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Dental implants are inserted into jaw bone. As a re-
sult, loads are transmitted directly to the peri-implant

bone. Albrektsson et al reported that the loading con-
dition was very important in the establishment and
long-term maintenance of osseointegration.1 If the
functional loads via the implant exceed a certain force,
they are regarded as being “overloaded.” Overloading

is considered one of the most serious pathologic fac-
tors and causes complications such as peri-implant
bone resorption, screw loosening, and implant frac-
ture.2,3 Hence, it is essential to predict the supporting
ability of the surrounding bone in implant surgery.
However, there are few studies on the characteristics
of jaw bone. 

Factors affecting the success rate of osseointegrated
implants include the load carrying capacity of cortical
and cancellous bone. Recent studies have reported that
the highest bone stresses occur in the cortical bone
around the implant neck, depending on the load direc-
tion and type of stress/strain.4–6 Previous studies did not
take into account the anisotropy of cancellous bone in
a numerical analysis of load dispersion around the im-
plant. Even when using high-resolution medical com-
puted tomography (CT), the resolving power is around
0.3 mm/voxel, which is not enough to delineate tra-
becular structures. Most three-dimensional (3D) finite
element analyses simplify the cancellous bone to a
block, completely ignoring its trabecular structure.4–7 It
is difficult to predict failure of a biomechanical etiology
from the aforementioned analyses using a simplified
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model. Stegaroiu et al8 compared a precise model with
a trabecular structure to a simplified model and re-
ported that analysis error occurred in the cancellous
bone area. Therefore, it is necessary to determine the
load transfer paths around an implant using a precise
model in which the trabecular structure is simulated ac-
curately to clarify the supporting function of the peri-
implant bone. 

In addition, recent studies have suggested that the
trabecular structure of cancellous bone is closely re-
lated to bone strength. Therefore, the macroscopic
properties of trabecular bone have gained considerable
attention in mechanobiology.9–11 Hollister et al12 and Lin
et al13 employed the homogenization technique used
in mechanical engineering to calculate the macro-
scopic characteristics of cancellous bone. It is neces-
sary to evaluate macroscopic properties to understand
the characteristics of porous materials such as can-
cellous bone. Furthermore, microscopic stress dis -
tribution in addition to homogenized macroscopic
properties can be clarified by multiscale analysis using
the homogenization method.14 Using this method, it is
possible to ascertain the trabecular anisotropy by an-
alyzing macrorigidity, which reflects the trabecular
structures. 

In the present study, the anisotropy of peri-implant
bone trabeculae was quantified by multiscale analysis
using the homogenization method, and load transfer
paths were visualized to clarify the role of peri-implant
cancellous bone.

Materials and Methods

The mandible was removed from the cadaver of an 82-
year-old man donated for dissection in whom en-
dosseous implants had been in place for 15 years prior
to death. Screw-type 4.1-mm implants were placed in
the right first and second premolar sites. These regions
were detached from the mandible and used as the
specimen.

Micro-CT Imaging

The mandible was scanned using a micro-CT system
(HMX-225 Actis4, Tesco). Imaging was performed
under the following conditions: tube volume = 120 kV,
tube current = 200 µA, and slice width = 50 µm. A 4-
inch image intensifier was used that had a 1-inch
charge-coupled device camera with 16-bit 1,024 �
1,024 scanning lines. The camera generated 1,200 raw
data images. Based on the raw data, 2D sliced data
were prepared by the back projection method. The
mandible was scanned at the right first and second
premolar regions from the upper part of implant (ex-
cluding the abutment) to the lower margin of the
mandible (Fig 1).

Multiscale Analysis Using the 
Homogenization Method

Multiscale analysis was accomplished to evaluate
anisotropy of the trabecular bone structure surround-
ing the implants (DoctorBQ, KGT and Quint). The ho-
mogenization method is a mathematic theory that
calculates the macroscopic properties of structures
with microscopic heterogeneity, such as composite
materials or porous ceramics. A microscopic region
containing all characteristics, enough to represent the
global trabecular bone heterogeneity, was extracted to
describe the bone density distribution. Eight micro-
analysis areas were extracted on the basis of bone
volume fraction (Figs 2 and 3). Periodicity for dis-
placements was applied as the boundary condition for
these microanalyses. To this end, macroscopic Young
modulus and Poisson ratio were calculated. 

