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Abstract

Bartie KL, Devine DA, Wilson MJ, Lewis MAO. In vitro

susceptibility of the Streptococcus milleri group to antimicro-

bial peptides. International Endodontic Journal, 41, 586–592,

2008.

Aim To determine the susceptibility of strains of the

Streptococcus milleri group (SMG) to commercially

available antimicrobial peptides.

Methodology Thirty strains of SMG from a range of

sources were assessed for their susceptibility to 10

antimicrobial peptides of either human, animal or

insect origin, using a double layer diffusion assay.

Results The majority of the test strains were sensitive

to the amidated peptides, mastoparan (100%; n = 30),

magainin 2 amide (95%; n = 21) and indolicin (91%;

n = 23). Some strains were susceptible to cecropin B

(30%; n = 30) and histatin (10%; n = 30), whilst no

activity was observed for the defensins HNP-1 and HNP-

2, histatin 8, cecropin P1 and magainin 2.

Conclusions The majority of strains were resistant

to the human derived peptides. The ability to resist such

peptides may be a factor in the colonisation of the oral

cavity and the survival and initiation of infection in the

pulp and root canal environment. Interestingly, the

present study indicated that amidated and alpha helical

peptides exhibit antimicrobial activity against SMG.

Structural modification of these peptides may allow a

targeted approach for the development of these sub-

stances as preventative or therapeutic agents.
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Introduction

The Streptococcus milleri group (SMG) comprises

microaerophilic bacteria which are generally regarded

as members of the commensal flora of the body.

However, SMG are encountered in a variety of

infections including those of the oropharynx, cardio-

vascular, abdominal and central nervous systems

(Piscitelli et al. 1992, Jacobs et al. 1995). Frequently

isolated with other bacteria, it has been documented

that the SMG are present early in such polymicrobial

infections and may actually initiate infection, there-

after preparing the environment for subsequent

colonisation by anaerobic species (Lewis et al. 1986,

1990, Fisher & Russell 1993). Despite being almost

universally susceptible to penicillin, infections involv-

ing the SMG are often difficult to treat and are

associated with a high morbidity and mortality

(Bantar et al. 1996).

In the oral cavity, members of the SMG are the most

frequent facultative bacteria associated with dentoal-

veolar abscess and are commonly isolated from necrotic

dental pulps and the canals of failed endodontic

treatment (Lewis et al. 1986, Molander et al. 1998,

Chavez de Paz et al. 2003, Gomes et al. 2004, Stefa-

nopoulos & Kolokotronis 2005; Vianna et al. 2005).

Although endodontic therapy success rates have

improved, failure still occurs in an unacceptable

proportion of cases and bacteria have been demon-

strated in a majority of canals even after treatment

with optimal irrigation and mechanical debridement

(Basmadjian-Charles et al. 2002, Rôças et al. 2004,

Vianna et al. 2006). Agents with more effective anti-
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microbial activity in this environment or ones that may

reduce the propensity for remaining bacteria to cause

infection would be welcome.

Antimicrobial peptides (AMPs) are an important

component of the natural defense system of many

living organisms. A wide variety of human peptides

have been identified that exhibit broad spectrum

activity against Gram-positive and Gram-negative bac-

teria, yeasts, fungi and enveloped viruses and play an

important part in innate immunity (Ganz et al. 1985,

Hancock et al. 1995, Bulet et al. 2004). AMPs have

also been assigned roles in promoting tissue repair,

although their mechanism of action remains unknown

(Elsbach 2003). The presence of histatins in saliva,

a-defensins in phagocytes and b-defensins produced by

epithelial cells and odontoblasts has increased aware-

ness of the likely importance that antimicrobial pep-

tides play in human defense mechanisms and their

potential relevance in the pathogenesis and manage-

ment of infections involving the SMG (Jones & Bevins

1993, Zhao et al. 1996, Harder et al. 1997, Mizukawa

et al. 1999, Dommisch et al. 2005a,b).

Accordingly, the aim of the study was to examine the

efficacy of 10 commercially available antimicrobial

peptides, from varying structural groupings, of human

and nonhuman origin, against isolates of SMG.

