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                   I ntroduction  

 Maximum orthodontic anchorage is useful in numerous 
clinical situations. Although traditional osteointegrated 
implants provide good anchorage ( Ödman  et al. , 1988  ; 
  Roberts  et al. , 1989 ;  Wehrbein and Merz, 1998     ), they are 
too bulky for some applications, and therefore ,  miniscrews 
 [ microscrews or temporary anchorage devices (TADs) ]  are 
often preferred ( Kanomi, 1997 ;  Ohmae  et al. , 2001 ; 
 Miyawaki  et al. , 2003 ). Besides their smaller sizes, other 
advantages of the miniscrews are smooth surface, lower 
costs, reduced chair-side times, and the possibility of 
immediate loading ( Fritz  et al. , 2004 ). 

 Unlike dental implants, which acquire their stability via 
osteointegration, miniscrews obtain maximum stability 
mechanically via primary retention ( Melsen and Verna 
1999 ;  Brettin  et al. , 2008 ). Numerous types of these 
devices, which generally consist of a single part made 
from an alloy of titanium and vanadium or  aluminium 
 (grade IV titanium) with similar characteristics, are 
currently on the market ( Crismani  et al. , 2010 ). From a 
clinical perspective, these devices consist of two relevant 
portions: the head, for which various designs are available 
(bracket   like, rounded with slot, etc.), and the threaded 
shank, which is generally cylindrical, tapered, or a 
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combination of the two, and may be self-tapping (requires 
prior drilling of a pilot hole) or self-drilling (does not 
require a pilot hole). 

 As there is a direct relationship between the shape 
characteristics of a miniscrew and their resistance to 
extraction ( Clift  et al. , 1992 ), the miniscrew design 
characteristics are  analysed  in detail here to study the 
relationship between their pitch, depth of thread, and load 
values in the pullout test.  

   Materials and methods  

 This study was carried out in two stages:  rst, by a 
detailed study of the geometry of the three miniscrews in 
commerce and second, by a pullout test of all three 
miniscrews inserted to equal the depth in the samples of 
the synthetic bone. 

 The three miniscrews inserted were as follows:
    

  1.    Mini-impianto autoforante (Leone, Florence, Italy): 
length, 8 mm and diameter, 1.75 mm (F1 ;   Figure 1 ) .   

  2.    MAS (Miniscrew Anchorage System - Micerium, 
Avegno, Italy)... (F2 ;   Figure 2 ) .   

  3.    Orthoscrew (Leader Ortodonzia, Italy)... (F3 ;   Figure 3 ).   
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 F1 (L eone ), made of surgical stainless steel, is self-drilling 
and self-tapping. The endosseous portion of the implant has 
a tapered apical part (length, 2 mm) for drilling into the bone 
and a spiral threaded portion (diameter, 1.75 mm  and  length, 
6 mm) that serves as anchorage. Two transmucosal heights of 
screw head are available, both mushroom shaped, to facilitate 
the application of an elastic traction and a coiled spring. 

 F3 is a grade IV titanium device with a threaded 
cylindrical shank of diameter 1.65 mm and lengths 7, 9, and 

  
 Figure 1      Device    F1: SEM image at magni cation  × 9.    

  
 Figure 2      Device F2: SEM image at magni cation  × 9.    

  
 Figure 3      Device F3: SEM image at magni cation  × 9.    

11 mm. Its neck may be of different lengths, and it features 
a bracket-like head with slot. 

 F2 is a grade IV titanium, self-tapping miniscrew, and is 
available in two diameters (1.3 and 1.5 mm). Its spherical 
head features a circular groove, which permits the 
attachment of auxiliaries. 

 Following prior attachment to a biadhesive conductive 
strip, each device was examined via a 20.00   kV scanning 
electron microscopy Stereoscan 360 (Stereoscan, 
Cambridge, UK), which performs a three-dimensional 
image processing on a micrometric scale. Images of the 
head and the shank of each screw were obtained at  × 9,  × 50, 
 × 150, and  × 200 magni cations and were then converted 
using the Adobe Photoshop CS3 software, which permits 
linear measurement and manipulation of the images. 

 Using Adobe, the distance between each crest (pitch) 
along the length of the threaded shank of each device was 
measured, excluding the thread of the tip, and the respective 
depths of thread, the perpendicular height from crest to root, 
were calculated. Mean values were obtained and are 
reported in  micrometres . 

 Subsequently, the relationship between the mean thread 
depth and the pitch was calculated for each screw and 
expressed as a thread shape factor (TSF ;   Figure 4 ); TSF is 
calculated  by   D / P   and is  expressed as percent. The distance 
between the tip of the device and the beginning of the thread 
was not considered as this measurement depends heavily on 
the means of microscopic image acquisition and is therefore 
not a constant value.     

