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Abstract

Cheung GSP, Zhang EW, Zheng YF. A numerical method

for predicting the bending fatigue life of NiTi and stainless steel

root canal instruments. International Endodontic Journal, 44,

357–361, 2011.

Aim To evaluate the bending fatigue lifetime of

nickel–titanium alloy (NiTi) and stainless steel (SS)

endodontic files using finite element analysis.

Methodology The strain-life approach was adopted

and two theoretical geometry profiles, the triangular

(TR) and the square cross-sections, were considered.

Both low-cycle fatigue (LCF) lifetime and high-cycle

fatigue (HCF) lifetime were evaluated.

Results The bending fatigue behaviour was affected

by the material property and the cross-sectional con-

figuration of the instrument. Both the cross-section

factor and material property had a substantial impact

on fatigue lifetime. The NiTi material and TR geometry

profiles were associated with better fatigue resistance

than that of SS and square cross-sections.

Conclusions Within the limitations of this study,

finite element models were established for endodontic

files to prejudge their fatigue lifetime, a tool that would

be useful for dentist to prevent premature fatigue

fracture of endodontic files.
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Introduction

Fatigue is the progressive, localized and permanent

structural change that occurs in a material subjected to

repeated or fluctuating strains at nominal stresses

below (and often much less than) the yield strength of

the material (Bannantine et al. 1989, ASM Interna-

tional 1996). The material will succumb to propagat-

ing fatigue–cracks and fail after a sufficient number of

load fluctuations. Nickel–titanium (NiTi) rotary files are

susceptible to fatigue fracture, especially when they are

used in curved root canals in continuous rotation.

These instruments are ‘sensitive’, because they are

small (in relation to most structures in engineering)

and are subjected to harsh working (corrosive) condi-

tions under a combination of torsional and bending

moments of force. Fatigue has been implicated to be the

main reason for the fracture of endodontic files used

clinically (Sattapan et al. 2000, Shen et al. 2006,

Spanaki-Voreadi et al. 2006, Cheung 2009). Both

torsional (Best et al. 2004) and bending (flexural)

fatigue (Pruett et al. 1997, Sattapan et al. 2000, Lopes

et al. 2007) can lead to fracture of NiTi instruments.

There have been many reports of various factors that

can affect the fatigue fracture of NiTi rotary files,

including the geometric configuration (Yao et al.

2006), surface finish (Anderson et al. 2007, Cheung

et al. 2007a, Bui et al. 2008), working environment

(Cheung et al. 2007a,b), applied torque (Gambarini
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2001), rotation rate and angle of root canal curvature

(Martı́n et al. 2003).

A major drawback of most laboratory tests of the

fatigue behaviour of NiTi rotary instrument is that one

cannot eliminate the confounding of different factors,

such as material properties, design and dimensions of

the instrument, which are specific to the brand(s) being

tested. This makes it difficult to quantify the effect of a

single variable on fatigue behaviour. The beauty of

numerical simulation (in a finite element analysis) is

that any variable may be fixed and shielded from

interference by others for the effect being studied. There

is a scarcity of reports on the fatigue behaviour of

rotary endodontic files using a numerical method that

incorporates the nonlinear, superelastic property of

NiTi material. In contrary, the numerical approach has

been applied widely to fatigue analysis in structural and

mechanical engineering (Bannantine et al. 1989, ASM

International 1996, Browell & Hancq 2006). The

fatigue lifetime analysis is a basic method to examine

both the low-cycle (LCF) and high-cycle fatigue (HCF)

of a structural part (ASM International 1996), the

method of analysis which is available in software of

some finite element analysis packages (Browell &

Hancq 2006). Numerical prediction of the fatigue

lifetime of a component under cyclic loading is possible

with acceptable precision (Bannantine et al. 1989). The

purpose of this study was to estimate the fatigue

behaviour of stainless steel (SS) versus NiTi rotary files

of two hypothetical cross-sections using a numerical

method.

Materials and methods

Generally, there are three main fatigue analysis meth-

ods: stress-life, strain-life and fatigue-crack propagation

(or fatigue tolerance) analysis, with the first two

analyses being available in the ‘fatigue module’ (a

plug-in component) of a finite element analysis soft-

ware, ANSYS (ANSYS Inc., Canonsburg, PA, USA)

(Browell & Hancq 2006). The strain-life approach was

adopted for estimating the fatigue life of NiTi instru-

ment, because (i) the magnitude of the alternating

strain can be measured, which has been shown to be

an excellent parameter for characterizing both LCF and

HCF (Bannantine et al. 1989, Browell & Hancq 2006)

and (ii) the strain-life is typically concerned with crack

initiation, whereas the stress-life is concerned with

total life and does not distinguish between initiation

and propagation (Stephens et al. 1980, Bannantine

et al. 1989, ASM International 1996). Various

constants for the strain-life behaviour may be obtained

by fitting a curve to the data from a stain-controlled

fatigue test. For instance, the cyclic strength coefficient

(K¢) and the cyclic strain hardening exponent (n¢) can

be obtained by fitting the stable stress amplitude versus

plastic strain amplitude data into the Coffin-Manson

equation for strain-life relationship (Bannantine et al.

