SHORT COMMUNICATION

HS Brand ML Bruins ECI Veerman AV Nieuw Amerongen

Secretion rate and amylase concentration of whole saliva after consumption of beer

Authors' affiliation:

H.S. Brand, M.L. Bruins, E.C.I. Veerman, A.V. Nieuw Amerongen, Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands

Correspondence to:

H.S. Brand Department of Oral Biochemistry Academic Centre for Dentistry Amsterdam (ACTA) van der Boechorststraat 7 1081 BT Amsterdam The Netherlands Tel.: +31 20 444 8673 Fax: +31 20 444 8685 E-mail: hs.brand@vumc.nl

Dates:

Accepted 15 November 2005

To cite this article:

Int J Dent Hygiene 4, 2006; 160–161 Brand HS, Bruins ML, Veerman ECI, Nieuw Amerongen AV. Secretion rate and amylase concentration of whole saliva after consumption of beer

Copyright © Blackwell Munksgaard 2006

Key words: alcohol; amylase; beer; ethanol; flow rate; saliva

Saliva is of paramount importance for the maintenance of oral health (1). Only a few studies have investigated the acute effects of alcohol consumption on salivary function.

In rats, acute administration of a high dose of ethanol caused a significant reduction in stimulated parotid secretion (2) and reduced the protein synthesis in all major salivary glands (3). Ingestion of a high dose of ethanol by humans also caused a decrease in parotid salivary flow rate (4) and stimulated whole saliva flow rate (5), with a concomitant reduction in salivary amylase activity and output (5). In this study, we investigated the possible effects of a relatively small volume of beer on salivary function.

Ten healthy volunteers (seven men and three women; mean age 32.1 ± 17.9 years) participated in this study. They were instructed to abstain from alcohol at least 12 h prior to the experiment and to abstain from smoking, eating, drinking caffeine containing beverages and toothbrushing at least 1 h prior to the experiment. All experiments took place between 09:30 and 12:30 hours.

In a crossover design, the volunteers consumed either 300 ml top-fermented beer (Palm Breweries, Steenhuffel, Belgium, 5.2% alcohol) within 5 min. As a control, 300 ml non-alcoholic beer was used (Amstel Malt, Zoeterwoude, The Netherlands, <0.1% alcohol). The time interval between both experimental conditions was 1 week.

Immediately before the consumption of beer and 15, 30, 45, 60, 90 and 120 min later, mechanically stimulated whole saliva was collected in preweighed tubes for 5 min by parafilm-chewing (6). The salivary flow rates were determined gravimetrically.

Fig 1. Flow rate and amylase protein concentration of whole saliva before and after consumption of 300 ml beer (solid bars) or non-alcoholic beer (hatched bars). Data are expressed as mean \pm SD (n = 10). *P < 0.05 versus top-fermented beer at T = 0, [#]versus non-alcoholic beer at T = 15.

The salivary samples were transferred to Eppendorf vials, centrifuged at 10 000 g for 10 min and the supernatant was stored at -20° C. Amylase protein was quantified by capillary electrophoresis.

Data are expressed as mean \pm SD. For statistical analyses ANOVA for repeated measures was used, followed by paired Student's *t*-tests where appropriate (SPSS version 10.0: SPSS Inc., Chicago, IL, USA). Levels of significance were set at P < 0.05.

A transient decrease in the salivary flow rate of parafilmchewing stimulated whole saliva was observed after consumption of beer (-15% versus baseline values), which was not observed after the consumption of non-alcoholic beer (Fig. 1).

Both consumptions did not induce significant changes in the salivary amylase protein concentration (Fig. 1) or output.

This study demonstrates that consumption of a relatively small amount of beer induces a transient decrease in saliva secretion rate within 15 min. At 30 min after drinking beer, the salivary flow rate was restored. The reduction of 15% in parafilm-stimulated saliva secretion in our study is much smaller than the decrease of 40% after ingestion of a large dose of ethanol in previous studies (5), suggesting a dose-response effect.

Although one standard amount of beer has only a limited effect on salivary secretion, frequent intake of beer may reduce salivary flow rate more extensively and for a longer time. This may impair the beneficial effects of saliva on oral health and increase the need of dental hygiene treatment, especially in adolescents with a high frequency of (binge) drinking (7).

References

- 1 Nieuw Amerongen AV, Veerman ECI. Saliva the defender of the oral cavity. *Oral Dis* 2002; 8: 12–22.
- Scott J, Berry MR, Woods K. Effects of acute ethanol administration on stimulated parotid secretion in the rat. *Alcohol Clin Exp Res* 1989; 13: 560–563.
- 3 Proctor GB, Shori DK, Preedy VR. Protein synthesis in the major salivary glands of the rat and the effects of re-feeding and acute ethanol injection. *Arch Oral Biol* 1993; **38**: 971–978.
- 4 Dutta SK, Parasher V, Smalls U. Evidence for marked suppression of parotid saliva secretion and altered composition following a single dose of ethanol ingestion in man. *Gastroenterology* 1984; **86**: 1065.
- 5 Enberg N, Alho H, Loimaranta V, Lenander-Lumikari M. Saliva flow rate, amylase activity, and protein and electrolyte concentrations in saliva after acute alcohol consumption. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2001; **92:** 292–298.
- 6 Brand HS, Ligtenberg AJM, Bots CP, Nieuw Amerongen AV. Secretion rate and buffer capacity of whole saliva depend on the weight of the mechanical stimulus. *Int J Dent Hyg* 2004; 2: 137–138.
- 7 Andersson B, Hansagi H, Damstrom-Thakker K, Hibell B. Longterm trends in drinking habits among Swedish teenagers: national school surveys 1971–1999. *Drug Alcohol Rev* 2002; 21: 253–260.

Copyright of International Journal of Dental Hygiene is the property of Blackwell Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.