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The surface quality will determine tissue reactions to
an oral implant. Surface quality may be divided into

three categories: (1) mechanical properties, (2) topo-
graphic properties, and (3) physicochemical properties.
This article treats those aspects of surface quality sep-
arately, although it is known that changing one aspect
may lead to changes in the others. For instance, Sul et
al1 observe that anodizing an implant leads to changes
in surface roughness as well as alterations of oxide
crystallinity and embedding of ions in the surface.
Morra et al2 found that machined implants display a
lower concentration of titanium on the surface and a
higher concentration of carbon than sandblasted, acid-
etched, or plasma-sprayed surfaces.

Aspects of Surface Quality

Mechanical Properties

Mechanical properties of implant surfaces relate to
potential stresses in the surface that may result in in-
creased corrosion rate and wear relating to the hard-
ness of the material. Decreased fatigue strength of
implant surfaces has been described with porous coat-
ings.3 Wear is related to the strength of the material, but
also to surface roughness. One technique to minimize
wear is ion implantation.4 Mechanical properties of
oral implant systems have been insufficiently investi-
gated.

Topographic Properties

Topographic properties of implant surfaces are impor-
tant. The surface topography relates to the degree of
roughness of the surface and the orientation of the sur-
face irregularities. Surface roughness has been the main
focus on oral implants for more than a decade. The orig-
inal Brånemark implant (Nobel Biocare) was a turned
screw of minimal surface roughness, ie, between 0.5 and
1.0 µm in Sa value (Fig 1). For a long time, this implant
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was the gold standard, based mainly on a good clinical
record.5,6 However, by the mid-1990s, the bulk of ex-
perimental evidence pointed in the same direction: Im-
plants of a roughness of about 1.5 µm (Sa) show stronger
bone response (Fig 2) than turned (smoother) and
plasma-sprayed (rougher) implants7 (Fig 3 and Table 1).

However, more interfacial bone (stronger bone re-
sponse) in experimental animals need not imply greater
clinical success (Fig 4). Furthermore, potential draw-
backs of roughening the implant surface include greater
problems with peri-implantitis and a greater risk of ionic
leakage. The risk of increased peri-implantitis with
rougher surfaces had some clinical support from inde-
pendent investigation,8,9 albeit related to very rough (�
2.0 µm Sa) plasma-sprayed implants. On the other hand,
clinical documentation of moderately roughened sur-
faces, such as the Tioblast screw (Astra Tech), shows no
increased incidence of peri-implantitis and, in fact, main-
tained bone height levels at 5 years of follow-up.10–13

The other potential drawback of roughened sur-
faces, increased risk of ionic leakage, was based on the
physical knowledge that greater surface roughness

gives greater tissue-implant contact and hence ionic
leakage. However, risk levels were not identified, and
it seems probable that the increase in ionic leakage with
slight roughening of an oral implant is negligible.14 In
fact, the majority of commercially available oral im-
plants are currently moderately roughened, which may
be their major benefit. However, some moderately
roughened implants will be discussed under the chem-
ical heading, as they combine a moderate surface
roughness with a chemical surface modification de-
scribed as unique by the manufacturer. 

In basic science, there is currently considerable in-
terest in nanostructures. With respect to surface rough-
ness, it is unknown whether nanometer-sized irregular-
ities will affect the bone response. Changes in implant
roughness at the micrometer level of resolution may si-
multaneously result in changes at the nanometer level.
It is therefore diffcult to reliably exclude the possibility
that nanometer-sized surface irregularities may influ-
ence the bone response to an implant. To the knowledge
of the present authors, the proof is limited to in vitro data
from various nanosurfaces. One study showed that

Fig 1 (right) Turned surface is not at all smooth. This remains
the best documented of all implant surfaces (each red and
white section of the bars = 10 µm).

Fig 2 (below) Moderately roughened surface, with roughness
in the range of 1 to 2 µm Sa, displays stronger bone response
than smoother or rougher surfaces (each red and white section
of the bars = 10 µm).

