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Abstract

Yeung SY, Huang CS, Chan CP, Lin CP, Lin HN, Lee PH,

Jia HW, Huang SK, Jeng JH, Chang MC. Antioxidant and

pro-oxidant properties of chlorhexidine and its interaction with

calcium hydroxide solutions. International Endodontic Journal,

40, 837–844, 2007.

Aim To evaluate the antioxidant and pro-oxidant

properties of chlorhexidine (CHX).

Methodology The scavenging and generation of

reactive oxygen species (ROS) by CHX in the presence

or absence of saturated Ca(OH)2 solutions was evalu-

ated. The reaction emitted chemiluminescence in the

presence of lucigenin thus was determined by a

luminometer to evaluate the levels of ROS production.

Changes in DNA conformation were analysed by

agarose gel electrophoresis. Paired Student’s t-test

was used to compare the difference between groups.

Results Chlorhexidine (0.00002–0.02%) effectively

scavenged 56–88% of the superoxide radicals gener-

ated by the xanthine/xanthine oxidase reaction.

Through analysis of PUC18 DNA conformation chan-

ges, CHX was shown to be a mild scavenger of hydroxyl

radicals generated by H2O2 plus FeCl2. However, CHX

(>0.083%) decreased the mobility of PUC18 plasmid

DNA with potential production of DNA–DNA cross-link

and severe DNA breaks (presence of DNA smear) at

further higher concentrations. Furthermore, CHX

induced ROS production including H2O2 and superox-

ide radicals in 0.1N NaOH (pH ¼ 12.76) or Ca(OH)2

(pH ¼ 12.5) solutions.

Conclusion Chlorhexidine exhibited both antioxid-

ant and pro-oxidant properties under different condi-

tions. These events are possibly involved in the killing

of root canal and periodontal microorganisms when

CHX and Ca(OH)2 were used in combination or

separately. Potential genotoxicity and tissue damage

when extruded into the periradicular tissue and at

higher concentrations should be considered during

periodontal and endodontic practice.

Keywords: Ca(OH)2, chlorhexidine, DNA breakage,

H2O2, reactive oxygen species.
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Introduction

Apical periodontitis is an ubiquitous disease mainly

caused by root-canal infection. Without adequate

endodontic treatment, infection of the root canal and

periradicular tissue may result in loss of supporting

apical periodontium and increases the possibility of

tooth extraction. Root-canal infection, which shows

similar microbial pathogens to periodontal infection, is

also seen linked to increased risk of coronary heart

disease (Caplan et al. 2006, Joshipura et al. 2006),

highlighting the important role of infection control in

the oral cavity to promote systemic health.

Chlorhexidine (CHX, N,N1-Bis(4-chlorophenyl)-

3,12-diimino-2,4,11,13, tetraaza tetradecadediimida-

mide) has been widely used as an antiseptic agent for
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routine dental plaque control and the irrigation of root

canals as well as a medicament during root-canal

treatment. CHX is an effective antimicrobial agent,

which exhibits potent antimicrobial and anti-inflam-

matory effects. Rinsing twice daily with 0.2% CHX

inhibits dental plaque formation (Loe & Schiott 1970).

One epidemiological study has found that mouth

rinsing with 0.12% CHX combined with perborate

solution (which generates H2O2) resulted in more

effective short-term plaque reduction than a rinse with

CHX alone (Dona et al. 1998). An ex vivo study further

supports the synergistic antibacterial effects of CHX and

H2O2 against Streptococci species (Steinberg et al.

1996). In addition, a combination of Ca(OH)2 and

CHX is more effective in eradication of Enterococcus

faecalis within dentine blocks (Zehnder et al. 2003) and

in root canal retreatment cases (Zerella et al. 2005). It

would be of interest to know the interaction between

CHX and other antiseptics such as H2O2 and Ca(OH)2

that are used in periodontal and endodontic treatment.