Load Transfer Paths

Finite Element Model. Analysis areas were set within
the CT imaging range. After removing unnecessary
features, each preprocessed 3D image for finite element
analysis was downsized and subjected to binalization
based on a threshold value obtained by the discrimi-
nate analysis thresholding method. After labeling,
mapping was performed using eight-node hexahedral
elements (1 voxel = 0.076 � 0.076 � 0.076 mm3). The
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Fig 1 Reconstructed 3D images cut along (a) the sagittal
plane, (b) the horizontal plane, and (c) the frontal plane.
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total number of nodes and elements were 6,870,990 and
5,993,510, respectively. For the boundary between the
mandible and implants, contact areas were consid-
ered connected.

Constitutive Laws. Model components were the
bone and implants, and both were considered linear
isotropic materials. The Young modulus and Poisson
ratio for bone were set at 15 GPa and 0.30, respectively,
and those for implants were set at 110 GPa and 0.35,
respectively.15,16

Boundary Condition. Analysis of the finite element
model was performed using finite element software. All
nodes at the mesiodistal plane of the mandibular body
were constrained in all directions (Fig 4). A 250-nm
strain was applied to the top of the implant at angles
of 15, 45, and 90 degrees to the occlusal plane. 

Output. Maximum principal stress distribution and
vector were evaluated with an output program
(DoctorBQ, KGT and Quint). At the same time, the de-
formation mode with a 5,000-fold increase in strain was
observed dynamically.

Results

Multiscale Analysis Using the 
Homogenization Method

Table 1 shows the homogenized elastic and shear
moduli in the microscopic region. Figure 5 shows the
approximating curve of bone volume fraction and ho-
mogenized properties. The trabecular bone architec-
ture around implants was isotropic for the most part.

Load Transfer Paths

Compressive stresses oblique to the implant axis were
transmitted to the lower constrained surface; tensile
stresses oblique to the implant axis were transmitted to
the upper constrained surface and they intersected
one another (Figs 6 and 7). In cortical bone, higher ten-
sile stresses were generated at the neck of the implant.
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x

Fig 2 Eight adaptive microanalysis areas were selected (A
through H) and the homogenization method was applied to
calculate the microscopic properties.

Size: 1.35 � 2.80 � 6.55 mm3

Fig 3 Microanalysis areas were extracted on the basis of
bone volume fraction. � = bone density.
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On the other hand, comparatively lower stresses were
generated at the trabecular bone connecting the im-
plants. The deformation mode showed that the two im-
plants reacted as one unit against loads, and the
peri-implant trabecular bone architecture dispersed
the loads by forming a hammock-like structure (Fig 8).

The highest stress in cancellous bone was observed on
perpendicular loading, and stress produced in trabec-
ulae decreased approaching horizontal loading (Figs 9a
and 9b). On the other hand, stress concentration was
seen in the cortical bone around the implants on ap-
plication of a horizontal load, as seen with a vertical load.
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Table 1 Homogenized Elastic Constants and Shear
Modulus

Homogenized material properties

A (BV/TV = 32.8)
Ex, Ey, Ez 1.21, 1.17, 1.34
Gxy, Gyz, Gzx 0.39, 0.42, 0.45
Vxy, Vyz, Vzx 0.21, 0.18, 0.20

B (BV/TV = 39.4)
Ex, Ey, Ez 1.86, 1.76, 2.06
Gxy, Gyz, Gzx 0.64, 0.66, 0.76
Vxy, Vyz, Vzx 0.20, 0.19, 0.23

C (BV/TV = 58.0)
Ex, Ey, Ez 4.27, 4.84, 4.13
Gxy, Gyz, Gzx 1.78, 1.72, 1.47
Vxy, Vyz, Vzx 0.22, 0.23, 0.20

D (BV/TV = 83.4)
Ex, Ey, Ez 10.20, 9.04, 10.45
Gxy, Gyz, Gzx 3.66, 3.75, 3.97
Vxy, Vyz, Vzx 0.27, 0.13, 0.27

E (BV/TV = 17.8)
Ex, Ey, Ez 0.29, 0.43, 0.27
Gxy, Gyz, Gzx 0.10, 0.11, 0.08
Vxy, Vyz, Vzx 0.11, 0.23, 0.16