Materials and methods

Bacterial strains and growth conditions

A total of 30 isolates belonging to the SMG was

examined (Table 1). The strains were identified as S.

anginosus (n = 10), S. constellatus (n = 10) or S. inter-

medius (n = 10) on the basis of a differential biochem-

ical scheme (Whiley et al. 1990) and included the

reference strains; S anginosus NCTC 10713, S. constell-

atus NCTC 11325 and S. intermedius NCTC 11324. Oral

strains of SMG originated from either pus samples from

dentoalveolar abscesses or plaque specimens obtained

from healthy volunteers. Strains isolated from extra-

oral sites were kindly provided by R. Whiley (Oral

Microbiology, The London Hospital Medical College,

London, UK). A lipopolysaccharide (LPS) deficient

strain of Escherichia coli BUE55 was gifted from R.

Dixon (Biomedical Sciences, University of Bradford, UK)

and used as a sensitive control organism.

All strains were initially cultured on Columbia agar

(Oxoid Ltd., Basingstoke, UK) containing 5% (v/v)

horse blood, prior to inoculation into Isosensitest broth

(ISB; Oxoid Ltd., Basingstoke, UK) and incubated at

37 �C in an Anaerobic Work Station (Don Whitley

Scientific Ltd, Shipley, UK) under an atmosphere of

hydrogen 10%, carbon dioxide 10%, nitrogen 80%.

Peptides

Amino acid sequences of the peptides obtained com-

mercially (Sigma, Poole, UK) are shown in Table 2.

Stock solutions of the defensins, human neutrophil

peptides (HNP 1 and 2), and the histatins were

dissolved in 0.01% (v/v) acetic acid and the remainder

were dissolved in 0.1 remainder were dissolved in

0.1 M phosphate buffer, pH 6.4. The peptide solutions

were tested at concentrations of 1 mM with the

exception of the defensins which were prepared as

500 lM solutions. All the peptide solutions were stored

at )87 �C.

