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Abstract

Zhang EW, Cheung GSP, Zheng YF. A mathematical model

for describing the mechanical behaviour of root canal instru-

ments. International Endodontic Journal, 44, 72–76, 2011.

Aim The purpose of this study was to establish a

general mathematical model for describing the

mechanical behaviour of root canal instruments by

combining a theoretical analytical approach with a

numerical finite-element method.

Method Mathematical formulas representing the

longitudinal (taper, helical angle and pitch) and

cross-sectional configurations and area, the bending

and torsional inertia, the curvature of the boundary

point and the (geometry of) loading condition were

derived. Torsional and bending stresses and the

resultant deformation were expressed mathematically

as a function of these geometric parameters, modulus

of elasticity of the material and the applied load. As

illustrations, three brands of NiTi endodontic files of

different cross-sectional configurations (ProTaper,

Hero 642, and Mani NRT) were analysed under pure

torsion and pure bending situation by entering

the model into a finite-element analysis package

(ANSYS).

Results Numerical results confirmed that mathemat-

ical models were a feasible method to analyse the

mechanical properties and predict the stress and

deformation for root canal instruments during root

canal preparation.

Conclusions Mathematical and numerical model

can be a suitable way to examine mechanical behav-

iours as a criterion of the instrument design and to

predict the stress and strain experienced by the

endodontic instruments during root canal preparation.
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ment, torsion.
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Introduction

Fracture of root canal instruments in use may be as a

result of either one or a combination of two reasons:

torsional overload and flexural (bending) fatigue

(Camps & Pertot 1994). Using a mathematical

approach, Turpin et al. (2000) studied the influence

of two cross-sectional configurations on the torsional

and bending stresses in root canal instruments using

a boundary integral method. However, it seemed to

appear that their calculations did not fully account for

the curvature of the boundary and the area of the cross

section. It is also unknown whether a non-linear

approach was used. A finite-element method was

employed by Berutti et al.(2003) to examine two

brands of NiTi instrument and, later, by Xu & Zheng

(2006) for six different brands. Both studies took into

account the non-linear mechanical property of the

material but, then, only a cylindrical segment of each

instrument was modelled and examined; the longitu-

dinal configuration was not accounted for or included.

Thus, the aim of this study was to develop a compre-

hensive mathematical model that takes into account

both the geometrical parameters and the loading

conditions (both torsion and bending) for NiTi root
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canal instruments with a non-linear mechanical

behaviour.

Geometry of the file design

Figure 1 depicts the longitudinal geometry of an

endodontic file. The origin of reference coordinate (on

the X-Y plane) runs along the centroid of the cross

section (i.e. the z-axis) with radius of the outermost

circumcircle at the tip = R0; z represents the distance

from the tip to a certain length along the axis of the

instrument, which is an independent variable. The

maximum radius (R) of a particular cross section is a

function of z and the taper T(z) such that

RðzÞ ¼ R0 þ
1

2

Z z

0

TðzÞdz ð1Þ

The relative angle (b) for the orientation of the cross

section between two planes, distance dz apart (Fig. 1-

a,b), may be expressed as:

bðzÞ ¼
Z z

0

tanðaðzÞÞ
RðzÞ dz ð2Þ

and,

bðzþ kðzÞÞ � bðzÞ ¼ 2p=k ð3Þ

wherek(z) is the screw-pitch of the cutting edge, and k is

a constant number that is related to the polar symme-

try of the cross section. For example, k = 3 for HERO

(Micro-Mega, Besançon, France) or ProTaper instru-

ment (Dentsply Maillefer, Ballaigues, Switzerland) with

a symmetry of 120�, k = 2 for NRT (Mani, Tokyo,

Japan) with a symmetry of 180�.

When T(z) and a(z) are constant, i.e. for instruments

with regular body taper, Eqns (1–3) can be rewritten as:

RðzÞ ¼ R0 þ 1
2 Tz

bðzÞ ¼ 2 tanðaÞ
T lnð1þ T

2R0
zÞ

kðzÞ ¼ðe
pT

k tanðaÞ � 1Þzþ 2R0

T ðe
pT

k tanðaÞ � 1Þ

9>=
>; ð4Þ

Meanwhile, all parameters of the cross section vary

with the coordinate z, the cross-sectional parameters

such as area (A), torsional inertia (It) and bending

inertia (Ib) can be written as a function of z in the

following formulas:

A ¼
Z

AðzÞ
dA ; It ¼

Z
AðzÞ

r2dA ; Ib ¼
Z

AðzÞ
h2dA ð5Þ

whereA(z) is the integral area of the cross section at

distance z from the tip; r is the distance between the

integral point to the centre of the cross section at the

coordinate z; and h is the distance from the integral

point to the bending neutral plane.