F (BV/TV = 35.2)
Ex, Ey, Ez 0.78, 1.18, 0.96
Gxy, Gyz, Gzx 0.37, 0.39, 0.34
Vxy, Vyz, Vzx 0.16, 0.24, 0.23

G (BV/TV = 44.8)
Ex, Ey, Ez 2.14, 1.19, 1.91
Gxy, Gyz, Gzx 0.55, 0.55, 0.77
Vxy, Vyz, Vzx 0.26, 0.17, 0.20

H (BV/TV = 63.9)
Ex, Ey, Ez 4.05, 2.52, 4.14
Gxy, Gyz, Gzx 1.16, 1.19, 1.63
Vxy, Vyz, Vzx 0.29, 0.18, 0.24

Input: Longitudinal elastic coefficient = 15 GPa.
Poisson ratio = 0.30.
BV/TV = Bone volume fraction (%); E = longitudinal elastic volume
(GPa); G = transverse elastic coefficient (GPa); V = Poisson ratio.
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and bone volume fraction indicating the mechanical properties
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Fig 6 Load transfer path at the
mesiodistal section. (a) Contour plot,
(b) vector plot.
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Discussion

Recent papers on bone biomechanics have discussed
the need to consider trabecular bone architecture.17–19

Verhulp and colleagues17 reported that stresses were
dispersed by trabecular bone at the proximal head of the
femur. Homminga et al18 suggested that a strong rela-
tionship existed between trabecular bone architecture
and bone strength. In the Consensus Development
Conference Statement published by the National
Institute of Health in 2000,20 evaluation of bone density,
including factors such as cancellous bone architecture,
turnover, damage accumulation, and mineralization,
was recommended. In contrast, the jaw bones have a
complicated morphology because of stresses being
received from numerous directions; therefore, it is dif-
ficult to consider the cancellous bone architecture. 

Dental implants are widely used as substitutes for
missing teeth to regain masticatory function. However,
because the dental implant bonds directly to the jaw

bone, it is well known that the biomechanical effect of
the implant is greater than that of teeth.21–23 It was nec-
essary to quantify the anisotropy of peri-implant bone
trabeculae and observe the load transfer paths to in-
vestigate the influence of mechanical stress transmit-
ted via the implant to the trabecular bone structure. 

Through multiscale analysis, a correlation between
Young modulus and bone density was found, and the
3D bone architecture around the implant was gener-
ally isotropic. The authors speculated that this was
caused by complicated functional pressure. 

This study simulated bone as an isotropic material
and observed load transfer paths. In previous stress
analyses, von Mises equivalent stress and maximum
principal stress could only be expressed in numerical
values and colors as a contour plot, and it was possi-
ble to assess the extent but not the direction of the
stress. The maximum principal stress vector for all el-
ements was expressed stereoscopically to confirm the
load transfer paths. 
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Fig 7 The simplified image of Fig 6. Blue arrow = compression
stress; red arrow = tensile stress; C = cortical bone; I = implant;
M = mandibular canal.

Fig 8 Each stage of deformation occurring in the trabecular
structure due to the applied load in order from a to e.
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Fig 9  Comparison with load angle in the (a) mesiodistal section and (b) buccolingual section.
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Previous studies showed that peri-implant cortical
bone dispersed stress. Cancellous bone trabeculae
around implants dispersed stress by forming load
transfer paths. The results obtained in this study sug-
gest that not only cortical bone but also cancellous
bone play a major role in supporting the functional
pressure exerted via the implant. 

In the present study, because there was access to a
mandible in which endosseous implants had been in
place for a long period of time, the mandible was an-
alyzed by micro-CT, and then a model of the mandible
and its surrounding microstructures was prepared.
Therefore, the authors assumed that simulated load
transfer paths in this study reflected a living body.
However, the specimen used was only one cadaver so
the result could not be concluded accurately. 

Conclusions

Cancellous bone architecture around the implant was
generally isotropic. Three-dimensional finite element
analysis showed that cancellous bone trabeculae
around implants dispersed stress by forming load
transfer paths. The results suggest that trabecular bone
plays a major role in supporting functional pressure ex-
erted via the implant.
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