Though reactive oxygen species (ROS) production by

neutrophils have recently been shown to play a critical

role in the host-defence response against invading

microorganisms, these ROS are also critical in the

pathogenesis of pulpal and periodontal disease (Marton

et al. 1993, Chapple 1997, Alacam et al. 2000).

Human leucocytes may generate excessive amounts

of ROS such as the hydroxyl radical, the superoxide

radical, H2O2 and hypochlorite in inflammatory tissue

(Nakamura et al. 1998, Yasunari et al. 2006). ROS can

kill bacteria but may also destroy the adjacent infected

host tissues. The inhibitory effect on 2,2¢-azinobis(3-

ethylbenzohiazoline-6-sulfonic acid) cation (ABTS+)

radical production by a number of antiseptic mouth

rinses including CHX, has been elucidated (Battino

et al. 2002). Moreover, recent reports suggested CHX is

a potential genotoxic agent toward leucocytes, oral

mucosal cells and lymphocytes (Eren et al. 2002,

Ribeiro et al. 2005). The purposes of this study were

(i) to evaluate the anti-oxidative and pro-oxidative

properties of CHX and its interaction with DNA to

evaluate the safety of its use in dental treatment, (ii)

whether interactions by CHX and Ca(OH)2 may gen-

erate toxic ROS, which may have antimicrobial effects.

Materials and methods

Materials

Lucigenin, H2O2, FeCl2, xanthine, xanthine oxidase

and CHX were obtained from Sigma (St Louis, MO,

USA.). Ethidium bromide and agarose were purchased

from HT Biotechnology (Cambridge, UK). PUC18 plas-

mid DNA was purchased from Bayou Biolab (Los

Angeles, CA, USA).

Scavenging of superoxide radicals by CHX

Superoxide radicals were generated by the reaction of

xanthine with xanthine oxidase as described previously

(Chang et al. 2002, Jeng et al. 2002, Yeung et al.

2002). Briefly, superoxide radicals were produced in a

reaction mixture containing 150 lL of water, 60 lL of

1 mmol L)1 lucigenin and various concentrations of

CHX (5 lL, final concentration ¼ 0.00002–0.02%).

Aliquots of 10 lL of xanthine oxidase (0.2 U mL)1)

were added into each well. The reaction was started by

injection of 10 lL of xanthine (3.33 mmol L)1) and the

lucigenin chemiluminescence was measured immedi-

ately by a microplate luminometer (Orion Microplate

Luminometer; Berthold DS, Tforzheim, Germany). The

level of emitted chemiluminescence during 30 s of

measurement was recorded and averaged for compar-

ison.

Effects of CHX and its interaction with H2O2 or

hydroxyl radicals on DNA conformation

The reaction was conducted in an Eppendorf tube at a

total volume of 30 lL containing 5 lL of 50 mmol L)1

Tris buffer (pH 7.5), 5 lL of PUC18 plasmid DNA (5 lg)

and 5 lL of CHX with or without subsequent addition of

5 lL of 30% H2O2 (final 1%) or H2O2 plus FeCl2 (final

45 lmol L)1) and incubated for further 30 min. The

reaction mixture was then subjected to 0.8% agarose gel

electrophoresis using a Mupid-2 electrophoresis appar-

atus run at 100 V. DNA bands were stained with

ethidium bromide, visualized and photographed with

Alpha Image IS-3300 (Alpha Innotech Corp., San

Leandro, CA, USA) (Jeng et al. 2002).