1989):

ra¼ K0ðeapÞn
0

ð1Þ

where ra and eap are the stress amplitude and the

plastic strain amplitude, respectively. The variation in

fatigue life (total lifetime before fracture), in terms of

the number of cycles to failure (Nf) and the total strain

amplitude (ea), is analysed using the strain-life rela-

tionship in the following form:

ea ¼
r0f
E
ð2Nf Þb þ e0f ð2Nf Þc ð2Þ

where rƒ’, b, eƒ’ and c are the fatigue strength

coefficient, the fatigue strength exponent, the fatigue

ductility coefficient and the fatigue ductility exponent,

respectively.

In this study, the fatigue parameters for SS were

taken directly from a standard textbook (Stephens et al.

1980), and those for NiTi alloy were derived from the

results of a published study (Cheung & Darvell 2007a).

These values (Table 1) were entered into the numerical

model to simulate the stress- and strain-controlled

fatigue behaviours for instruments made of these two

materials in software.

Two hypothetical cross-sections, triangular (TR) and

square (SQ), were used to produced a 3-D finite element

model (Fig. 1). The diameter of the circum-circle for

both cross-sections (i.e. outermost diameter, which is

usually referred as the ‘size’ of the instrument in

hundredths of a millimetre) increased from 0.3 to

0.4 mm over a length of 5 mm (i.e. ISO taper of 0.02).

A fully reversed displacement was applied to the tip of

geometrical model, and another tip was fixed in

ANSYS, known as a cantilever beam model for this

analysis. The applied displacement ranged from 0 to

2.0 mm. There are 3216 elements with 17344 nodes

for the triangle FE model, and 3624 elements with

18983 nodes for the square FE model. As the load was

completely reversed in every cycle, the mean stress

equalled to zero in both the fatigue tests. Infinite fatigue

life (also known as ‘endurance limit’) was defined as

107 cycles or above. A total of four numerical models

were set up to examine the various combinations of

cross-sectional configuration (TR vs. SQ), material (SS
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vs. NiTi). The fatigue behaviour, both LCF (lifetime less

than 104 cycles) and HCF, was studied in this ANSYS

Workbench Environment (ANSYS Inc).

Results

The representative fatigue behaviour for the four

combinations of configuration and material properties

at the same amplitude of 1.0-mm tip displacement is

depicted in Fig. 1. The red region on the surface or in

the cross-section of the instrument represented the

region experiencing the shortest life (falling in the LCF

region), and the blue represented infinite life. Compared

to the SS models, NiTi models had more materials in

the safety region (the blue region means high fatigue

life).

The parts that failed within the LCF region were all

situated at the surface of the instrument for each

model. The lifetime distribution was found to be

strongly related to the distribution of stresses: areas

where stress concentration occurred were also the

locations with the shortest fatigue life. Instruments of a

TR cross-section (Fig. 1a,c) appeared to have a higher

fatigue lifetime than the SQ models (Fig. 1b,d) at the

same bending amplitude (Fig. 2).

The fatigue lives for the four numerical models at

different bending amplitude from 0 to 2.0 mm showed

a similar general trend (Fig. 2). With an increasing

bending displacement amplitude, the fatigue lifetime of

each model decreases rapidly. Both in the HCF and LCF

regions, the NiTi material seemed to have a better

fatigue resistance than that of SS, compared with the

cross-sectional configuration, with the TR cross-sec-

tion succumbing to a higher lifetime than the SQ

group (Fig. 2). Both the cross-section and the material

had a significant impact on the fatigue life of the

instrument.

Discussion

Three-dimensional finite element analysis has been

extensively used in mechanical and structural engi-

neering. Its use has been extended for visualizing the

stress distribution and predicting the mechanical

behaviours of NiTi root canal instruments under

different loading conditions (Berutti et al. 2003, Xu &

Table 1 Representative parameters for the fatigue behaviour of stainless steel and NiTi alloy

Stainless steel

(304V annealed)

Nickel–titanium (NiTi)

alloy (superelastic)

Cyclic strain hardening exponent (n¢) 0.334 0.1

Cyclic strength coefficient (K¢) 2275 MPa 733 MPa

Fatigue strength exponent (b) )0.139 )0.06

Fatigue strength coefficient (r¢ƒ) 1267 MPa 705 MPa

Fatigue ductility exponent (c) )0.415 )0.6

Fatigue ductility coefficient (e¢ƒ) 0.174 0.68

(a)

(c)

(b)

(d)

Figure 1 Representative bending fatigue life distribution for four models at 1.0-mm bending displacement at left tip with the right

tip fixed. (a) SS-TR(stainless steel file with triangular cross-section) model, (b) SS-SQ(Stainless steel file with square cross-section)

model, (c) NiTi-TR(NiTi alloy file with triangular cross-section) model and (d) NiTi-SQ(NiTi alloy file with square cross-section)

model.
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Zheng 2006), as well as in a computer simulation of

clinical use (Kim et al. 2008). With a suitably config-

ured package, this numerical method would help with

the prediction of fatigue behaviours for rotary files of

various designs.