Fig 3 (below right) Plasma-sprayed implant is roughest and
has demonstrated a weaker bone response than moderately
roughened implants (each red and white section of the bars =
10 µm).
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macrophage cell lines react to microgrooves at the
nanometer level,15 whereas another investigation saw no
significant effects in cell adhesion to different nanoto-
pographies.16 There is a need for more in vitro, and of
course in vivo, data to decide on the potential importance
of nanostructures. Nevertheless, for clinical purposes,
the relevant way to describe an oral implant surface is
by referring to its micrometer-sized irregularities.17

Physical Characteristics

Physical characteristics refer to factors such as surface
energy and charge. According to Hench and Ethridge,18

surface energy is a measure of the extent to which

bonds are unsatisfied at the surface. A surface with a
high energy has a high affinity for adsorption. In other
words, an oral implant with high surface energy may,
at least theoretically, show stronger ossseointegration
than implants with a low surface energy. Glow dis-
charge treatment results in high surface energy as well
as implant sterilization.19 Baier20 claims that high sur-
face energy influences proteins to form an advanta-
geous primary coat on the implant.

A practical way to measure surface energy is contact
angle measurements,18 a method also used to deter-
mine whether a surface is hydrophobic or hydrophilic,
ie, the wettability of a surface.21 However, the hypoth-
esis that implants with a high surface energy result in

Fig 4a Implant with a high proportion of bone-to-implant con-
tact. A greater amount of interfacial bone need not imply im-
proved clinical function (hematoxylin-eosin stain; distance be-
tween two thread tips = 600 µm). 

Fig 4b Implant with a low proportion of bone-to-implant con-
tact. Controlled clinical testing is necessary to reveal whether
a defined surface alteration is beneficial (hematoxylin-eosin
stain; distance between two thread tips = 600 µm).

Table 1 Characteristics of Different Implant Surfaces

Roughness (Sa) Clinical usage Potential benefits Potential risks

0.0–0.4 µm Abutments, certain “machined” None, if used for bone anchor- Too smooth for proper osseo-
(“smooth”) experimental implants age integration

0.5–1.0 µm Turned implants, Osseotite, most Longest clinical documentation Less forgiving for untrained
(“minimally rough”) implants used before 1995 of all implants surgeons?

1.0–2.0 µm Tioblast, SLA, TiUnite, Frialit-2, Stronger bone response, tendency Many, but not all, designs have
(“moderately rough”) most implants of today to better clinical results than only short clinical follow-up

turned implants
� 2.0 µm Plasma-sprayed titanium, hydroxy- Positive 5-year documentation Increased incidence of peri-im-

(“rough”) apatite-coated implants reported plantitis reported in two studies
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stronger osseointegration has not been verified by in
vivo studies.22,23 It is possible that an initially high sur-
face energy will be immediately changed when the
implant is moved from the glow discharge container
through the air toward the patient.

Chemical properties seem to be the main focus for
the future in oral implantology. The chemical composi-
tion of the surface will provoke different reactions from
the surrounding media. The chemical composition of the
surface often differs from that of the bulk material be-
cause of preparation methods and impurities trapped
in the surface.24,25 The surface layer may contain reac-
tive bonds, and a continuous exchange of water and
various ions influences the binding of proteins to the
surface and the subsequent cell reactions.26,27

Anchorage Mechanisms of Oral Implants 

Many oral implant companies have recently launched
new products with claimed unique, and sometimes
bioactive, surfaces; the focus has shifted from surface
roughness to surface chemistry. To properly explain
the claims for new surfaces, it is essential to summa-
rize current opinions on bone anchorage, with empha-
sis on the potentials for biochemical bonding.

