Taurodontism: a review of the condition and endodontic treatment challenges

H. Jafarzadeh¹, A. Azarpazhooh² & J. T. Mayhall³

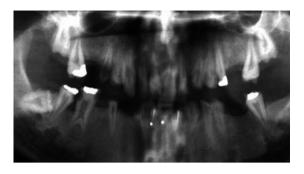
¹Department of Endodontics, Faculty of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; ²Department of Endodontics and Community Dental Health Services Research Unit, Faculty of Dentistry, University of Toronto, Toronto, Ontario; and ³Department of Community Dentistry, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada

Abstract

Jafarzadeh H, Azarpazhooh A, Mayhall JT. Taurodontism: a review of the condition and endodontic treatment challenges. *International Endodontic Journal*, **41**, 375–388, 2008.

Taurodontism can be defined as a change in tooth shape caused by the failure of Hertwig's epithelial sheath diaphragm to invaginate at the proper horizontal level. An enlarged pulp chamber, apical displacement of the pulpal floor, and no constriction at the level of the cementoenamel junction are the characteristic features. Although permanent molar teeth are most commonly affected, this change can also be seen in both the permanent and deciduous dentition, unilaterally or bilaterally, and in any combination of teeth or quadrants. Whilst it appears most frequently as an isolated anomaly, its association with several syndromes and abnormalities has also been reported. The literature on taurodontism in the context of endodontics up to March 2007 was reviewed using PubMed, MEDLINE and Cumulative Index to Nursing & Allied Health Literature. Despite the clinical challenges in endodontic therapy, taurodontism has received little attention from clinicians. In performing root canal treatment on such teeth, one should appreciate the complexity of the root canal system, canal obliteration and configuration, and the potential for additional root canal systems. Careful exploration of the grooves between all orifices particularly with magnification, use of ultrasonic irrigation; and a modified filling technique are of particular use.

Keywords: endodontic treatment, enlarged pulp chamber, syndrome, taurodontism.


Received 12 July 2007; accepted 29 November 2007

Introduction

Dental morphological traits are of particular importance in the study of phylogenetic relationships and population affinities (Constant & Grine 2001). One of the most important abnormalities in tooth morphology is taurodontism. This abnormality is a developmental disturbance of a tooth that lacks constriction at the level of the cementoenamel junction (CEJ) and is characterized by vertically elongated pulp chambers, apical displacement of the pulpal floor, and bifurcation or trifurcation of the roots (Brkić & Filipović 1991, Hargreaves & Goodis 2002, Neville *et al.* 2002, Rao & Arathi 2006) (Fig. 1).

The term taurodontism comes from the Latin term *tauros*, which means 'bull' and the Greek term *odus*, which means 'tooth' or 'bull tooth' (Keith 1913, Terezhalmy *et al.* 2001). It was first described by Gorjanović-Kramberger (1908); however, the term taurodontism was first introduced by Sir Arthur Keith (Keith 1913) to describe molar teeth resembling those of ungulates, particularly bulls.

Correspondence: Dr Hamid Jafarzadeh, Faculty of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, P.O. Box: 91735-984, Vakilabad Blvd, Mashhad, Iran (Tel.: +98-511-8829501; fax: +98-511-7626058; e-mail: hamid_j365@yahoo.com, JafarzadehBH@mums.ac.ir).

Figure 1 A taurodont tooth with enlarged pulp chamber due to the apical displacement of the furcation area (Courtesy of Dr. Tim Wright, University of North Carolina and http://www.dent.unc.edu/research/defects/tds.cfm).

The interest in these forms of molars first arose following the discovery of fossil remains of the Neanderthal race at Krapina in Croatia in 1899. Taurodontism is prominent amongst the Krapina Neanderthal specimens and the earliest example of taurodontism is that of a Krapina 70 000-year-old anthropological specimen (Barker 1976). Keith (1913) suggested that taurodontism is a distinctive characteristic of the Neanderthals (Fig. 2). He pointed out molars of the modern dentitions, which he called 'cynodont' (doglike teeth which have relatively small pulp chambers, set low in the crown with a constriction in outline form of the chambers at about the CEJ) could not have been

Figure 2 Maxillary molars of Pontnewydd 4 dated to Oxygen Isotope Stage 7 showing taurodontism characteristic of Neanderthals (Courtesy of the Natural History Museum, London).

evolved from such taurodont teeth. The controversy engendered by this hypothesis over the years has been vigorous (Barker 1976).

Because of the prevalence of taurodontism in modern dentitions (Shifman & Chanannel 1978, Ruprecht *et al.* 1987, MacDonald-Jankowski & Li 1993, Schalk-van der Weide *et al.* 1993, Darwazeh *et al.* 1998) and the critical need for its true diagnosis and management, this review addresses the aetiology, anatomic and radiographic features of taurodontism, its association with various syndromes and anomalies, as well as important considerations in the endodontic treatment of such teeth.

Search strategy

A literature search for relevant articles regarding endodontic management in taurodontism was performed using Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily, Ovid MEDLINE(R), and Ovid OLDMEDLINE(R), CINAHL -Cumulative Index to Nursing & Allied Health Literature, Evidence Based Medicine of Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, EMBASE, Health and Psychosocial Instruments, HealthSTAR/Ovid Healthstar, International Pharmaceutical Abstracts, and PubMed. Table 1 shows the keywords and combinations of the keywords used. The search was limited to holdings at the University of Toronto in English. After removing duplicates, 15 articles were retrieved and their reference lists were checked to identify any other articles relevant to the research question, which may have provided additional information. All of these were found in the original searches.

Aetiology

Taurodontism is caused by the failure of Hertwig's epithelial sheath diaphragm to invaginate at the proper horizontal level (Hamner *et al.* 1964, Terezhalmy *et al.* 2001). Interference in the epitheliomesenchymatose induction has also been proposed as a possible aetiology (Llamas & Jimenez-Planas 1993). Some reports suggest that taurodontism may be genetically transmitted (Fischer 1963, Witkop 1971, Goldstein & Gottlieb 1973), and could be associated with an increased number of X chromosomes (Gage 1978). However, other researchers have found no simple genetic association but have noticed a trend for X chromosomal

aneuploidy amongst patients with more severe forms of the trait (Jaspers & Witkop 1980).

Autosomal transmission of the trait has also been observed (Mangion 1962). These chromosomal abnormalities may disrupt the development of the tooth's form; however, a specific genetic abnormality cannot be ascribed to taurodontism (Neville *et al.* 2002). Blumberg *et al.* (1971) biometrically studied the trait, ascribed taurodontism to a polygenic system, and described the anomaly as a continuous trait without discrete modes of expression.