ROS production by interaction of CHX with 0.1 N

NaOH or saturated Ca(OH)2 solution

A reaction mixture (245 lL in volume) was prepared

comprising 150 lL water, 60 lL 1 mmol L)1 lucigenin

and various concentrations of CHX (final 0.00004–

0.04%). The reaction was started by auto-injection of

10 lL 0.1 N NaOH (final pH 12.76). The changes in

lucigenin chemiluminescence were detected using a

Microplate Luminometer as described previously

(Chang et al. 2002, Jeng et al. 2002, Yeung et al.
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2002). The nature of specific ROS production was

confirmed by addition of superoxide dismutase (SOD)

and catalase. In addition, 0.5 g Ca(OH)2 was dissolved

in 50 mL double distilled-water with agitation for 1 h

and centrifuged at 2000 rpm to give a saturated

Ca(OH)2 solution. The solution was filtrated through

Whatman filter papers and the pH value was measured

to be 12.5. A reaction mixture (215 lL) was prepared

comprising 60 lL 1 mmol L)1 lucigenin and various

concentrations of CHX (with final concentrations

ranging from 0.00002% to 0.02%). The reaction was

started by injection of 150 lL saturated Ca(OH)2

solution. The lucigenin chemiluminescence was meas-

ured by a microplate luminometer for 30 s as previ-

ously described. The level of emitted

chemiluminescence over this period was recorded and

averaged. SOD or catalase was added to clarify the

nature of ROS through the experiment.

Statistical analysis

The ROS-induced lucigenin chemiluminescence was

recorded as relative light units (RLU). In some experi-

ments, the RLU values of the experimental groups were

divided by the RLU value of the untreated solvent

control (NaOH or saturated Ca(OH)2 solution) and data

presented as a percentage of the control. Paired

Student’s t-test was used to compare the difference

between groups. A P-value <0.05 was considered to

show significant difference between groups.

Results

Chlorhexidine was an effective superoxide radical

scavenger

Reaction by xanthine and xanthine oxidase may

generate superoxide radicals as revealed by an increase

in lucigenin chemiluminescence for 30 s (Fig. 1a). The

RLUs increased rapidly within the first 6 s and

increased further during the incubation period. In the

presence of CHX (0.00002–0.02%), superoxide-in-

duced lucigenin chemiluminescence was inhibited by

56–88% (Fig. 1b).

Interaction of CHX with DNA in the presence

of absence of H2O2 with/without FeCl2

Commercially available PUC18 DNA was generally in

supercoil form (form I) in conformation. Mild DNA

breaks will change the conformation of supercoil form

of DNA to become the nick-relaxed form (form II).

When DNA damage was severe, double DNA breaks

will lead to the linear form (form III) and even DNA

smear with marked fragmentation (Zhang et al. 2004).

Cross-links of DNA may retard the mobility of DNA in

agarose gels (Chen et al. 1994).

Incubation with CHX (0.083–0.17%) led to DNA

breaks with formation of form II DNA and inhibition of

the migration of DNA as revealed by high molecular

weight DNA, suggesting the presence of DNA confor-

mation changes or DNA–DNA crosslinks (Fig. 2a). At

concentrations higher than 0.17%, CHX caused DNA

breaks with loss of all DNA image in agarose gels (data

not shown). H2O2 (1%) alone showed little effect on

DNA conformation. No obvious change in DNA con-

formation was seen with a combination of CHX and

H2O2 (1%) (Fig. 2b). In the presence of transition

metals such as Fe2+, H2O2 may generate potent

hydroxyl radicals leading to DNA breaks (Leonard

et al. 2000). Using this model system, it was found that

the reaction of H2O2/FeCl2 with DNA led to severe DNA

breaks as indicated by loss of all DNA images (Fig. 2c,

lane 4). Catalase, which may degrade H2O2, effectively

prevented the H2O2/FeCl2-induced DNA breaks

(Fig. 2c, lane 11). CHX (0.02–0.09%) partially preven-

ted the H2O2/FeCl2-induced DNA breaks (Fig. 2c, lane

6–9). However, CHX at a concentration of 1.8% had

little preventive effect, possibly because of the DNA-

breaking effect of CHX itself.

ROS production by reaction of CHX with NaOH

solution

Chlorhexidine may induce ROS production in the

alkaline environments (0.1 N NaOH, pH ¼ 12.7) with

a biphasic response (Fig. 3a). CHX increased the ROS

production by 7.3- to 18.9-folds at concentrations of

0.0004% and 0.02% in the alkaline environment.