 After this preliminary phase, the pullout tests were 
performed. Blocks of double-layer synthetic bone 
(BoneSim ™ Experimental, BoneSim ™ , Newaygo, Michigan, 
USA   ) were constructed, featuring a super cial layer with 
biomechanical characteristics (elasticity, hardness,  and 
 density) similar to human cortical bone and a deeper layer 
with characteristics mimicking the trabecular bone. Three    
different cortical thicknesses (1.1, 1.4, and 2.2 mm diameter) 
were created on the basis of the results of a previous study 
on the cortical thickness of the jaws of adult patients 
revealed by computed tomography ( Silvestrini Biavati 
 et al. , 2010 ). 

 On each of these samples, the geometric  centre  was 
marked, and the TADs were implanted to an intraosseus 
thread depth of 6 mm at these points. Particularly, F1, whose 
tip features 2 mm without threads, was inserted to an overall 
depth of 8 mm. A total of 27 blocks were employed overall, 
9 for each cortical thickness and 9 for each type of TAD. 

 An apposite device was created to guarantee homogeneity 
and perpendicularity of insertion and to permit perfect axial 
coincidence between screw, bone sample, and dynamometric 
cell. Component parts of this device are an  aluminium 
 frame to house the bone samples, a thread locker to prevent 
screw penetration over 6 mm, a hollow steel cylinder to 
encompass each TAD driver, and a cylindrical steel frame to 
hold these components in the load cell. 
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 A dynamometric device (Instron 8501 plus) featuring a 
10   kN load cell was used to carry out the pullout tests. The 
software version Plus Windows 98, Series IX version 8, was 
employed for subsequent data processing. 

 A traction velocity of 2 mm/min utes  was applied in a 
controlled environment at 27°C and 70  per cent  humidity. 

 Screw displacement at peak load, the maximum load at 
the maximal holding point, and the breaking load were 
measured. Digital photographs were taken at regular 
intervals to illustrate the tests ( Figure 5 ).     

  Statistical  a nalysis 

 First ly , Shapiro  –  Wilk’s normality test and Levene’s test of 
homogeneity of variance were executed, and if these 
assumptions were rejected, an opportune transformation of 
data was applied or ranked   transformed data were used. 

 Then, a two-way  analysis of variance ( ANOVA )  with 
interaction was performed to evaluate the differences 
between the miniscrew types and the cortical thickness. 

 Finally, a   post hoc   analysis for single comparisons was 
employed, followed by Scheffè ’ s test, for homogeneity of 

  
 Figure 4       P : miniscrew thread pitch ,   D : miniscrew thread depth ,   and 
 thread shape factor is expressed as  D / P .    

  
 Figure 5      Sequence of pictures of a single pullout test.    

 Table 1      Means and standard deviations for different temporary 
anchorage devices (TADs) and thickness. SD, standard deviation.  

  TAD Thickness (mm) Load at peak  Load at break   

 Mean SD Mean SD  

  F1 11 0.34 0.04 0.13 0.03 
 14 0.31 0.09 0.11 0.03 
 22 0.30 0.02 0.10 0.01 
 Total 0.32 0.05 0.11 0.02 
 F2 11 0.33 0.06 0.13 0.01 
 14 0.31 0.05 0.11 0.02 
 22 0.37 0.10 0.13 0.04 
 Total 0.34 0.07 0.13 0.03 
 F3 11 0.51 0.13 0.18 0.05 
 14 0.37 0.04 0.13 0.01 
 22 0.42 0.04 0.14 0.01 
 Total 0.43 0.09 0.15 0.03 
 Total 11 0.39 0.12 0.14 0.04 
 14 0.33 0.06 0.12 0.02 
 22 0.36 0.07 0.13 0.03 
 Total 0.36 0.09 0.13 0.03  

variances not rejected; or Tamhane’s test if the homogeneity 
of variance assumption was not met. 

 Repeatability of measures of depth and pitch was 
evaluated by means of the intraclass correlation coef cient 
(ICC); means and standard deviations are reported. 

 Moreover, the one-way ANOVA was  tted to evaluate 
whether TSF, depth, and pitch, considered as covariates, 
were correlated to peak and breaking loads. 

 A   P     value of 0.05 was considered statistically signi cant. 
SPSS version 17 was used for analysis.   