It is also proposed that taurodontism is a genetically determined trait and more advantageous than cynodontism in people with heavy masticatory habits [for example, the Neanderthals and Inuit (Eskimos), who prepared skins for protection from the cold by chewing] (Coon 1963) or in populations in which teeth were used as tools (Witkop 1976). Despite this theory, no evidence of taurodontism has been found in prehistoric American Indians, a group who must have also used their teeth extensively as tools (Sciulli 1977). Whilst genetic transmission can be demonstrated in most cases, other external factors can also damage developing dental structures in children and adolescents. Amongst these are infection (osteomyelitis) (Reichart & Quast 1975), disrupted developmental homeostasis (Witkop et al. 1988), high-dose chemotherapy (Greenberg & Glick 2003), and a history of bone marrow transplantation (Vaughan et al. 2005).

Diagnosis

The external features have been primarily used for the diagnosis of taurodontism. However, it should be noted that gross external characteristics are not sufficient to generate diagnosis (Mena 1971). In many cases, precise biometric methods are essential in diagnosis of taurodontism (Blumberg *et al.* 1971).

Tulensalo *et al.* (1989) examined a simple method of assessing taurodontism using orthopantomograms by measuring the distance between the baseline (connecting the mesial and distal points of the CEJ) and the highest point of the floor of the pulp chamber. They concluded that this technique is reliable in epidemiologic investigations for assessing taurodontism in a developing dentition.

Anatomic characteristics

In taurodontism, the pulp chamber is extremely large and elongated with much greater apicoocclusal height than normal (Yeh & Hsu 1999, Sert & Bayrl 2004) and, thus, extends apically below the CEJ (Keith 1913, Terezhalmy *et al.* 2001). The CEJ constriction is less marked than that of the normal tooth, giving the taurodont a rectangular shape. Also, the furcation is displaced apically, resulting in shorter roots whilst enlarging the body of the tooth (Keith 1913, Durr *et al.* 1980, Llamas & Jimenez-Planas 1993, Yeh & Hsu 1999, Terezhalmy *et al.* 2001, Sert & Bayrl 2004).

Clinical/radiographic characteristics

Clinically, a taurodont appears as a normal tooth. In fact, because the body and roots of a taurodont tooth lie below the alveolar margin, its distinguishing features cannot be recognized clinically (Terezhalmy *et al.* 2001, White & Pharoah 2004). Therefore, the diagnosis of taurodontism is usually a subjective determination made from diagnostic radiographs (Durr *et al.* 1980, Neville *et al.* 2002).

The radiographic characteristics of taurodont tooth are: extension of the rectangular pulp chamber into the elongated body of the tooth, shortened roots and root canals, location of furcation (near the root apices), despite a normal crown size (Terezhalmy *et al.* 2001,

Table 1 Search strategy

#	Search history	Results
1	(tauro or Taurodontism or taurodontic or taurodont\$ or bull tooth or cynodont or hypotaurodont or mesotaurodont or hypertaurodont or hypo-T or meso-T or hyper-T).mp. [mp = ti, ot, ab, sh, de, hw, kw, tn, dm, mf, it, rw, nm, ac, tx, ct]	995
2	(Endodontic\$ or root canal treatment or root canal therapy or pulp treatment or pulp therapy or pulpotomy or pulpectomy or pulp disease or pulp pathology\$ or root canal).mp. [mp = ti, ot, ab, sh, de, hw, kw, tn, dm, mf, it, rw, nm, ac, tx, ct]	40 962
3	1 and 2	31
4	Remove duplicates from 3	26
5	Limit 4 to English	25
6	Relevant articles remained after title/abstract screening	15

Author(s)/year	Criteria	Categories	Comments
Shaw 1928	External morphological criteria (based on the relative amount of apical displacement of the pulp chamber floor)	Hypotaurodont: moderate enlargement of the pulp chamber at the expense of the roots Mesotaurodont: pulp is quite large and the roots short but still separate Hypertaurodont: prismatic or cylindrical forms where the pulp chamber nearly reaches the apex and then breaks up into 2 or 4 channels Single or pyramidal root (cuneiform): usually in the lower second molar where the pulp extends throughout the root without cervical constriction and exits via a single wide apical foramen	First quantitative study of taurodontism Using second molar as a standard tooth for determining the degree of taurodontism
Keene 1966	'Taurodont Index' (related the height of the pulp chamber to the length of the longest root)	Cynodont: index value of 0-24.9% Hypo-T: index value of 25–49.9% Meso-T: index value of 50–74.9% Hyper-T: index value of 75–100%	 Relative method Disadvantages: 1) Use of landmarks in biologic structures which undergo changes 2) Arbitrary selection and grading the index from 0 to 100 into 4 groups appears to be unrealistic
Blumberg <i>et al.</i> 1971	Variable 1: mesiodistal diameter taken at contact points Variable 2: mesiodistal diameter taken at the level of the cementoenamel junction Variable 3: perpendicular distance from baseline to highest point on pulp chamber floor Variable 4: perpendicular distance from baseline to apex of longest root Variable 5: perpendicular distance from baseline to lowest point on pulp chamber roof	No categories provided as the authors believe that taurodontism is a continuous trait and therefore cannot be put into strict categories.	A biometric study A precise figure for each variable cannot be generally recommended because according to the race and type of molars, each variable may be different Taurodontism may be defined metrically

Table 2 Categorization indices for taurodontism

Author(s)/year	Criteria	Categories	Comments
Shifman & Chanannel 1978	Point A: lowest point at the occlusal end of the pulp chamber Point B: highest point at the apical end of the chamber (distance from A to B)/(distance from A to the apex of the longest root) ≥ 0.2 Distance from B to CEJ ≥ 2.5 mm	Hypo-T:20–20.9% Meso-T:30–39.9% Hyper-T: 40–75%	Advantage: overcome Keene's index problem by using radiograph of teeth not exhibiting reparative dentin or roots which varied morphologically Disadvantage: range of measurement of 'the distance from B to the CEJ' is small and thus subjected to error

Table 2 (continued)

Hargreaves & Goodis 2002, White & Pharoah 2004). It should be noted that taurodontism may be masked by wear-induced secondary dentine deposition so caution should be employed in interpreting an expression of taurodontism in heavily worn molars (Constant & Grine 2001).

