quoted.

 2. Unless one can be certain that no bias exists between the 
replicate measurements, it is preferable to use the 
standard MME formula rather than Dahlberg’s formula 
to estimate the random error.
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