Equation (5) cannot be calculated analytically

because of the complicated boundary around the cross

section (Low et al. 2006). However, these equations are

useful for establishing a finite-element numerical model

for defining the torsional and bending parameters of the

instrument under torsion and/or bending.

Torsional consideration

When a pure torsional moment is applied to the

instrument, the stress s at any given point on a

particular cross-sectional plane can be expressed as

follows (Boresi et al. 1993):

(a)

(b)

Figure 1 (a) Schematic drawing depicting the geometric

parameters for a small section, thickness = dz, of a root canal

instrument (tip pointing downward); and (b) example of a 3D

finite-element model and the reference coordinate for a

10- mm-long segment of a size 30 Hero 642 instrument with

a 0.02 taper.
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s ¼ Mt

It

Ae K� 1
rmj j

pr2
m

r ð6Þ

where

Mt: Torsional moment of force (torque)

It: Polar moment of inertia

r: Distance from the point under consideration to the

centroid of the cross section

rm: Maximum radius in the direction of r

A: Area of the cross section

K: The curvature of boundary point in the direction of

r. Its value can be represented by a piecewise function:

when boundary is concave, K = )1/r (the latter being

curvature radius); when boundary is a straight line,

K = 0; when boundary is convex, K = 1/r. For any

given point, K = (Ka + Kb)/2, where Ka and Kb are the

curvatures of right and left neighbour points of that

location, respectively.

To simplify Eqn (6), V can be defined as a constant

that includes all the dimensional variables of the cross

section, such that

f ¼ Ae K� 1
rmj j

pr2
m

ð7Þ

This value, which varies with measurements of the

cross section (A, rm and K), may be regarded as a

measure of the degree of stress concentration (Boresi

et al. 1993). The larger the value of f (because of, say, a

small rm), the greater the stress concentration. In the

case of a circular cross section, (with rm = r0, the latter

being the maximum radius of the considered cross

section), then K = 1/r0, A = pr0
2 and f = 1. Then, Eqn

(6) can be reduced to:

s ¼ Mt

It
r ð8Þ

This equation is the well-known formula for pure

torsional stress distribution for a cylindrical bar (Boresi

et al. 1993). Turpin et al. (2001) used this Eqn (8), but

did not consider the influence of the effective radius for

a notch (i.e. bottom of a flute) and the curvature of

boundary point. Clearly, Eqn (6) would be a more

comprehensive formula to describe the mechanical

behaviour of the NiTi instrument.

The angle-of-twist (i.e. relative angle between two

cross sections as a result of the applied stress) because

of the torsional stress is given by:

u ¼
Z z2

z1

Mt

GIt
dz ¼ Mt

G

Z z2

z1

dz

ItðzÞ
ð9Þ

where the polar moment of inertiaItðzÞ ¼
R

AðzÞ r2dA,

and G is the shear modulus. For an isotropic material, G

is related to its Young’s modulus (E) and the Poisson’s

ratio (v) such that

G ¼ E

2ð1þ mÞ

Bending consideration

Under pure bending, the end-deflection of a regular

beam is given by (Boresi et al. 1993):

f ¼ MbL2

2EIb
ð10Þ

where Mb is the bending moment, Ib is the second

(bending) moment of inertia, L is the deflected length of

beam, and E is the elastic modulus. This Eqn (10)

should be modified to take into account the variation in

the geometry along the length of the instrument.

f ¼
Z L

0

Mbz

EIbðzÞ
dz ð11Þ

The bending stress for a beam with an arbitrary cross

section, taking into account the cross-sectional dimen-

sions, may be expressed as:

r ¼ Mb

Ib

Ae K� 1
rmj j

pr2
m

h ð12Þ

where h is the distance from the considered point to the

neutral plane, with other symbols having the same

meaning as in Eqn (6). The deformation of root canal

instruments depends on the configuration or curvature

of the root canal being prepared. Combining the three

Eqns (10–12), the bending stress for the instrument

may be expressed as:

r ¼ 2Ef

L2

Ae K� 1
rmj j

pr2
m

h ð13Þ

From this Eqn (13), it can be realized that the bending

stress distribution depends on the deflected length of

instrument (L), elastic modulus of the material (E),

dimensional variables of the cross section (V) and the

distance from the considered point to the neutral plane

(h). Notice that the value of h may differ from radius of

the outermost circle (which often is referred as the size

of the instrument) for that cross section.