   Results  

 The means and the standard deviations of both peak load 
and breaking are shown in  Table 1 . Shapiro  –  Wilk’s test 
rejected the normal assumption for both peak load (  P     = 
0.008) and breaking load (  P     = 0.012). A log   transformation 
was executed on the data and Shapiro  –  Wilk’s test on the 
not-rejected normality of transformed data (  P     = 0.447 for 
log of peak load  and    P     = 0.514 for the log of breaking load).  
 Levene’s test revealed the not-rejected homogeneity of 
variances for both log-transformed peak load (  P     = 0.23) and 
breaking (  P     = 0.10).     

 Regarding   ‘  peak load  ’  , statistically signi cant differences 
between miniscrews were revealed (  P     = 0.005), while no 
differences were found between thicknesses (  P     = 0.25 ; 
  Table 2 ). The effect of the miniscrews was not found to be 
conditioned by levels of thickness (  P     = 0.63). Signi cant 
differences were found about TADs F1 and F2 (  P     = 0.01) as 
well as F3 and F2 (  P     = 0.025).     

 Concerning   ‘  breaking load  ’  , statistically signi cant 
differences between TADs were revealed (  P     = 0.015), whereas 
differences between thicknesses were found to be at the limit 
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of statistical signi cance (  P     = 0.07). The effect of interaction 
between the miniscrew and the thickness was not statistically 
signi cant (  P     = 0.90). However, statistically signi cant 
differences were found when comparing F1 and F2 (  P     = 
0.017), while the comparison of 11 -  and 14 mm cortical 
thicknesses approached statistical signi cance (  P     = 0.08). 

 All ICCs ranged between 0.80 and 0.99; means and 
standard deviations for all miniscrews are reported in  Table 3 .     

 Regarding ANOVA ( Table 4 ), the log-transformed peak 
load and the breaking load were employed. TSF, depth, and 
pitch were statistically signi cant predictors of   ‘  peak load  ’  , 
while TSF and depth were statistically signi cant predictors 
of   ‘  breaking load  ’  . Pitch, on the other hand, was found to be 
of borderline signi cance.      

   Discussion  

 Like screws, the miniscrews were conceived to transform a 
torsional couple into a compression force ( Manghi, 1966 ). 
The geometry of the screw thread, speci cally the 
relationship between the thread depth and the pitch, 
expressed as the TSF, in uences the resistance to extraction 
( Chapman  et al. , 1996 ) in a porous material (like bone) 
when the diameter and the material of the screw are known. 
An increase in TSF, which can be achieved by increasing 
the thread depth or reducing the pitch, increases the 
resistance of the screw ( Clift  et al. , 1992 ). 

 Concerning miniscrews in particular, a recent study has 
stated that factors involved in the resistance to extraction 
and compression forces are the type of material, device 
diameter, length of thread, and shear strength of the material 
into which the screw is inserted    ( Pickard  et al. , 2010 ). Other 
studies showed that the pullout strength, a fundamental 
parameter for primary retention of TADs, is linked to bone 
density, volume, and cortical thickness ( Choi  et al. , 2009  ; 
  Wang  et al. , 2010   ). 

 In contrast to these  ndings, the tests carried out in this 
study on different cortical thicknesses revealed no 

 Table 3      Means and SD of depth (µm), pitch (µm), and thread 
shape factor (TSF; %) for all temporary anchorage devices.  

  Comparison Depth Pitch TSF  

  F1 173.5 (8.5) 917.2 (65.5) 0.19 (0.01) 
 F2 192.6 (17.2) 825.5 (28.2) 0.23 (0.02) 
 F3 275.7 (9.3) 1043 (30.6) 0.27 (0.01)  

 Table 4      Results of analysis of variance for thread shape factor 
(TSF), depth, and pitch.  

  Factors Load at peak Load at break 

  P  P   

  TSF 0.002 0.004 
 Depth 0.001 0.004 
 Pitch 0.005 0.05  

statistically signi cant differences with any of the three 
devices considered. Each screw was tested by inserting it to 
a known depth perpendicularly into a known thickness of 
synthetic cortical bone under identical conditions. Often ,  in 
the literature, the exact quantity of the thread inserted into 
the bone sample is not mentioned, but in this study, to 
determine the effect of the thread geometry on the pullout 
load, the variable thread length was eliminated by inserting 
each TAD to the same thread depth. Thus, the only factors 
to in uence the pullout load are device diameter and thread 
geometry, i.e. pitch, depth, and TSF. 

 Hence, the authors con rmed the fact that TADs with greater 
TSF (F3) have signi cantly greater pullout loads with respect 
to other devices (F1  and  F2); therefore, there is a directly 
proportional relationship between the load and the TSF. 