Categorization

Differences of opinion exist as to how much displacement and/or morphologic change constitutes taurodontism. Most authors do not provide an objective analysis of cases presented, preferring a subjective diagnosis. Another problem complicating accurate assessment of the incidence of taurodontism is the inclusion of premolar teeth by some investigators (Madeira et al. 1986, Llamas & Jimenez-Planas 1993, Tiku et al. 2003), whereas others have questioned this inclusion (Ruprecht et al. 1987). In classifying taurodont teeth, it is necessary to consider not only the size of the pulp chamber and roots, but also the position of the body of the tooth in relation to the alveolar margin (Mena 1971). Different categorization indices have been proposed in the literature and are listed in Table 2.

Epidemiology

Taurodontism was at first thought to be a primitive tooth form (Moorrees 1957). On the other hand, it is

found in such diverse groups as Inuit, Aleuts, Mongolians, Europeans, Scandinavians, African Americans, Chinese and white Americans amongst others (Moorrees 1957, Mjör 1972, Shifman & Buchner 1976, MacDonald-Jankowski & Li 1993, Goaz & White 1994, Darwazeh *et al.* 1998, Bäckman & Wahlin 2001, Tsesis *et al.* 2003). In the United States, most reports indicate a prevalence of 2.5–3.2% of the population (Neville *et al.* 2002).

Table 3 summarizes the reported prevalence for taurodontism from different studies. The wide range of variability of prevalence [from less than 0.1% (Pindborg 1970) to 48% (Sarr *et al.* 2000)] is most likely because of different diagnostic criteria and racial variations. Some investigators believe the alteration is more of a variation of normal rather than a definitive pathologic anomaly (Neville *et al.* 2002).

Except for a higher prevalence of taurodontism amongst females in a Chinese sample (MacDonald-Jankowski & Li 1993), no study has found a gender difference for this abnormality. Although permanent mandibular molars are most commonly affected (MacDonald-Jankowski & Li 1993, Rao & Arathi 2006), taurodontism can be seen in both the permanent and deciduous dentition [very low incidence (MacDonald-Jankowski & Li 1993, Goaz & White 1994, Darwazeh *et al.* 1998, Terezhalmy *et al.* 2001, Neville *et al.* 2002, Bhat *et al.* 2004, Rao & Arathi 2006)], unilaterally or bilaterally, and in any combination of teeth or quadrants (White & Pharoah 2004).

Table 3 Prevalence of taurodontism	urodontism						
		Most affected	Least affected		Sample	Total	
Author(s)/Year	Tooth type	teeth	teeth	Population/location	size	prevalence (%)	Method of study
Keene 1966	Molars	Mandibular 2nd	Other molars	Americans of	247 ^a	2.8 ^a (hypo-T)	Morphologic and
		molars (100%)		European heritage		0.4 ^a (meso-T)	biometric study
Blumberg <i>et al.</i>	Mandibular	Mandibular 2nd	Mandibular	Negroes and	11 905 ^a	2.5 ^a	Biometric study
1971	molars	molars (in Negroes)	1st molar	white American			
		Mandibular 3rd		patients			
Chifman 8	Molare	Mandibudar 2nd	Mavillary 2nd	Vound adult	12008	Б G ^a	Dorigonical and
			and 3rd	leraeli natiente	10 204 ^b	с.с	hitemina and
01/2/1/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2			molars (0.1%)		107 01	2	radiographs
Jorgenson	Deciduous and	1st permanent	Deciduous	African	1074 ^a	4.37 ^a	Panoramic
et al. 1982	permanent	molars	molars	American			radiographs
	molars			children			
Madeira	Premolars	Mandibular 1st	Maxillary	Mixed	4459 ^b	0.25 ^b	In vitro study
<i>et al.</i> 1986		premolars (0.42%)	premolars (0%)				(visual
							inspection and
							buccolingual
							radiographs)
Ruprecht	Molars	Not stated	Not stated	Saudi Arabian	1581 ^a	11.3 ^a	Complete mouth
<i>et al.</i> 1987				dental patients	1647 ^b	43.2 ^b	and panoramic
							radiographs
Llamas &	Premolars	Maxillary	Other premolars	Extracted	379 ^b	0.7 ^b	In vitro study
Jimenez-Planas		premolars		premolars within			(anatomic and
1993				a district area of			radiographic)
				Seville, Spain			
Schalk-van der	Mandibular	I	1	Dutch patients	117 ^a (with	28.9 ^a (with	Panoramic
Weide <i>et al.</i> 1993	1st molars			with oligodontia	oligodontia) 91ª (normal)	oligodontia) 9 9ª (normal)	radiographs
MacDonald-Jankowski	1st and 2nd	Maxillary 2nd	Mandibular 1st	15-19 years old	196ª	46.4 ^a	Panoramic
& Li 1993	molars	molars	molars	Chinese adults	1093 ^b	21.7 ^b	radiographs
Darwazeh <i>et al.</i> 1998	All posterior	Maxillary 2nd	Maxillary 2nd	Jordanian adult	875 ^a	8 ^a	Posterior periapical
	teeth	molars (31%)	and mandibular 1st premolars	dental patients	2636 ^b	4.4 ^b	radiographs
			(%0)				
Sarr <i>et al.</i> 2000	1st and 2nd molars	Maxillary 2nd molars	Mandibular 1st molars	150 consecutive 15-19 years	150 ^a 1027 ^b	48 ^a 18.8 ^b	Panoramic radiographs
				old black Senegalese adults			

International Endodontic Journal, 41, 375-388, 2008

© 2008 International Endodontic Journal

Bäckman & Wahlin 2001	All teeth	Maxillary and mandibular molars	1	Caucasian 7-year-olds Umea, northern Sweden in 1976	739ª	0.3 ^a	Bitewing and extraoral radiographs of the lateral side
Constant & Grine 2001	Mandibular molars	Mandibular 3rd molars	Mandibular 1st molars	Two recent population samples from	28ª from Khoisan and 68ª from Zulu	Varies based on the definition	Lateral radiographs
Park <i>et al.</i> 2006	All teeth	Mandibular 1st molars	Not stated	southern Africa Korean dental patients	1032ª	3.9ª	Clinical and radiographic examination
^a Patient. ^b Teeth.							

The degree of taurodontism increases from the first to the third molar (Mena 1971, Neville *et al.* 2002). Also, taurodontism is occasionally observed in mandibular premolars and even in maxillary premolars, mandibular canines, and incisors (Tennant 1966, Mena 1971, Osborn 1981).

Whilst taurodontism has been reported in premolar teeth (Tennant 1966, Mena 1971, Madeira *et al.* 1986, Llamas & Jimenez-Planas 1993, Tiku *et al.* 2003), the true diagnosis of taurodontism in premolars cannot be ascribed *in situ* as necessary radiographs depict the tooth only in a mesiodistal orientation (Neville *et al.* 2002).