Numerical simulation

Three NiTi root canal instruments: ProTaper (Dentsply

Maillefer), HERO 642 (Micro-Mega) and NRT (Mani),

each with known a cross-sectional configuration, were

A mathematical model Zhang et al.
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modelled for 3D finite-element analysis, taking into

account the mathematical considerations described

previously. They were examined for stress distribution

under pure torsion (applied torsional moment,

Mt = 1.0 NÆmm) and pure bending situation (bending

moment, Mb = 1.0 NÆmm), with the outside diameter

of the instrument r0 = 0.15 mm (i.e. ISO size 30).

At an applied torque of 1 NÆmm, the maximum

torsional stress at the boundary point (i.e. periphery of

the cross section) was 490, 730 and 550 MPa for

ProTaper, HERO and NRT, respectively. The maximum

stress was situated at the ‘bottom’ of the flute that was

closest to the centroid of the cross section (Fig. 2a). The

HERO model had the greatest stress concentration that

was localized to a small area (i.e. high stress concentra-

tion), whereas ProTaper had a gentle gradient of stresses

from the periphery to the centre of its cross section.

On bending, the lowest stress was situated at the

neutral plane (blue region in Fig. 2b). The maximum

stress recorded for the ProTaper, HERO and NRT

instruments were 510, 550 and 530 MPa, respectively.

The stress increased in value as the distance increased

from the neutral plane, with the maximum stress

situated at an area furthest away from that plane – just

as the bending formula suggested. There was no

distinctive stress concentration present at any sharp

points of the cross section (i.e. the cutting edge), both in

bending and torsion (Fig. 2).

Discussion

The mechanical properties of the instruments are

clearly influenced by their geometrical configurations,

which include the cross-sectional shape (which deter-

mines the bending and torsional inertia), taper, helical

angle and pitch. The boundary of the cross section is

another important factor influencing the mechanical

properties, in order words, the shorter the radial

distance between the periphery (or border) and centroid

of the cross section, i.e. the so-called ‘core diameter’

described by some authors (Harty & Pitt Ford 2004),

the greater the reaction stresses developed in the

instrument, especially in torsion (see Fig. 2a). This

behaviour does not change with the coordinate z.

The symmetry of the stress distribution under torsion

coincides well with the symmetry of the cross section;

the torsional formulas and numerical simulation

results both indicated such symmetry. The maximum

Von Mises stress are situated at a site closest to the

centre, with the stress distribution being polarly sym-

metrical in relation to the cross-sectional shape, under

torsional load. Symmetry of stress distribution was not

observed during bending, because the cross section is

not symmetrical about any plane along the instru-

ment’s axis. Both the second (bending) and polar

(torsional) moments of inertia vary inversely with the

forth power of the maximum radius (Boresi et al.

8 20

5
60

120
200

320
400

480
510

530 11 100 200 300 350 450 510 537 550 20 40 100 200 300 450400 470 530

100

ProTaper Hero642 Mani NRT

180 240 310 430 450 500 54 100 380 480 540 560 650 690 730 42 100 200 320 420 480 510 535 550

(a)

(b)

Figure 2 (a) Stress distribution under pure torsion; applied torsional moment Mz = 1.0 NÆmm. (b) Stress distribution under pure

bending; applied bending moment Mx = 1.0 NÆmm. All the cross sections have the same maximum radius r0 = 0.15 mm.
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1993). Thus, when the radius decreases, the (extent of

concentration of) stress increases drastically, in the

form of a power function. For the cross-sectional

configurations, the bending moment is related to the

direction of bending, but the value of bending inertia Ib

does not influence the stress directly as in the case of

torsion [cf. Eqns (8) and (13)]. The maximum stresses

always appear at the periphery (border) of the instru-

ment’s cross section, for both torsion and bending loads

(Fig. 2). It follows that the cross-sectional configuration

of an instrument will affect its apparent strength and

susceptibility to fatigue failure.

Other parameters can influence the mechanical

properties by modifying the characteristics of the cross

section. The maximum radius and the inertia of the

cross section along coordinate z would vary for

instruments of different tapers. The helical angle

(orientation of the flutes) would not alter the radius

but changes the orientation of the cross section, so that

the bending inertia will change at the same time. The

pitch and relative orientation can be calculated for

regularly tapered instruments, as they are related to the

helical angle and the radius; see Eqns (4) and (5). With

all geometrical parameters taken into account, the

mechanical behaviour of root canal instruments may

then be predicted in a numerical finite-element model.

Distribution of (residual) stress and strain can be

visualized for various designs of instrument that is

working in simulated root canals of different curvatures

and torque settings (Kim et al. 2008).

Conclusions

Mathematical and numerical models appear to be a

suitable way to examine mechanical behaviour as well

as provide a good reference for manufacturers when

designing a new root canal instrument, and for dentists

to better understand the limits of the instruments being

used for preparing the curved root canals.
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