 Another difference between this and previous pullout 
studies was the choice of materials; the authors of the 

 Table 2      Main effects of  analysis of variance  and multiple comparisons for Scheffè   post hoc   test . CI, con dence interval; SD, standard 
deviation; TAD, temporary anchorage devices.   

  Factor Comparison Load at peak  Load at break   

 Mean difference 95% CI  P Mean difference 95% CI  P  

 Lower Upper Lower Upper  

  TAD F2 – F1 0.02  − 0.07 0.10 0.9 0.02  − 0.02 0.05 0.52 0.015 
 F3 – F1 0.11 0.03 0.20 0.01 0.005 0.04 0.01 0.07 0.017  
 F3 – F2 0.10 0.01 0.19 0.025 0.02  − 0.01 0.06 0.15  
 Thickness (mm) 11 – 14 0.06  − 0.03 0.15 0.25 0.02  − 0.004 0.06 0.078 0.07 
 11 – 22 0.03  − 0.06 0.12 0.76 0.25 0.01  − 0.02 0.05 0.38  
 14 – 22  − 0.03  − 0.12 0.06 0.63  − 0.01  − 0.04 0.02 0.61   
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whether TSF, depth, and pitch, considered as covariates, 
were correlated to peak and breaking loads. 

 A   P     value of 0.05 was considered statistically signi cant. 
SPSS version 17 was used for analysis.   

   Results  

 The means and the standard deviations of both peak load 
and breaking are shown in  Table 1 . Shapiro  –  Wilk’s test 
rejected the normal assumption for both peak load (  P     = 
0.008) and breaking load (  P     = 0.012). A log   transformation 
was executed on the data and Shapiro  –  Wilk’s test on the 
not-rejected normality of transformed data (  P     = 0.447 for 
log of peak load  and    P     = 0.514 for the log of breaking load).  
 Levene’s test revealed the not-rejected homogeneity of 
variances for both log-transformed peak load (  P     = 0.23) and 
breaking (  P     = 0.10).     

 Regarding   ‘  peak load  ’  , statistically signi cant differences 
between miniscrews were revealed (  P     = 0.005), while no 
differences were found between thicknesses (  P     = 0.25 ; 
  Table 2 ). The effect of the miniscrews was not found to be 
conditioned by levels of thickness (  P     = 0.63). Signi cant 
differences were found about TADs F1 and F2 (  P     = 0.01) as 
well as F3 and F2 (  P     = 0.025).     

 Concerning   ‘  breaking load  ’  , statistically signi cant 
differences between TADs were revealed (  P     = 0.015), whereas 
differences between thicknesses were found to be at the limit 
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of statistical signi cance (  P     = 0.07). The effect of interaction 
between the miniscrew and the thickness was not statistically 
signi cant (  P     = 0.90). However, statistically signi cant 
differences were found when comparing F1 and F2 (  P     = 
0.017), while the comparison of 11 -  and 14 mm cortical 
thicknesses approached statistical signi cance (  P     = 0.08). 

 All ICCs ranged between 0.80 and 0.99; means and 
standard deviations for all miniscrews are reported in  Table 3 .     

 Regarding ANOVA ( Table 4 ), the log-transformed peak 
load and the breaking load were employed. TSF, depth, and 
pitch were statistically signi cant predictors of   ‘  peak load  ’  , 
while TSF and depth were statistically signi cant predictors 
of   ‘  breaking load  ’  . Pitch, on the other hand, was found to be 
of borderline signi cance.      

   Discussion  

 Like screws, the miniscrews were conceived to transform a 
torsional couple into a compression force ( Manghi, 1966 ). 
The geometry of the screw thread, speci cally the 
relationship between the thread depth and the pitch, 
expressed as the TSF, in uences the resistance to extraction 
( Chapman  et al. , 1996 ) in a porous material (like bone) 
when the diameter and the material of the screw are known. 
An increase in TSF, which can be achieved by increasing 
the thread depth or reducing the pitch, increases the 
resistance of the screw ( Clift  et al. , 1992 ). 

 Concerning miniscrews in particular, a recent study has 
stated that factors involved in the resistance to extraction 
and compression forces are the type of material, device 
diameter, length of thread, and shear strength of the material 
into which the screw is inserted    ( Pickard  et al. , 2010 ). Other 
studies showed that the pullout strength, a fundamental 
parameter for primary retention of TADs, is linked to bone 
density, volume, and cortical thickness ( Choi  et al. , 2009  ; 
  Wang  et al. , 2010   ). 