Conditions associated with taurodontism

Taurodontism appears most frequently as an isolated anomaly. However, its association with several syndromes and abnormalities has also been reported (Shifman & Buchner 1976, Genc *et al.* 1999, Yeh & Hsu 1999, Gedik & Cimen 2000). These conditions are summarized in Tables 4 and 5. Many of these disorders have oral manifestations, which can be detected on dental radiographs as alterations in the morphology or chemical composition of the teeth; thus, dentists may be the first to detect them (Witkop 1976).

Differential diagnosis

In certain metabolic conditions including pseudo-hypoparthyroidism, hypophosphatasia, and hypophosphatemic vitamin D-resistant and dependent rickets, the pulp chamber may be enlarged but the teeth are of relatively normal form (Witkop 1976, Terezhalmy *et al.* 2001, Chaussain-Miller *et al.* 2003). Another differential diagnosis is in the early stages of dentinogenesis imperfecta, where the appearance may resemble the large pulp chambers found in taurodontism (Hargreaves & Goodis 2002). Moreover, the developing molars may appear similar to taurodonts; however, an identification of wide apical foramina and incompletely formed roots helps in the differential diagnosis (White & Pharoah 2004).

Endodontic management

A taurodont tooth shows wide variation in the size and shape of the pulp chamber, varying degrees of obliteration and canal configuration, apically positioned canal orifices, and the potential for additional root canal systems. Therefore, root canal treatment becomes a

Syndrome	Author(s)	Inheritance	Oral findings	Systemic findings	taurodontism
and and and	1001	Additional 21	Mooracio	Concil accord	E E 0/
uown synarome	Jaspers 1981,	Additional 21	Iviacrogiossia	Small nose	0/GG
(Trisomy 21)	Bell <i>et al.</i> 1989,	chromosome	Delayed eruption	Short stature	36%
	Alpöz & Eronat 1997,		Absence of tooth germs	Mental retardation	66%
	Rajić & Mestrović 1998			Muscular hypotonia	56%
Klinefelter syndrome	Mednick 1973,	Additional X	Cleft soft palate	Small testes	75%
	Hata <i>et al.</i> 2001,	chromosome	Missing premolars	Azoospermia	
	Pinkham <i>et al.</i> 2005,		Delayed development	Mental retardation	
	Schulman <i>et al.</i> 2005		of the permanent	Chromosome	
			tooth germs	aberrations	
Lowe syndrome	Tsai & O'Donnell 1997	X-linked	Severe bone loss	Cataracts	Not stated
(Oculo-cerebro-renal		recessive	Jaws underdevelopment	Mental retardation	
syndrome)			Gross periodontal disease	Renal tubular	
			Permanent teeth Impaction	dysfunction	
Tricho-dento-osseous	Spangler <i>et al.</i> 1998,	Autosomal	Hypoplastic enamel	Curly hair	Not stated
syndrome (TDO)	Islam <i>et al.</i> 2005	dominant		Dense bone	
				Skull sclerosis	
Tricho-onycho-dental	Koshiba <i>et al.</i> 1978,	Autosomal	Dentin dysplasia	Scanty hair	Not stated
syndrome (TOD)	Neville <i>et al.</i> 2002	dominant	Hypoplastic-hypomaturated	Scanty eyebrows	
			enamel	Thin dysplastic nails	
Williams syndrome	Axelsson 2005	Gene deletion	Agenesis	Hoarse voice	1% for mandibular
		at chromosome 7	Wide mouth	Cognitive profile	1st molars and
			Smaller size of teeth	Mental retardation	41.7% for
			Aberrant shape of teeth	Cardiovascular disease	mandibular 2nd
					molars
Wolf-Hirschhorn	Breen 1998,	Partial deletion of	Microdontia	Microcephaly	Not stated
syndrome	Battaglia <i>et al.</i> 2001,	the terminal	Severe hypodontia	Growth retardation	
	Babich <i>et al.</i> 2004,	portion of the	Cleft lip and/or palate	Muscle hypotrophy	
	Johnston & Franklin 2006	short arm of	Taurodontic primary molars	Feeding difficulties	
		chromosome 4	Delayed dental development	Learning difficulties	
Seckel syndrome	Seymen <i>et al.</i> 2002	Autosomal recessive	Microdontia	Microcephaly	Not stated
			Dentinal dysplasia	Small forehead	
			Enamel hypoplasia	Midfacial hypoplasia	
				Posteriorly slanted ears	
Smith-Magenis	Tomona <i>et al.</i> 2006	Gene deletion at	Tooth agenesis	Hoarse deep voice	87%
syndrome		chromosome 17	Root dilaceration	Cardiac and renal defects	
Mohr syndrome	Gorlin 1970,	Autosomal recessive	Cleft palate	Polydactyly	Not stated
(Oral-facial-digital	Goldstein & Gottlieb 1973,		Small tongue	Brachydactyly	
ll syndrome)	Goldstein & Medina 1974,		Notching of the upper lip	Neuromuscular	
	Young <i>et al.</i> 2001			disturbance	

382

 Table 4
 Syndromes associated with taurodontism

Prader-Labhart-Willi syndrome	Bassarelli <i>et al.</i> 1991	Gene deletion at chromosome 15	Enamel-dentine dysplasia	Obesity Hypotonia Oligophrenia Hypogonadism Small hands and feet	Not stated
McCune-Albright syndrome	Akintoye <i>et al.</i> 2003	Autosomal dominant	Oligodontia Malocclusion Tooth rotation	Skeletal disorder Fibrous dysplasia Café-au-lait piamentation	%6
Ellis van Creveld syndrome	Hattab <i>et al.</i> 1998, Hunter & Roberts 1998	Autosomal recessive	Mocorrotation Reduced trown size Supernumerary tooth Early eruption of teeth Shovel-shaned incisors	Dwarfism Polydactyly Syndactyly	Not stated
Apert syndrome	Terezhalmy <i>et al.</i> 2001, Tosun & Sener 2006	Autosomal dominant	Anterior open bite Dental malocclusion Delayed tooth eruption Crowding of the dental arch	Syndactyly Proptosis of eyes Mental retardation Skeletal deformities	Not stated
Lenz microphthalmia syndrome	Ersin <i>et al.</i> 2003	X-linked recessive	Hypodontia Micrognathia Conic-shaped incisors Agenesis of permanent teeth	Microcephaly Microphthalmia Urogenital anomalies Developmental retardation	Not stated
Kabuki syndrome	Petzold <i>et al.</i> 2003	Autosomal dominant	Hypodontia Wide spacing Delayed tooth eruption Screwdriver-shaped incisors	Short stature Mental retardation Skeletal abnormalities Long palpebral fissures	Not stated