Biomechanical Bonding

A turned titanium implant, such as the original
Brånemark screw, is anchored to bone through in-
growth into small irregularities of the implant surface—
biomechanical bonding (Fig 5). Thus, osseointegration

depends on biomechanical bonding. Blasted, acid-
etched, and other moderately roughened implants
show a stronger bone response than turned devices.
However, they are also dependent on biomechanical
bonding. This type of anchorage may follow the place-
ment of relatively inert titanium (and some other met-
als and ceramics) implants of at least minimal surface
roughness. The potentially negative aspect with bio-
mechanical bonding is that it is time consuming. There
are weeks of delay before bone has started to grow into
surface irregularities of the implant. Before bone in-
terlocking, the implant is dependent on its macro-
design (eg, threaded screw) for retention. Scientific pa-
pers published into the 1980s generally indicated that
bone needs a minimum of 50- to 100-µm cavities or
pores for proper ingrowth. Today, we have sufficient
knowledge that irregularities at least down to 1 µm may
be invaded by bone, although complete Haversian sys-
tems need a larger space.17

Electropolished titanium surfaces of roughness sim-
ilar to abutments (ie, about 0.2 µm Sa) do not become
properly osseointegrated.28–30 The strongest biome-
chanical bonds are seen to surfaces of a roughness of
about 1.5 µm, whereas rougher, plasma-sprayed im-
plants show weaker bone ingrowth.7

Biochemical Bonding

According to Osborn and Newesly,31 titanium (and sim-
ilar metals and certain ceramics) are bioinert, in contrast
to bioactive materials, such as various calcium phos-
phates and bioglasses, to mention but a few examples.

Fig 5 Biomechanical bonding means bone ingrowth into mi-
crometer-sized surface irregularities. This is the same as “os-
seointegration” in the orginal meaning of the term.

Fig 6 Biochemical bonding may occur with certain bioactive
implant surfaces.



The International Journal of Prosthodontics540

Oral Implant Surfaces: Part 1

The best definition of the biochemical bonding mode of
implant anchorage (Fig 6) is: “Bioactivity is the charac-
teristic of an implant material which allows it to form a
bond with living tissues.”32 Potential chemical bonding
between implant and host tissues was first suggested
by Hench et al33 and referred then to a certain glass-ce-
ramic composition and its reaction to the host tissues.
Although of substantial interest to experimentalists, bio-
glass ceramics never became commonly used for oral
implants, presumably for biomechanical reasons.
Instead, calcium phosphate ceramics (eg, hydroxyap-
atite [HA]) were launched as potentially bioactive sur-
face coatings for titanium implants (for review, see
Hulbert34).

It is important to understand that bioactive implants
may, in addition to chemical bonding, show biome-
chanical anchorage; hence, a given implant may be an-
chored through both mechanisms. The theoretic ad-
vantage with bioactive implants is that the biochemical
attachment is rapid, ie, it functions at a time when
proper biomechanical bonding has not yet been de-
veloped.

Although commercially pure (cp) titanium in its na-
tive form is only capable of biomechanical bonding,
chemical modifications of cp titanium may lead to a
bioactive material. Surface modifications have con-
sisted of NaOH and heat treatment,35,36 ion implanta-
tion with calcium,37 or anodizing with electrolytes con-
taining phosphorus, sulphur, calcium, or magnesium
ions.38–40 Such modified titanium surfaces are inter-
esting, but, to the knowledge of the present authors,
have not been clinically introduced.

To the authors’ knowledge, two types of implant
surfaces are potentially bioactive and presently mar-
keted as oral implants: One such surface is repre-
sented by calcium phosphate–coated implants mar-
keted by several companies; the other is the fluoridated
Osseospeed implant (Astra Tech). Because oxidized
implants may also be bioactive,40 whether there is any
evidence of the oxidized TiUnite surface (Nobel
Biocare) being bioactive has been particularly investi-
gated.38 That experimental study failed to indicate any
bioactivity of an oxidized surface with embedded phos-
phorus ions, one characteristic of the TiUnite implant.