 In contrast to these  ndings, the tests carried out in this 
study on different cortical thicknesses revealed no 

 Table 3      Means and SD of depth (µm), pitch (µm), and thread 
shape factor (TSF; %) for all temporary anchorage devices.  

  Comparison Depth Pitch TSF  

  F1 173.5 (8.5) 917.2 (65.5) 0.19 (0.01) 
 F2 192.6 (17.2) 825.5 (28.2) 0.23 (0.02) 
 F3 275.7 (9.3) 1043 (30.6) 0.27 (0.01)  

 Table 4      Results of analysis of variance for thread shape factor 
(TSF), depth, and pitch.  

  Factors Load at peak Load at break 

  P  P   

  TSF 0.002 0.004 
 Depth 0.001 0.004 
 Pitch 0.005 0.05  

statistically signi cant differences with any of the three 
devices considered. Each screw was tested by inserting it to 
a known depth perpendicularly into a known thickness of 
synthetic cortical bone under identical conditions. Often ,  in 
the literature, the exact quantity of the thread inserted into 
the bone sample is not mentioned, but in this study, to 
determine the effect of the thread geometry on the pullout 
load, the variable thread length was eliminated by inserting 
each TAD to the same thread depth. Thus, the only factors 
to in uence the pullout load are device diameter and thread 
geometry, i.e. pitch, depth, and TSF. 

 Hence, the authors con rmed the fact that TADs with greater 
TSF (F3) have signi cantly greater pullout loads with respect 
to other devices (F1  and  F2); therefore, there is a directly 
proportional relationship between the load and the TSF. 

 Another difference between this and previous pullout 
studies was the choice of materials; the authors of the 

 Table 2      Main effects of  analysis of variance  and multiple comparisons for Scheffè   post hoc   test . CI, con dence interval; SD, standard 
deviation; TAD, temporary anchorage devices.   

  Factor Comparison Load at peak  Load at break   

 Mean difference 95% CI  P Mean difference 95% CI  P  

 Lower Upper Lower Upper  

  TAD F2 – F1 0.02  − 0.07 0.10 0.9 0.02  − 0.02 0.05 0.52 0.015 
 F3 – F1 0.11 0.03 0.20 0.01 0.005 0.04 0.01 0.07 0.017  
 F3 – F2 0.10 0.01 0.19 0.025 0.02  − 0.01 0.06 0.15  
 Thickness (mm) 11 – 14 0.06  − 0.03 0.15 0.25 0.02  − 0.004 0.06 0.078 0.07 
 11 – 22 0.03  − 0.06 0.12 0.76 0.25 0.01  − 0.02 0.05 0.38  
 14 – 22  − 0.03  − 0.12 0.06 0.63  − 0.01  − 0.04 0.02 0.61   
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present study used synthetic bone, whereas organic material 
has been preferred by other authors ( Mortensen  et al. , 2009 ; 
 Pickard  et al. , 2009 ;  Veltri  et al. , 2010 ). This, however, can 
suffer from a lack of homogeneity, making it dif cult to 
gather essential data regarding screw capacity, i.e. design 
and resistance to pullout load. In fact, intraevaluation 
variability of the substrate can have a negative in uence on 
test results, and repeatability cannot therefore be guaranteed. 
Thus, the authors chose to use a synthetic homogeneous 
material to avoid interference by uncontrollable variables 
when studying the geometric characteristics of TADs. 

 Numerous factors appear to determine miniscrew 
implantation success but are still subject to debate: factors 
linked to the operator (surgical technique ;   Gar nkle, 2005 ), 
implant site anatomy (cortical thickness, bone density,  and 
 keratinized gingiva ;   Miyawaki  et al. , 2003 ;  Cheng  et al. , 
2004 ;  Motoyoshi  et al. , 2006 ), biomechanics applied 
(quantity, duration, and vectors of the force applied ; 
  Miyawaki  et al. , 2003  ;   Gar nkle, 2005   ;  Park  et al. , 2006 ), 
degree of periimplantal in ammation ( Park  et al. , 2006 ), 
and type of screw (diameter and length ;   Cheng  et al. , 2004  ; 
  Park  et al. , 2006   ). To this list, TSF can now be added, which 
can be instrumental in describing the mechanical properties 
of miniscrews, especially as regards primary stability.  

   Conclusions  

 This  in vitro  study of three different TADs led the authors to 
draw the following conclusions:
    

  1.    There were statistically signi cant differences between 
the three devices as regards the pullout tests .   

  2.    There is no difference between miniscrew pullout 
strength and cortical thickness .   

  3.    There is a direct correlation between the increase in TSF 
and the miniscrew pullout strength .   

  4.    F3 was the TAD most resistant to extraction   .   
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