© 2008 International Endodontic Journal

Abnormal condition	Author(s)	Prevalence of taurodontism
47,XXY karyotype	Varrela & Alvesalo 1988,	30%
(Additional X chromosome)	Gardner & Girgis 1978	
47,XXX karyotype (Additional X chromosome)	Varrela & Alvesalo 1989	Direct relation with the number of X chromosomes
AIHHT	Gage 1978,	The relationship between AIHHT and
Amelogenesis imperfecta	Seow 1993,	taurodontism is controversial
(hypoplastic-hypomaturation	Winter 1996,	(Winter 1996, Collins <i>et al.</i> 1999)
with taurodontism)	Collins et al. 1999,	
	Price <i>et al.</i> 1999,	
	Aldred et al. 2002,	
	Dong <i>et al.</i> 2005	
Oligodontia	Terezhalmy <i>et al.</i> 2001,	29% (Schalk-van der Weide <i>et al.</i> 1993)
	Schalk-van der Weide <i>et al.</i> 1993,	34% (Lai & Seow 1989)
	Lai & Seow 1989	
Supernumerary teeth	Genc <i>et al.</i> 1999	Not stated
Triad of microdontia-taurodontia-dens	Casamassimo <i>et al.</i> 1978,	Not stated
invagination	Galindo-Moreno <i>et al.</i> 2003	
Pulpal calcification	Darwazeh <i>et al.</i> 1998,	26% of taurodontic cases have pulpal
	Miller 1969	calcification
Cleft lip or palate	Neville <i>et al.</i> 2002,	41%
	Laatikainen & Ranta 1996	
Ectodermal dysplasia	Neville et al. 2002,	Not stated
(e.g. Otodental dysplasia,	Jaspers & Witkop 1980,	
Cranioectodermal dysplasia, and	Glavina <i>et al.</i> 2001,	
Rapp-Hodgkin syndrome)	Levin <i>et al.</i> 1975,	
	Chen <i>et al.</i> 1988,	
	Zannolli <i>et al.</i> 2001	
Osteoporosis	Fuks <i>et al.</i> 1982	Not stated
Thalassaemia major	Hazza'a & Al-Jamal 2006	34%
Dwarfism	Neville et al. 2002,	Not stated
	Terezhalmy <i>et al.</i> 2001,	
	Gardner & Girgis 1977,	
	Sauk & Delaney 1973,	
	Stewart et al. 1971	
Dyskeratosis congenita	Terezhalmy et al. 2001	Not stated
Epidermolysis bullosa	Terezhalmy <i>et al.</i> 2001	Not stated

 Table 5
 Other conditions associated with taurodontism

challenge (Hargreaves & Goodis 2002, Tsesis *et al.* 2003, Rao & Arathi 2006). Moreover, whilst the radiographic feature of a taurodont tooth is characteristic, pre-treatment radiographs produce little information about the root canal system (Yeh & Hsu 1999). Finally, the results of pulp testing contribute little information about the effect of a large pulp chamber on tooth sensitivity (Durr *et al.* 1980).

There are different views regarding access cavity design and preparation: Shifman & Buchner (1976) argued that access to the root canal orifices can easily obtained as the floor of the pulp chamber cannot affected by the formation of reactional dentine as in normal teeth. In contrast, Durr *et al.* (1980) suggested that morphology could hamper the location of the orifices, thus creating difficulty in instrumentation and filling.

Each taurodont tooth may have extraordinary root canals in terms of shape and number. A complicated root canal treatment has been reported for a mandibular taurodont tooth with five canals, only three of which could be instrumented to the apex (Hayashi 1994). Therefore, careful exploration of the grooves between all orifices, especially with magnification (Tsesis *et al.* 2003), has been recommended to reveal additional orifices and canals (Yeh & Hsu 1999).

Because the pulp of a taurodont is usually voluminous, in order to ensure complete removal of the necrotic pulp, 2.5% sodium hypochlorite has been suggested initially as an irrigant to digest pulp tissue (Prakash *et al.* 2005). Moreover, as adequate instrumentation of the irregular root canal system cannot be anticipated, Widerman & Serene (1971) suggested that

additional efforts should be made by irrigating the canals with 2.5% sodium hypochlorite in order to dissolve as much necrotic material as possible. Application of final ultrasonic irrigation may ensure that no pulp tissue remains (Prakash *et al.* 2005).

Because of the complexity of the root canal anatomy and the proximity of the buccal orifices, complete filling of the root canal system in taurodontism is challenging. A modified filling technique has been proposed, which consists of combined lateral compaction in the apical region with vertical compaction of the elongated pulp chamber, using the system B device (EIE/Analytic Technology, San Diego, CA, USA) (Tsesis *et al.* 2003).

Another endodontic challenge related to taurodonts is intentional replantation. The extraction of a taurodont tooth is usually complicated because of a dilated apical third (Yeh & Hsu 1999). In contrast, it has also been hypothesized that because of its large body, little surface area of a taurodont tooth is embedded in the alveolus. This feature would make extraction less difficult as long as the roots are not widely divergent (Durr *et al.* 1980). Finally, it should be noted that in cases of hypertaurodont (where the pulp chamber nearly reaches the apex and then breaks up into two or four channels) vital pulpotomy instead of routine pulpectomy may be considered as the treatment of choice (Shifman & Buchner 1976, Neville *et al.* 2002).

For the prosthetic treatment of a taurodont tooth, it has been recommended that post-placement be avoided for tooth reconstruction (Tsesis *et al.* 2003). Because less surface area of the tooth is embedded in the alveolus, a taurodont tooth may not have as much stability as a cynodont when used as an abutment for either prosthetic or orthodontic purposes (Durr *et al.* 1980).

From a periodontal standpoint, taurodont teeth may, in specific cases, offer favourable prognosis. Where periodontal pocketing or gingival recession occurs, the chances of furcation involvement are considerably less than those in normal teeth because taurodont teeth have to demonstrate significant periodontal destruction before furcation involvement occurs (Shifman & Buchner 1976, Neville *et al.* 2002).

Conclusion

This review attempts to address the aetiology, anatomic and radiographic features of taurodontism, its association with some syndromes and anomalies, as well as important considerations in the endodontic treatment of such teeth. Taurodont teeth show wide variations in the size and shape of pulp chambers, varying degrees of obliteration and canal complexity, low canal orifices, and the potential for additional root canal systems. On the basis of the evidence presented here, it can be seen that taurodontism has hitherto received insufficient attention from clinicians. In performing root canal treatment on these teeth, one should appreciate the complexity of the root canal system. Careful exploration of the grooves between all orifices, particularly with magnification; ultrasonic irrigation; and a modified filling technique are recommended. No long-term follow-up studies have been published regarding endodontically treated taurodont teeth.