Calcium phosphate–coated implants. As summarized by
Legeros,41 calcium phosphate biomaterials have simi-
larities to bone mineral: They may form bone apatite like
mineral or carbonate HA on their surfaces (bioactivity);
they are able to promote cellular function, leading to for-
mation of a strong bone–calcium phosphate interface;
and they are osteoconductive and may bind bone mor-
phogenetic proteins (BMP) to become osteoinductive.
Jarcho et al42 were the first to present indications of di-
rect bone bonding to HA. It is today generally believed

that calcium phosphates may have bioactive capac-
ity,43,44 although this may not apply to all types of cal-
cium phosphates.

The mechanisms of the potential bioactive capacity
of calcium phosphate are not known, but it has been
hypothesized that an interfacial bone mineral–like car-
bonated apatite layer is formed by ion dissolution from
the bioceramic material.45 Other potential mechanisms
include a direct effect from high calcium and phos-
phate concentrations and high affinity for growth fac-
tors (for review, see Jansen et al46).

Fluoridated implants. Fluoride treatment of titanium
was introduced by Ellingsen.47 He performed push-out
tests of fluoridated and control titanium implants
placed in rabbits for up to 8 weeks. The fluoridated im-
plants sustained greater push-out forces than con-
trols, and substantial bone adhesion was observed to
fluoridated implants, whereas controls always failed in
the interface between bone and foreign material. The
latter finding is an indication of bioactivity of the fluo-
ridated implants. Johansson et al48 report significantly
greater bone contact to fluoride-modified titanium im-
plants at 1 and 3 months of follow-up, despite the fact
that the fluoridated implants were minimally rough
and the blasted controls moderately roughened.
Ellingsen49 describes another rabbit experiment with
turned titanium implants compared to blasted, inter-
mediately rough implants with and without fluoridat-
ing of the surface. Not surprisingly, removal torque
tests verified significantly stronger removal torque for
the blasted implants. However, the fluoridated, blasted
implants showed a significantly higher removal torque
than the blasted test implant, again indicative of a
bioactive reaction of fluoridated titanium implants.

Evidence for a Bioactive Implant Surface

It has so far been impossible to prove the existence of
bioactivity. However, several indications for biochem-
ical bonding have been presented in the scientific lit-
erature. Each one links to a plausible explanation for
biochemical bonding:

• Tissue coalescence. This theory is based on high-
power transelectron micrography (TEM) demon-
strating that the tissue “floats into” the surface of
the biomaterial. The distances are so small that
biochemical bonding seems probable.50 However,
Davies51 points out the similar interfacial morphol-
ogy between high-power images of potentially
bioactive HA and cp titanium, not regarded as
bioactive.

• When an implant is removed, eg, with a push-out
test, the rupture occurs not at the interface, but in
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the bone tissue.47 This may be important, as ionic
bonds act over a short distance (nanometers),
whereas recorded movements of osseointegrated
implants occur at the micrometer level of resolution.
Ionic bonds would not be possible if these move-
ments occurred in the interface between bone and
material; hence, they must occur in the bone tissue,
at least for bonded implants. However, finding bone
tissue on implant surfaces after push-out tests may
not serve as conclusive evidence of bioactivity, as,
at least in theory, biomechanical interlocking may
result in fractured-off portions of bone tissue
trapped in three-dimensionally oriented irregular-
ities of the implant.

• Chemical evidence, such as the formation of car-
bonate apatite layers on calcium phosphate ce-
ramic implants.41,52 The chemical evidence reported
in the literature is quite interesting, but more knowl-
edge is needed before the chemical evidence can
be regarded as conclusive.

• A finding of significantly stronger bone attachment
to a surface-treated implant compared to an iden-
tical, but not surface treated, control, where no
known factors (eg, potential differences in surface
roughness because of surface treatment) can ex-
plain the stronger bone attachment.40 Naturally,
future research may identify other factors (not nec-
essarily associated with bioactivity) that can explain
the observed differences.