Interestingly, catalase (5 lL, 100 U lL)1) and SOD

(10 lL, 50 U lL)1) effectively prevented CHX-mediated

chemiluminescence in the alkaline environment

(Fig. 3b).

ROS production by reaction of CHX with saturated

Ca(OH)2 solution

Under similar experimental conditions, it was found

that CHX also induced excessive lucigenin chemilumi-

nescence in the presence of Ca(OH)2 which increases

by 78.7- and 32-fold at concentrations of 0.001%

and 0.02%, relative to the solvent control (Fig. 4a).

Yeung et al. Generation of ROS by chlorhexidine and Ca(OH)2
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Catalase and SOD effectively prevented the CHX-

generated chemiluminescence in saturated Ca(OH)2

solution (Fig. 4b).

Discussion

Chlorhexidine is a large dicationic molecule, 1,6-di(4-

chlorphenyl-diguanido)-hexane and is a commonly-

used antiseptic agent for wound sterilization and

disinfection against various microorganisms. It is also

widely used as a mouthrinse solution to control dental

plaque formation and as an endodontic irrigant or

medicament to reduce the root-canal microbial load.

Periodontal and periradicular disease, as infectious

diseases with inflammatory cell infiltration, may gen-

erate various kind of ROS, which may destroy adjacent

tissues (Nakamura et al. 1998, Yasunari et al. 2006). A

decrease in total antioxidant capacity and glutathione

level in gingival crevicular fluid of periodontitis patients

has been reported (Chapple et al. 2002, Brock et al.
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Figure 1 Scavenging properties of chlorhexidine (CHX) towards superoxide radicals generated by xanthine and xanthine oxidase.

(a) One representative picture of superoxide-mediated chemiluminescence production (relative light unit) and its prevention by

various concentrations of CHX (final 000002–0.02%). (b) Quantitative analysis of chemiluminescence generated by xanthine and

xanthine oxidase (as 100%) and its inhibition by various concentrations of CHX. Results are expressed as a percentage of control

(Mean ± SE, n ¼ 14). *denotes a significant difference when compared with the control (P < 0.05).
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2004), suggesting enhanced ROS production in dis-

eased sites. ROS is important in pathogenesis of pulpal

and periodontal diseases and thus the development of

ROS scavengers is important for disease control and

prevention.

Chlorhexidine showed little scavenging effect toward

the H2O2-induced DNA damage as analysed by comet

assay (Battino et al. 2002). Beside its antiseptic effect,

nontoxic CHX (0.1–1 lg mL)1) was found to inhibit

superoxide radical production by neutrophils (Goults-

chin & Levy 1986). This event may be due to

scavenging of superoxide radicals or inhibition of

NADPH oxidase, which mediates neutrophil ROS

production. In the present ex vivo experiments, it was

found that CHX may effectively scavenge the super-

oxide radical and exhibits some antioxidant property to

hydroxyl radicals. These results suggest CHX exhibits

antioxidant properties and might have some preventive
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Figure 2 Interaction of chlorhexidine (CHX) with DNA in the presence or absence of 1% H2O2 and/or FeCl2. (a) Interaction of

various concentrations of CHX with PUC18 plasmid DNA. (b) Interaction of CHX with/without H2O2 on DNA conformation. (c)

Interaction of CHX with DNA in the presence or absence of H2O2 and FeCl2 (fenton reaction) to generate hydroxyl radicals.

Catalase, which can degrade H2O2 was used as the control.
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effect on inflammatory periodontal and periapical

destruction.