Acknowledgement

The authors would like to thank Professor Larz S.W. Spångberg (School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA) for his critical review and beneficial comments.

References

- Akintoye SO, Lee JS, Feimster T et al. (2003) Dental characteristics of fibrous dysplasia and McCune-Albright syndrome. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 96, 275–82.
- Aldred MJ, Savarirayan R, Lamandé SR, Crawford PJ (2002) Clinical and radiographic features of a family with autosomal dominant amelogenesis imperfecta with taurodontism. Oral Disease 8, 62–8.
- Alpöz AR, Eronat C (1997) Taurodontism in children associated with trisomy 21 syndrome. The Journal of Clinical Pediatric Dentistry 22, 37–9.
- Axelsson S (2005) Variability of the cranial and dental phenotype in Williams syndrome. *Swedish Dental Journal* **170**, 3–67.
- Babich SB, Banducci C, Teplitsky P (2004) Dental characteristics of the Wolf-Hirschhorn syndrome: a case report. *Special Care in Dentistry* 24, 229–31.
- Bäckman B, Wahlin YB (2001) Variations in number and morphology of permanent teeth in 7-year-old Swedish children. *International Journal of Paediatric Dentistry* 11, 11–7.
- Barker BC (1976) Taurodontism: the incidence and possible significance of the trait. *Australian Dental Journal* **21**, 272–6.
- Bassarelli V, Baccetti T, Bassarelli T, Franchi L (1991) The dentomaxillofacial characteristics of the Prader-Labhart-Willi syndrome. A clinical case report. *Minerva Stomatologica* 40, 811–9.
- Battaglia A, Carey JC, Wright TJ (2001) Wolf-Hirschhorn (4p-) syndrome. *Advances in Pediatrics* **48**, 75–113.

- Bell J, Civil CR, Townsend GC, Brown RH (1989) The prevalence of taurodontism in Down's syndrome. *Journal of Mental Deficiency Research* **33**, 467–76.
- Bhat SS, Sargod S, Mohammed SV (2004) Taurodontism in deciduous Molars–a Case Report. *Journal of the Indian Society of Pedodontics and Preventive Dentistry* **22**, 193–6.
- Blumberg JE, Hylander WL, Goepp RA (1971) Taurodontism: a biometric study. *American Journal of Physical Anthropology* 34, 243–55.
- Breen GH (1998) Taurodontism, an unreported dental finding in Wolf-Hirschhorn (4p-) syndrome. ASDC Journal of Dentistry for Children 65, 344–5.
- Brkić H, Filipović I (1991) The meaning of taurodontism in oral surgery–case report. Acta Stomatologica Croatica 25, 123–7.
- Casamassimo PS, Nowak AJ, Ettinger RL, Schlenker DJ (1978) An unusual triad: microdontia, taurodontia, and dens invaginatus. Oral Surgery, Oral Medicine and Oral Pathology 45, 107–12.
- Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabédian M (2003) Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxvvitamin D. *The Journal of Pediatrics* **142**, 324–31.
- Chen RJ, Chen HS, Lin LM, Lin CC, Jorgenson RJ (1988) "Otodental" dysplasia. Oral Surgery, Oral Medicine and Oral Pathology **66**, 353–8.
- Collins MA, Mauriello SM, Tyndall DA, Wright JT (1999) Dental anomalies associated with amelogenesis imperfecta: a radiographic assessment. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology **88**, 358–64.
- Constant DA, Grine FE (2001) A review of taurodontism with new data on indigenous southern African populations. *Archives of Oral Biology* **46**, 1021–9.
- Coon CS (1963) Origin of races. Science 140, 208.
- Darwazeh AM, Hamasha AA, Pillai K (1998) Prevalence of taurodontism in Jordanian dental patients. *Dentomaxillofacial Radiology* 27, 163–5.
- Dong J, Amor D, Aldred MJ, Gu T, Escamilla M, MacDougall M (2005) DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. *American Journal of Medical Genetics Part A* 133, 138–41.
- Durr DP, Campos CA, Ayers CS (1980) Clinical significance of taurodontism. *Journal of the American Dental Association* 100, 378–81.
- Ersin NK, Tugsel Z, Gökce B, Ozpinar B, Eronat N (2003) Lenz microphthalmia syndrome with dental anomalies: a case report. *Journal of Dentistry for Children* **70**, 262–5.
- Fischer H (1963) Recent examples of anomalous molars of the Krapina type. *International Dental Journal* **13**, 506–9.
- Fuks AB, Levin S, Grinbaum M, Chosack A (1982) Multiple taurodontism associated with osteoporosis. *The Journal of Pedodontics* 7, 68–74.
- Gage JP (1978) Taurodontism and enamel hypomaturation associated with X-linked abnormalities. *Clinical Genetics* **14**, 159–64.

- Galindo-Moreno PA, Parra-Vázquez MJ, Sánchez-Fernández E, Avila-Ortiz GA (2003) Maxillary cyst associated with an invaginated tooth: a case report and literature review. *Quintessence International* **34**, 509–14.
- Gardner DG, Girgis SS (1977) Taurodontism, short roots, and external resorption, associated with short stature and a small head. Oral Surgery, Oral Medicine and Oral Pathology 44, 271–3.
- Gardner DG, Girgis SS (1978) Taurodontism, shovel-shaped incisors and the Klinefelter syndrome. *Dental Journal* **44**, 372–3.
- Gedik R, Cimen M (2000) Multiple taurodontism: report of case. ASDC Journal of Dentistry for Children **67**, 216–7.
- Genc A, Namdar F, Goker K, Atasu M (1999) Taurodontism in association with supernumerary teeth. *The Journal of Clinical Pediatric Dentistry* **23**, 151–4.
- Glavina D, Majstorović M, Lulić-Dukić O, Jurić H (2001) Hypohidrotic ectodermal dysplasia: dental features and carriers detection. *Collegium Antropologicum* 25, 303–10.
- Goaz PW, White SC (1994) Oral Radiology (Principles and Interpretation), 3rd edn. Louis, USA: Mosby.
- Goldstein E, Gottlieb MA (1973) Taurodontism: familial tendencies demonstrated in eleven of fourteen case reports. Oral Surgery, Oral Medicine and Oral Pathology **36**, 131–44.
- Goldstein E, Medina JL (1974) Mohr syndrome or oral-facialdigital II: report of two cases. *Journal of the American Dental Association* 89, 377–82.
- Gorjanović-Kramberger K (1908) Über prismatische molarwurzein rezenter und diluvialer menschen. Anatomischer Anzeiger 32, 401–13.
- Gorlin RJ (1970) Thoma's Oral Pathology, 6th edn. St. Louis: Mosby.
- Greenberg MS, Glick M (2003) Burket's Oral Medicine-Diagnosis and Treatment, 10th edn. Hamilton, ON, Canada: BC Decker.
- Hamner JE III, Witkop CJ Jr, Metro PS(1964) Taurodontism. Report of a case, Oral Surgery Oral Medicine and Oral Pathology 18, 409–18.
- Hargreaves KM, Goodis HE (2002) Seltzer and Bender's Dental Pulp, 3rd edn. Chicago: Quintessence Pub Co.
- Hata S, Maruyama Y, Fujita Y, Mayanagi H (2001) The dentofacial manifestations of XXXXY syndrome: a case report. *International Journal of Paediatric Dentistry* 11, 138–42.
- Hattab FN, Yassin OM, Sasa IS (1998) Oral manifestations of Ellis-van Creveld syndrome: report of two siblings with unusual dental anomalies. *The Journal of Clinical Pediatric* Dentistry 22, 159–65.
- Hayashi Y (1994) Endodontic treatment in taurodontism. *Journal of Endodontics* **20**, 357–8.
- Hazza'a AM, Al-Jamal G (2006) Radiographic features of the jaws and teeth in thalassaemia major. *Dentomaxillofacial Radiology* **35**, 283–8.
- Hunter ML, Roberts GJ (1998) Oral and dental anomalies in Ellis van Creveld syndrome (chondroectodermal dysplasia):