The result of this study indicated that at high

alternating load, NiTi instruments had an apparent

lifetime higher than their SS counterpart at similar

deformation situation. The result is a higher apparent

lifetime, compared with SS instrument of the same cross-

section, as LCF life is governed by the total alternating

strain, not the stress value (Stephens et al. 1980). When

a rotary file is used to prepare the (curved) root canals, it

is being confined to a particular curvature setting (i.e.

fixed strain amplitude) during use. Thus, a strain-life

approach of analysis may be the best way to examine the

fatigue behaviour of NiTi rotary instruments.

It has been suggested that the cross-sectional

configuration has little influence on the LCF of NiTi

root canal instruments (Cheung & Darvell 2007b).

However, this is not supported by the present numer-

ical simulation – the square versus TR configuration

demonstrated a significantly different lifetime at both

the LCF and the HCF regions. One reason for the

different results might be related to the large scatter in

actual fatigue experiments (Cheung & Darvell

2007a,b), with the overall lifetime being influenced

not only by the strain amplitude but also by the surface

condition (e.g. machining grooves) and the microstruc-

ture of the underlying material (despite the same

composition) of the different brands (Alexandrou et al.

2006). On the other hand, the nature of the material

seemed to have a greater impact than the cross-

sectional configuration on the fatigue behaviour under

bending as well as NiTi continued to perform better

than SS for instruments of same design (see Fig. 2). At

low levels of alternating stress (HCF region), the actual

strains and the difference in the strain value between

the two materials are also small. That may explain the

decreased relative importance of cross-sectional config-

uration in the HCF property of the rotary instruments.

When the displacement is less than a certain value, the

model will be in the infinite life region for all models. In

this numerical analysis, the same displacement was

applied to all models, which means that the surface

strain amplitude would be similar for SS versus NiTi

instrument. The actual strain amplitude sustained by

the instrument is ‘masked’ by the (elastic modulus of

the) material. A high value of the alternating strain

would lead to a rapidly decreasing life, that is the LCF

region (Stephens et al. 1980, Cheung & Darvell

2007a). Thus, in the context of rotary instruments,

examination of the fatigue behaviour should be based

on the strain value (i.e. unit amount of deformation, be

it torsional or flexural). The design of the instrument

should also be taken into account, as it is an important

determinant of stress concentration (Xu & Zheng 2006)

as well as the fatigue lifetime. On the other hand, the

operating strain amplitude sustained by the instrument

will be confounded by the elastic modulus of the

material in the clinical situation. For instance, rotary

files made of SS will tend to exert a high reaction

(restoring) force on the outer curve of the canal owing

to its high modulus of electricity, thus leading to rapid

removal of dentine there, reducing the effective curva-

ture as soon as they start to rotate.

Several methods had been proposed to prevent

instrument fracture in the clinic (Peter & Fiore 2007).

Meanwhile, careful prediction of the fatigue lifetime of

rotary files would be useful for the clinicians to avoid

premature failure of the instrument (especially when

curved root canals are concerned, or where ‘autore-

verse’ or reciprocating motion is used). To simulate the

true loading conditions encountered in the clinical

situation, a combination of different loading and

boundary conditions should be considered, such as

the influence of a single overload (e.g. in the case of

‘taper lock’ (Park et al. 2010), or at times when the

autoreverse function is activated), as well as the effect

of a pre-existing (micro-)crack or surface discontinuity.

The finite element model is a useful method to deter-

mine the relative importance of various factors for a

more reliable prediction, and subsequent verification in

Figure 2 Bending fatigue life of the middle section for different

endodontic file models. LCF-low-cycle fatigue; HCF- high-cycle

fatigue; SS-TR(stainless steel file with triangular cross-section);

SS-SQ(stainless steel file with square cross-section); NiTi-

TR(NiTi alloy file with triangular cross-section); and NiTi-

SQ(NiTi alloy file with square cross-section).
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actual experimentation, of their effect on the fatigue

behaviour.

Conclusions

In summary, a simulated numerical approach was

formulated for bending fatigue lifetime prediction for

rotary instruments. Bending fatigue behaviour was

affected by the material property and the cross-

sectional configuration of the instrument. This numer-

ical method would be useful for dentist to predict and

prevent premature fatigue fracture of endodontic files.
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