Table 1 Identity and source of 31 test strains used in the

present study

Species

Strain

reference Source

S. anginosus 240A/95 Dentoalveolar abscess

S. anginosus 910/95 Dentoalveolar abscess

S. anginosus 322/96 Dentoalveolar abscess

S. constellatus 743/95 Dentoalveolar abscess

S. anginosus 20c/97 Supra-gingival plaque

S. anginosus 10c/97 Supra-gingival plaque

S. anginosus 500/95 Dentoalveolar abscess

S. anginosus A2940 Blood

S. constellatus SOC Throat

S. anginosus 7K Brain abscess

S. anginosus CDC 2236-81 Blood

S. constellatus M6561 Appendix

S. anginosus NCTC 10713 Throat

S. constellatus 313B/95 Dentoalveolar abscess

S. constellatus 428/95 Dentoalveolar abscess

S. constellatus 229/96 Dentoalveolar abscess

S. constellatus 274/96 Dentoalveolar abscess

S. constellatus 322/95 Dentoalveolar abscess

S. constellatus 4515/96 Perianal abscess

S. constellatus 5’c/97 Sub-gingival plaque

S. constellatus R87/3795 Blood

S. constellatus C1792 Spinal osteomyelitis

S. constellatus NCTC 11325 Pleurisy

S. intermedius 240B/95 Dentoalveolar abscess

S. intermedius 447/95 Dentoalveolar abscess

S. intermedius 127/96 Dentoalveolar abscess

S. intermedius 313A/95 Dentoalveolar abscess

S. intermedius 28c/97 Sub-gingival plaque

S. intermedius 23’c/97 Sub-gingival plaque

S. intermedius HW69 Brain abscess

S. intermedius R87/3972 Blood

S. intermedius F458L Abdominal mass

S. intermedius NCTC 11324 Unknown

E. coli BUE55 Unknown
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Assay procedure

The antimicrobial activity of the peptides was assessed

by a modification of a previously described radial

diffusion assay (Lehrer et al. 1991). Bacterial strains

were cultured in ISB to exponential phase and adjusted

to an optical density at 540 nm corresponding to

2 · 106 colony forming units (cfu) mL)1. Molten agar

(50 �C) containing 12 mL of half strength ISB plus 1%

(w/v) low electro-endosmotic agarose (Sigma, Poole,

UK) and 0.02% Tween 20 (Sigma, Poole, UK) was

inoculated with 100 ll of the adjusted bacterial

suspension. Peptide test solutions (2 p1) were added

to 1.5 mm wells cut into the agar using sterile Pasteur

pipettes. Acetic acid 0.01% (v/v) and 0.1 M phosphate

buffer pH 6.4 served as negative controls. Following a

3 h incubation at 37 �C to allow diffusion of peptides, a

12 mL overlay of molten (50 �C) double strength ISB

containing 1% (w/v) agarose (Sigma, Poole, UK) was

added. The plates were incubated for 18 h at 37 �C in

an anaerobic atmosphere. Resultant zones of growth

inhibition were measured with a ruler using a colony

counter under ·1.5 magnification. Sensitivity was

recorded as the presence of a clear zone of 2.5 mm or

greater (Moore et al. 1996).

Results

Susceptibility of SMG strains to the different antimicro-

bial peptides varied according to the type of peptide

(Table 3). At 1 mM, indolicidin, magainin II amide and

mastoparan inhibited the growth of the majority of test

isolates with 91% (n = 23), 95% (n = 21) and 100%

(n = 30) of strains respectively being sensitive. A

smaller proportion of the strains was susceptible to

histatin 5 (10%, n = 30) and cecropin B (30%,

n = 30). The defensins (HNP 1 and 2), histatin 8,

cecropin P1 and magainin II did not inhibit the growth

of any of the strains.

All the SMG isolates tested gave a similar sensitivity

profile to the antimicrobial peptides under investi-

gation, with no obvious differences in peptide suscep-

tibility between the three species, S. anginosus,

S. constellatus and S. intermedius regardless of the

clinical source of the strains.

The largest zones of growth inhibition of the SMG

were observed with mastoparan and magainin II amide

having a similar mean diameter of 8.9 mm (+/)2.8)

and 8.8 mm (+/)2.4) respectively. Smaller zones of

growth inhibition were noted with indolicidin

(6.0 mm, +/)2.4), cecropin B (5.1 mm, +/)1.2) and

histatin 5 (3.9 mm, +/)0.9).

The LPS deficient mutant strain, E. coli BUE55 was

sensitive to six of the antimicrobial peptides under

investigation and resistant to the defensins and hista-

tins. With three peptides, the zone sizes of the control

strain were greater than those exhibited against the

SMG strains. Cecropin B produced a mean growth

inhibition zone of 22.3 mm (+/)1.3), magainin II

amide, 19 mm and mastoparan a 11.5 mm (+/)1.5)

Table 2 Source, structure and sequence of 10 commercially available peptides

Peptide Source Structure Sequence

Human neutrophil

peptide 1 (HNP 1)

Human

neutrophil

3 sheet A-C-Y-C-R-I-P-A-C-I-A-G-E-R-R-Y-G-T-C-I-Y-Q-G-R-L-W-A-F-C-C

Human neutrophil

peptide 2 (HNP 2)

Human

neutrophil

3 sheet C-Y-C-R-I-P-A-C-I-A-G-E-R-R-Y-G-T-C-I- Y-Q-G-R-L-W-A-F-C-C

Histatin 5 Human saliva Weak a helix D-S-H-A-K-R-H-H-G-Y-K-R-K-F-H-E-K-H-H-S-H-R-G-Y

Histatin 8 Human saliva Weak a helix K-F-H-E-K-H-H-S-H-R-G-Y

Indolicidin Bovine

granulocyte

Weak extended

helix

I-L-P-W-K-W-P-W-W-P-W-R-R-NH2

Cecropin B Silk moth

haemolymph

A helix K-W-K-V-F-K-K-I-E-K-M-G-R-N-I-R-N-G-I-V-K-A-G-P-A-I-A-V-L-G-E-A-K-A-L-NH2

Cecropin P1 Pig intestine A helix S-W-L-S-K-T-A-K-K-L-E-N-S-A-K-K-R-I-S-E-G-I-A-I-A-I-Q-G-G-P-R