report of a case. *International Journal of Paediatric Dentistry* **8**, 153–7.

- Islam M, Lurie AG, Reichenberger E (2005) Clinical features of tricho-dento-osseous syndrome and presentation of three new cases: an addition to clinical heterogeneity. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 100, 736–42.
- Jaspers MT (1981) Taurodontism in the Down syndrome. *Oral Surgery, Oral Medicine and Oral Pathology* **51**, 632–6.
- Jaspers MT, Witkop CJ Jr (1980) Taurodontism, an isolated trait associated with syndromes and X-chromosomal aneuploidy. *American Journal of Human Genetics* 32, 396– 413.
- Johnston NJ, Franklin DL (2006) Dental findings of a child with Wolf-Hirschhorn syndrome. *International Journal of Paediatric Dentistry* **16**, 139–42.
- Jorgenson RJ, Salinas CF, Shapiro SD (1982) The prevalence of taurodontism in a select population. *Journal of Craniofacial Genetics and Developmental Biology* **2**, 125–35.
- Keene HJ (1966) A morphologic and biometric study of taurodontism in a contemporary population. *American Journal of Physical Anthropology* **25**, 208–9.
- Keith A (1913) Problems relating to the teeth of the earlier forms of prehistoric man. *Journal of the Royal Society of Medicine* 6, 103–24.
- Koshiba H, Kimura O, Nakata M, Witkop CJ Jr (1978) Clinical, genetic, and histologic features of the trichoonychodental (TOD) syndrome. Oral Surgery, Oral Medicine and Oral Pathology 46, 376–85.
- Laatikainen T, Ranta R (1996) Taurodontism in twins with cleft lip and/or palate. *European Journal of Oral Science* **104**, 82–6.
- Lai PY, Seow WK (1989) A controlled study of the association of various dental anomalies with hypodontia of permanent teeth. *Pediatric Dentistry* **11**, 291–6.
- Levin LS, Jorgenson RJ, Cook RA (1975) Otodental dysplasia: a "new" ectodermal dysplasia. *Clinical Genetics* **8**, 136–44.
- Llamas R, Jimenez-Planas A (1993) Taurodontism in premolars. Oral Surgery, Oral Medicine and Oral Pathology 75, 501–5.
- MacDonald-Jankowski DS, Li TT (1993) Taurodontism in a young adult Chinese population. *Dentomaxillofacial Radiol*ogy 22, 140–4.
- Madeira MC, Leite HF, Niccoli Filho WD, Simões S (1986) Prevalence of taurodontism in premolars. Oral Surgery, Oral Medicine and Oral Pathology 61, 158–62.
- Mangion JJ (1962) Two cases of taurodontism in modern human jaws. *British Dental Journal* **113**, 309–12.
- Mednick GA (1973) Two case reports: taurodontism and taurodontism in Kleinfelter's syndrome. *Journal of the Michigan Dental Association* **55**, 212–5.
- Mena CA (1971) Taurodontism. Oral Surgery, Oral Medicine and Oral Pathology **32**, 812–23.
- Miller WA (1969) Pulp calcifications in a taurodont tooth. British Dental Journal **126**, 456–9.

- Mjör IA (1972) The structure of taurodont teeth. ASDC Journal of Dentistry for Children **39**, 459–63.
- Moorrees CFA (1957) *The Aleut Dentition: A Correlative Study of Dental Characteristics of an Eskimoid People*, 1st edn. Cambridge: Harvard University Press.
- Neville BW, Damm DD, Allen CM, Bouquot JE (2002) Oral & Maxillofacial Pathology, 5th edn. Philadelphia: W.B. Saunders.
- Osborn JW (1981) Dental Anatomy and Embryology. Oxford: Blackwell scientific publications.
- Park GJ, Kim SK, Kim S, Lee CH (2006) Prevalence and pattern of dental developmental anomalies in Korean children. *Journal of Oral Pathology and Medicine* **35**, 453 (abstract).
- Petzold D, Kratzsch E, Opitz CH, Tinschert S (2003) The Kabuki syndrome: four patients with oral abnormalities. *European Journal of Orthodontics* **25**, 13–9.
- Pindborg JJ (1970) *Pathology of the Dental Hard Tissues*. Copenhagen: Munksgaard.
- Pinkham JR, Casamassimo PS, McTigue DJ, Fields HW, Nowak AJ (2005) Pediatric Dentistry. Infancy through Adolescence, 4th edn. Philadelphia, USA: WB Saunders.
- Prakash R, Vishnu C, Suma B, Velmurugan N, Kandaswamy D (2005) Endodontic management of taurodontic teeth. *Indian Journal of Dental Research* 16, 177–81.
- Price JA, Wright JT, Walker SJ, Crawford PJ, Aldred MJ, Hart TC (1999) Tricho-dento-osseous syndrome and amelogenesis imperfecta with taurodontism are genetically distinct conditions. *Clinical Genetics* 56, 35–40.
- Rajić Z, Mestrović SR (1998) Taurodontism in Down's syndrome. Collegium Antropologicum 22, 63–7.
- Rao A, Arathi R (2006) Taurodontism of deciduous and permanent molars: report of two cases. Journal of the Indian Society of Pedodontics and Preventive Dentistry 24, 42–4.
- Reichart P, Quast U (1975) Mandibular infection as a possible aetiological factor in taurodontism. *Journal of Dentistry* **3**, 198–202.
- Ruprecht A, Batniji S, el-Neweihi E (1987) The incidence of taurodontism in dental patients. *Oral Surgery, Oral Medicine and Oral Pathology* **63**, 743–7.
- Sarr M, Toure B, Kane AW, Fall F, Wone MM (2000) Taurodontism and the pyramidal tooth at the level of the molar. Prevalence in the Senegalese population 15 to 19 years of age. *Odonto-Stomatologie Tropicale* 23, 31–4.
- Sauk JJ Jr, Delaney JR (1973) Taurodontism, diminished root formation, and microcephalic dwarfism. Oral Surgery, Oral Medicine and Oral Pathology 36, 231–5.
- Schalk-van der Weide Y, Steen WH, Bosman F (1993) Taurodontism and length of teeth in patients with oligodontia. *Journal of Oral Rehabilitation* 20, 401–12.
- Schulman GS, Redford-Badwal D, Poole A, Mathieu G, Burleson J, Dauser D (2005) Taurodontism and learning disabilities in patients with Klinefelter syndrome. *Pediatric Dentistry* 27, 389–94.