One problem, of course, is the fact that several tech-
niques for surface modification of oral implants simul-
taneously lead to a rougher surface. Hence, when the
bone response to the new, potentially bioactive, surface
is evaluated, the positive effects on the bone response
may be explained by an increase in surface roughness.

Oral Implant Surfaces Suggested To Be
“Osteoattractive”

In some cases, manufacturers claim that they have a
particularly osteoattractive surface but do not use the
term “bioactive.” One reason for the reluctance to claim
bioactivity (apart from a lack of direct evidence) is that
the 510(k) designation “substantial equivalence” may
be denied, and then prospective, randomized con-
trolled studies must be performed before any sales of
the device in the US. This article classes implants not
known to meet any of the indications for bioactivity
under this heading. 

From a scientific point of view, it is difficult to de-
fine particular osteoattractiveness and differentiate
such surfaces from moderately roughened surfaces
that are quite attractive for bone formation. Major
oral implant companies lacking proper 5-year clinical

documentation of their new surfaces have been par-
ticularly prone to suggest that these have some spe-
cial attractiveness for bone tissue. Osseotite acid-
etched implants (3i) have been claimed to give rise to
a particular fibrin retention that allows osteogenic
cells to migrate to the implant surface, enabling what
Davies53 calls “de novo bone formation.” This type of
fibrin retention is indeed seen on many different im-
plant surface topographies.54 Therefore, it is not sur-
prising that other surfaces, such as the novel Cellplus
implant (Dentsply/Friadent), are claimed to demon-
strate similar fibrin retentive capacity.55

Other surfaces claimed to be unique with respect 
to the bone response include the SLA surface
(Straumann) and TiUnite. The SLA surface is blasted
and acid etched; as such, it is not really unique, since
the DPS implant surface (Dentsply/Friadent) is also
blasted and acid etched. Both surfaces are moder-
ately roughened. Whether one is more osteoattractive
than the other must be considered unproven. TiUnite
implants are anodized, ie, the oxide thickness has been
considerably increased to more than 1,000 nm (the ac-
tual oxide thickness varies along the implant length).
When titanium surfaces are placed in a galvanic cell
with phosphoric acid as an electrolyte (the precise
contents of the electrolyte are not known to the pub-
lic, but the authors have found it to contain phospho-
rus ions), over time surface breakdown will occur.
Naturally, it is more appealing to refer to the surface
becoming “porous” (there are, in fact, more indenta-
tions than true pores) and claim that these pores have
some unique characteristics. There is little scientific ev-
idence of this.

All implant types described as “osteoattractive” may,
in fact, share the characteristic of being moderately
roughened and thereby more attractive for new bone
formation than smoother turned or rougher plasma-
sprayed implants.

Doped Surfaces

Under this heading are implant surfaces that have been
doped with a potentially bone-stimulating agent, such
as BMP or other bone growth factors (Fig 7). Although
long discussed, the present authors are unaware of
whether doped surfaces really have been tried and
documented as oral implants. Presumably, they are still
hypothetic solutions for the future. It is suggested to
proceed with caution, not the least since it is doubtful
if external administration of growth factors has any ef-
fect in the case of an ordinarily placed oral implant.56

This observation does not contradict evidence of pos-
itive effects of BMPs in cases with lack of bone support,
eg, resorbed alveolar ridges.57
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Conclusion

Moderately roughened surfaces may have some clin-
ical advantages compared to smoother turned and
rougher plasma-sprayed surfaces. Bioactive implants
may present some promise for the future. However, the
authors concur with Jokstad et al58 that, “A substan-
tial number of claims made by different manufacturers
on alleged superiority due to design characteristics
are not based on sound and long-term clinical scien-
tific research.” In fact, it seems probable that improve-
ments in surgical technique will present good pros-
pects for improving clinical results.59,60 Some surgeons
simply have fewer good clinical results than others
working with the same implant. This is an important ob-
servation to avoid being misled by the commercial side
of oral implantology, where allegedly osteoattractive
surface modifications are claimed as the only way to
improve clinical success.
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