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Single-tooth implant prostheses have a documented
history of complicating mechanical factors, among

which screw loosening is the most problematic and
most often correlated to implant-abutment interface
design.1 Two mechanisms of screw loosening are (1)
excessive bending: the plastic permanent deformation
occurring when a load larger than the yield strength
of the screw is applied; and (2) settling: when exter-
nal loads applied to the screw interface create micro-
motion between 2 surfaces. As surfaces wear, they
“settle” closer together.2

The external neck design and internal interface
geometry of the Straumann dental implant has evolved:
standard, synOcta, synOcta TE. To date, studies report
no difference in the strength of the implant-abutment
connection between the synOcta and standard de-

sign,3 higher values for removal torque than placement
torque for synOcta compared with lower values for re-
moval torque than placement torque for the standard
design,4 and a hypothesized correlation of fewer fa-
vorable bending moments with smaller wall thickness.5

This study aimed to determine whether and how
the dynamic micromotion and fatigue properties vary
between the standard, synOcta, and synOcta TE im-
plants as a result of internal and external mechanical
design changes. 

Materials and Methods

Three variations in implant external neck and internal
interface geometry were evaluated. Five 4.1-mm-di-
ameter Straumann implants (Institut Straumann) for
each of the 3 implant types (RN standard 4.1, ref no.
042.278S/lot no. 2001; RN synOcta 4.1, ref no.
043.043S/lot no.1057; and RN synOcta TE 4.1, ref no.
043.763S/lot no. 1006) (Fig 1) were randomly mated to
fifteen 5.5-mm solid abutments (ref no. 048.541).
Implants were mounted vertically in acrylic resin per the
manufacturer’s surgical protocol. The abutments were
torqued to 35 Ncm, and simulated cast crowns were
luted over the abutments with zinc phosphate cement
set for 24 hours at 37°C before load application. Each
implant-abutment framework assembly was secured in
a mounting column fixed in a custom-loading device
(Fig 2). Randomized testing consisted of cyclic load
magnitudes varying from 10 to 250 N at 15 Hz with 
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sinusoidal duty cycle for 1,000,300 cycles per sample,
while submerged in artificial saliva at room tempera-
ture. Dynamic micromotion across the implant-abut-
ment interface was recorded with a linear variable dif-
ferential transformer (LVDT) strain gauge at 18 different
cycle intervals. Data analysis included 2-way and 1-way
analysis of variance (ANOVA) with post hoc compar-
isons using Tukey tests (honestly significant differ-
ence) when interactions were significant at P < .05.

Results

Mean dynamic micromotion at the implant-abutment
interface for each of the 3 implant groups was as fol-
lows: standard, 93.15 ± 12.54 µm; synOcta, 86.81 ± 6.80
µm; synOcta TE, 77.07 ± 18.72 µm (Fig 3). Two-way
ANOVA revealed a significant main effect for type of
implant (P < .0001). The main effect for level of cycles
was nonsignificant (P = .9999). Interaction between
type of implants and level of cycles was also non-
significant (P = .9989) (Table 1 and Fig 4).

Discussion and Conclusions

Adressing dynamic micromotion, the synOcta TE exhib-
ited superior joint performance over the synOcta and

standard implants when cyclically loaded and used in
conjunction with the 5.5-mm solid abutment.
Hypothetically, this is because (1) the synOcta TE pos-
sesses a greater wall dimension in its thinnest portion
than the others, paralleling the findings of Akça et al5;
and (2) the synOcta TE possesses an internal octagonal
configuration that decreases the mating surface area, re-
sulting in a seemingly more favorable internal connec-
tion and subsequently a greater amount of screw joint
preload for a given tightening torque. The latter seemed
to be more important for joint stability under the present
parameters, and also explains the observed improved
joint stability of the synOcta implant, despite its thinner
wall, over the standard implant. Similar conclusions have
been made by other examiners.4,5

Addressing dynamic fatigue (Fig 4), the micromotion
at the implant-abutment interface remained constant
through 1,000,300 cycles for each of the 3 implant
types, indicating no loss of mechanical integration at
the screw-joint interface. The initial variation in micro-
motion occurring in the first 40%, 10%, and 20% of
loading cycles for the standard, synOcta, and synOcta
TE, respectively, is indicative of the metal surface’s
macro- and microroughness, settling effects, and work
hardening of the mechanical components at the 
implant-abutment interface during cyclic loading.
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Fig 1 Cross section of 3 implant neck designs.
The following are the indicated wall dimensions
for the standard 4.1 (left), synOcta 4.1 (middle),
and synOcta TE (right) implants, respectively, as
reported by Straumann: 0.49 mm, 0.32 mm, and
0.53 mm.

Fig 2 Loading instrument and implant assembly: 1 = implant
mounting fixture; 2 = peristaltic pump used to circulate artificial
saliva around the implant-abutment interface during testing; 3
= LVDT; 4 = simulated gold crown framework cemented onto
the implant abutment to facilitate loading by the loading stylus
and data acquisition with LVDT.
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Fig 3 Mean implant-abutment interface micromotion (± SD) for
3 implant neck designs. Tukey test showed significant difference
between all 3 means (P < .0001).
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These observations suggest that variations in both
implant intaglio and cameo surfaces affect the stabil-
ity of the implant-abutment connection when used in
conjunction with a direct/solid abutment system.
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Table 1 Results of 2-Way ANOVA

Source of Sum of Mean % total
variation df squares square variation F P

Interaction 32 2,669.84 83.43 19.05 0.39 .9989
Implant type 2 11,160.47 5,580.24 79.63 26.06 < .0001
Cycle interval 16 184.40 11.52 1.32 0.05 .9999
Residual 204 43,681.35 214.12
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Fig 4 Implant-abutment interface micromotion
for 1,000,000 cycles.
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