Magainin II Frog intestine

and skin

A helix G-I-G-K-F-L-H-S-A-K-K-F-G-K-A-F-V-G-E-I-M-N-S

Magainin II

(Ala 8,13,18)

amide

Frog intestine

and skin

A helix G-I-G-K-F-L-H-A-A-K-K-F-A-K-A-F-V-A-E-I-M-N-S-NH2

Mastoparan Wasp venom A helix I-N-L-K-A-L-A-A-L-A-K-K-I-L-NH2

A, alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M,

methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y, tyrosine.
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zone. The growth inhibitory response of the control

strain was similar to the SMG isolates with indolicidin

producing a clear zone of 5.9 mm (+/)1.2). In contrast

to the SMG strains, the E. coli strain was susceptible to

the antibacterial actions of magainin 1110.3 mm

(+/)2.5) and cecropin P 1 19.0 mm (+/)1.4).

Whilst not producing a clear zone of growth inhibi-

tion that was consistent with sensitivity, some isolates

exhibited a zone of partial growth inhibition to certain

peptides; cecropin B (14 strains), HNPI (nine strains),

histatin 5 (eight strains), HNP2 (five strains) and

magainin II (four strains). These zones occurred with

peptides capable of limited inhibitory activity and were

generally smaller in diameter than those of the fully

sensitive strains.

Discussion

In the present study a wide range of antibacterial

activity towards SMG isolates was seen depending on

the peptide being assayed. The test peptides demon-

strated either no antimicrobial activity, partial growth

inhibition response or a zone of complete inhibition of

growth. The diffuse zones observed in some instances

may represent a region of delayed growth due to a

bacteriostatic response or a sub-population within the

strain that has an intermediate resistance to the

peptide. This response has been documented in a

similar agar plate assay using a strain of methicillin

resistant S. aureus (MRSA; Helmerhorst et al. 1997)

and the sensitive strain of E. coli used here (Moore et al.

1996). In the present study such zones, containing

minute colonies of SMG, were recorded as resistant

regardless of the size of the zone.

The synthetic peptides of human origin (defensins and

histatins) investigated showed no or poor activity

against SMG or against the control strain of E. coli.

Only three strains of SMG were susceptible to histatin 5,

whilst growth of none of the isolates was inhibited by

histatin 8. A further eight strains of SMG showed only a

diffuse zone of growth inhibition with histatin 5.

Previous work has demonstrated that histatins have

growth inhibitory effects on Streptococcus mutans

(MacKay et al. 1984). The lack of significant activity of

the histatins against SMG observed here is in agreement

with the findings of another recent study that reported

no bactericidal activity of histatin 5 against S. mutans

and other oral bacteria (Helmerhorst et al. 1997).

The low activity of the cecropins against SMG is

consistent with previous reports that found that cecro-

pins have greater activity against Gram-negative bac-

teria (Lee et al. 1989, Moore et al. 1996). Although

cecropin B was shown to inhibit the growth of nine

SMG strains, no activity was observed for cecropin P1.

Growth of a number of SMG strains (14/30), was

weakly inhibited by cecropin B as evidenced by the

partial zones.

Magainin II amide, mastoparan and indolicidin

possess an amidated carboxy terminus and the high

level of activity of these peptides suggests that the

possession of this property may in part be responsible

for bactericidal activity against SMG strains. Further-

more, peptides without the amidated group, (cecropin

PI and magainin 11), were ineffective at inhibiting the

growth of SMG in contrast to the similar amidated

molecules, cecropin B and magainin II amide. Amida-

tion of the carboxy-terminal has been shown to

increase the spectrum of activity of the cecropins

especially against Gram-positive bacteria (Li et al.

1988). Improvements in the bactericidal potencies,

resistance to proteolysis, cytotoxicity and in the spec-

trum of activity have been achieved producing peptide

Table 3 Sensitivity of 30 strains of SMG

to 10 antimicrobial peptides
Peptidea

Number of

strains tested

Number of

strains sensitive (%)

E. coli

BUE55

Human nutrophil peptide 1 30 0 0 Rb

Human nutrophil peptide 2 29 0 0 R

Histatin 5 30 3 10 R

Histatin 8 30 0 0 R

Indolicidin 23 21 91 Sc

Cecropin B 30 9 30 S

Cecropin P1 13 0 0 S

Magainin II 30 0 0 S

Magainin II amide 21 20 95 S

Mastoparan 30 30 100 S

a1 mM except defensins (HNP 1 and 2) at 500 lM.
bR = resistant, zone of growth inhibition <2.5 mm.
cS = sensitive, zone of growth inhibition ‡2.5 mm.
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analogues with selected amino acid changes, small

repeats of peptides and hybrid molecules (Raj et al.