Chlorhexidine is unable to induce liberation of

reactive oxygen/nitrogen intermediates in murine

macrophages (Bonacorsi et al. 2004). However, in the

present ex vivo experiments, it was found that CHX may

induce ROS production in the alkaline environment

(0.1 N NaOH or saturated Ca(OH)2 solution) with a

biphasic response. The precise reason for the biphasic

ROS generation by CHX is not clear. The chemical

structure of CHX (N,N1-Bis(4-chlorophenyl)-3,12-dii-

mino-2,4,11,13, tetraazatetra decadediimidamide) con-

tains two chlorophenyl guanide moieties at both ends,

which are separated by a long-chain aliphatic nitro-

genated structure. Whether different structural moiet-

ies in the chemical structure of CHX are responsible for

its antioxidant and pro-oxidant properties should be

further addressed. Clinically, Ca(OH)2 is often used as

an intracanal medicament. Combined use of CHX and

Ca(OH)2 in the root canal may generate excessive ROS,

which may potentially kill various root-canal patho-

gens. This may partly explain why the combined use of

Ca(OH)2/CHX mixture shows more efficacy in elimin-

ating endotoxin and for endodontic retreatment of

failed cases associated with E. faecalis infection (Buck

et al. 2001, Zehnder et al. 2003, Zerella et al. 2005).

The precise reasons should be further addressed.

Interaction of CHX and Ca(OH)2 may generate ROS,

which can be inhibited by SOD and catalase, indicating

the produced ROS are H2O2 and superoxide radicals.
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This ROS production may possibly destroy the cell wall

and membrane structure of microorganisms.

Previous reports indicate that CHX does not induce

chromosome aberrations in Syrian hamster embryo

cells (Yamaguchi & Tsutsui 2003, Hikiba et al. 2005)

and genotoxicity toward Chinese hamster ovary cells as

analysed by Comet assay (Ribeiro et al. 2004), whereas

H2O2 and NaOCl may stimulate transformation of

Syrian hamster embryo cells (Yamaguchi & Tsutsui

2003). Another report indicates that CHX is able to

induce primary DNA damage in leucocytes and in oral

mucosal cells (Ribeiro et al. 2004) and was cytotoxic to

neutrophils, epithelial cells and red blood cells (Heyden

et al. 1971, Gabler et al. 1987). CHX also causes

membrane damage to neutrophils and macrophages

with the release of intracellular enzymes (Kenney et al.

1972, Knuuttila & Soderling 1981). The effect of CHX

on DNA conformation and structure was therefore

studied under different experimental conditions. In the

present study, CHX may have induced DNA conforma-

tion changes or DNA–DNA cross-links. CHX further

induced obvious DNA breaks at higher concentrations

as indicated by loss of all DNA bands after exposure.

The routine concentration of CHX solution for oral

rinsing is about 0.2% and is above the concentration

that may not lead to DNA smearing ex vivo. Further

clinical studies are needed to evaluate the micronuclei

or chromosomal aberrations in individuals using CHX

for routine mouth rinsing, because a daily oral rinse

with CHX for 18 days has shown to significantly

induce DNA strand breaks of peripheral blood lympho-

cytes and buccal epithelial cells (Eren et al. 2002).

The present results indicate that CHX exhibits both

antioxidant and pro-oxidant properties in different

experimental conditions, possibly due to different

structural moiety. These may partly explain why CHX

acts as an effective dental chemical adjunct in routine

periodontal plaque control and as an irrigant and

medicament for root-canal disinfection. However, high-

er concentrations of CHX may generate DNA breaks,

DNA conformation changes as well as potential DNA–

DNA cross links. Reaction of CHX with 0.1 N NaOH or

Ca(OH)2 may induce massive production of ROS, which

may be useful for specific root-canal disinfection.

Concentrations of 0.1–0.2% of CHX are used clinically

for endodontic and periodontal treatments, this is

higher than the concentrations tested in this study.

As pulpal infection and medication may affect the

healing of the marginal periodontium (Blomlof et al.

1988, 1992), more studies are needed to evaluate the

effects of combination of root-canal medicaments such

as CHX, Ca(OH)2 and others on the root-canal micro-

organisms and periradicular tissue.
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