- Sciulli PW (1977) A descriptive and comparative study of the deciduous dentition of prehistoric Ohio Valley Amerindians. American Journal of Physical Anthropology 47, 71–80.
- Seow WK (1993) Taurodontism of the mandibular first permanent molar distinguishes between the tricho-dentoosseous (TDO) syndrome and amelogenesis imperfecta. *Clinical Genetics* **43**, 240–6.
- Sert S, Bayrl G (2004) Taurodontism in six molars: a case report. *Journal of Endodontics* **30**, 601–2.
- Seymen F, Tuna B, Kayserili H (2002) Seckel syndrome: report of a case. The Journal of Clinical Pediatric Dentistry 26, 305–9.
- Shaw JC (1928) Taurodont teeth in South African races. Journal of Anatomy **62**, 476–98.
- Shifman A, Buchner A (1976) Taurodontism. Report of sixteen cases in Israel. Oral Surgery, Oral Medicine, and Oral Pathology 41, 400–5.
- Shifman A, Chanannel I (1978) Prevalence of taurodontism found in radiographic dental examination of 1,200 young adult Israeli patients. *Community Dentistry and Oral Epidemiology* 6, 200–3.
- Spangler GS, Hall KI, Kula K, Hart TC, Wright JT (1998) Enamel structure and composition in the tricho-dentoosseous syndrome. *Connective Tissue Research* 39, 165–75.
- Stewart RE, Lovrien EW, Wyandt HE (1971) Unusual dental findings in a patient with a rare bone dysplasia (dyschondrosteosis) and a chromosomal anomaly. Oral Surgery, Oral Medicine and Oral Pathology 32, 596–604.
- Tennant RD (1966) Taurodontism. Dental Digest 72, 355-7.
- Terezhalmy GT, Riley CK, Moore WS (2001) Clinical images in oral medicine and maxillofacial radiology. Taurodontism. *Quintessence International* **32**, 254–5.
- Tiku A, Damle SG, Nadkarni UM, Kalaskar RR (2003) Hypertaurodontism in molars and premolars: management of two rare cases. *Journal of the Indian Society of Pedodontics and Preventive Dentistry* **21**, 131–4.
- Tomona N, Smith AC, Guadagnini JP, Hart TC (2006) Craniofacial and dental phenotype of Smith-Magenis syndrome. American Journal of Medical Genetics Part A 140, 2556–61.
- Tosun G, Sener Y (2006) Apert syndrome with glucose-6-phosphate dehydrogenase deficiency: a case report. *International Journal of Paediatric Dentistry* **16**, 218–21.
- Tsai SJ, O'Donnell D (1997) Dental findings in an adult with Lowe's syndrome. *Special Care in Dentistry* **17**, 207–10.

- Tsesis I, Shifman A, Kaufman AY (2003) Taurodontism: an endodontic challenge. *Report of a case. Journal of Endodontics* 29, 353–5.
- Tulensalo T, Ranta R, Kataja M (1989) Reliability in estimating taurodontism of permanent molars from orthopantomograms. *Community Dentistry and Oral Epidemiology* 17, 258–62.
- Varrela J, Alvesalo L (1988) Taurodontism in 47,XXY males: an effect of the extra X chromosome on root development. *Journal of Dental Research* **67**, 501–2.
- Varrela J, Alvesalo L (1989) Taurodontism in females with extra X chromosomes. Journal of Craniofacial Genetics and Developmental Biology 9, 129–33.
- Vaughan MD, Rowland CC, Tong X et al. (2005) Dental abnormalities in children preparing for pediatric bone marrow transplantation. *Bone Marrow Transplantation* 36, 863–6.
- White SC, Pharoah MJ (2004) Oral Radiology. Principles and Interpretation, 5th edn. St. Louis, USA: Mosby.
- Widerman FH, Serene TP (1971) Endodontic therapy involving a taurodontic tooth. Oral Surgery, Oral Medicine and Oral Pathology 32, 618–20.
- Winter GB (1996) Amelogenesis imperfecta with enamel opacities and taurodontism: an alternative diagnosis for 'idiopathic dental fluorosis'. *British Dental Journal* 181, 167–72.
- Witkop CJ Jr (1971) Manifestation of genetic disease in the human pulp. Oral Surgery, Oral Medicine and Oral Pathology 32, 278–316.
- Witkop CJ (1976) Clinical aspects of dental anomalies. International Dental Journal **26**, 378–90.
- Witkop CJ Jr, Keenan KM, Cervenka J, Jaspers MT (1988) Taurodontism: an anomaly of teeth reflecting disruptive developmental homeostasis. *American Journal of Medical Genetics* 4, 85–97.
- Yeh SC, Hsu TY (1999) Endodontic treatment in taurodontism with Klinefelter's syndrome: a case report. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 88, 612–5.
- Young LW, Wilhelm LL, Zuppan CW, Clark R (2001) Naumoff short-rib polydactyly syndrome compounded with Mohr oral-facial-digital syndrome. *Pediatric Radiology* **31**, 31–5.
- Zannolli R, Mostardini R, Carpentieri ML et al. (2001) Cranioectodermal dysplasia: a new patient with an inapparent, subtle phenotype. Pediatric Dermatology 18, 332–5.

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.