1990, Bessalle et al. 1993, Zuo et al. 1995,

Ramalingam et al. 1996, Falla & Hancock 1997).

Many of these analogues have a stable amphipathic

helical structure which can be correlated to the

antibacterial activity. The low helical propensity resi-

dues in magainin 11 were substituted with alanine to

improve the amphipathic helical formation to produce

magainin II amide (Ala8, 13,18; Chen et al. 1998). In

the present study, this analogue of magainin II amide

was highly effective at inhibiting the growth of SMG

isolates. The shorter alpha helical and amidated pep-

tides appear to possess antibacterial activity against

SMG strains. Structural and functional studies have

indicated the importance of the positioning of positive

charges, amphiphilicity, alpha helicity and hydropho-

bicity in the modulation of antibacterial activity (Lee

et al. 1986, Bessalle et al. 1993, Wieprecht et al.

1997).

Members of SMG are noted for their heterogeneity

both genetically and phenotypically (Jacobs et al. 1995;

Whiley & Hardie 1989, Whiley et al. 1990, 1995,

1997) and therefore the relatively uniform response of

the isolates to the antimicrobial peptides observed in

the present study was unexpected. It has been reported

that SMG display a wide range of pathogenic determi-

nants and variation in their cell-surface associated

properties, although most strains carry a net negative

charge with varying hydrophobicities and surface

charge (Willcox & Knox 1990). The nature of the

bacterial cell surface has an important influence on the

susceptibility to antimicrobial peptides (Maloy & Kari

1995). The mode of action of cationic antimicrobial

peptides is thought to involve an initial electrostatic

interaction with the negatively charged target cell

surface molecules. This interaction is followed by a

conformational change which leads to the disruption of

the cell membrane either by the formation of channels

spanning the membrane or by a global disturbance of

the lipid bilayer. The similar susceptibility profile to

antimicrobial peptides observed here suggests that the

cell surface of SMG share a number of common

features.

The present study investigated the antibacterial

activity of a variety of peptides against a number of

isolates from SMG, in contrast to previous studies which

have been limited to representative strains of a spectrum

of bacterial species (Cullor et al. 1990, Gunshefski et al.

1994, Fernandez & Weiss 1996, Halling 1996, Yasin

et al. 1996). The results presented here show that the

helical and amidated peptides magainin II amide,

mastoparan and indolicidin are highly effective in

inhibiting the growth of members of SMG.

The disc diffusion method employed has obvious

limitations including the study of pure cultures of

bacteria in planktonic state. It would be interesting to

investigate the use of other methods such as poloxamer

hydrogels for susceptibility testing. It has been demon-

strated that many bacteria exist in a true biofilm state

within such gel systems (Cluttterbuck et al. 2007) and

it is possible that this method could be modified to study

mixed populations, thus more closely mimicking the

in vivo situation of a complex biofilm within the root

canal. If the peptides are shown to be active under such

conditions their activity following the incorporation

into root canal dressings and possibly sustained release

material systems would then be assessed. Advantages

of peptides over other commonly used antimicrobial

agents include their selectivity and the fact that the

development of resistance to these agents is thought to

be relatively rare.

The discovery of additional antimicrobial peptides in

humans has increased our understanding regarding

the role that these agents play in the host defence

(Mallow et al. 1996, McCray & Bentley 1997). The

resistance of the SMG to the human antimicrobial

peptides in particular may confer a selective advantage

on the survival of the micro-organisms in vivo (Groiss-

man et al. 1992) and may be an important factor in the

determination of bacterial pathogenicity. Changes in

the design of these bio-active peptides, to improve their

antibacterial activity and lower their cytotoxicity, may

in the future allow them to developed as therapeutic

agents in the treatment and prevention of SMG

infections including those of pulpal tissues.
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