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In recent years, high-strength ceramic materials have
been substantially improved for use in dental restora-

tions, and clinical follow-up studies with relatively short
observation periods show promising results for  treat-

ment with all-ceramic fixed partial dentures (FPDs),
even for posterior teeth.1 Besides in vivo follow-up
studies, further test methods are known for investi-
gating longevity, fracture strength, and stresses in den-
tal restorations. In most studies, the in vivo situation is
simulated in vitro, but no standard in vitro test proce-
dure has been developed for FPDs until now. A review
of the literature reveals that cast bases used for sup-
porting FPDs, for instance, are differently designed to
such an extent that comparability of the results seems
to be questionable. Besides natural teeth,2,3 cast teeth
made of alloys4,5 and polymers6 are used as abutments
for FPDs. Furthermore, cast teeth are either fixed7,8 or
resiliently embedded9–13 in their respective sockets.
For simulating periodontal resilience, roots are gener-
ally covered with materials ranging from polyether ma-
terial9 to gum resin.10,11 Kohorst et al12,13 investigated
the load-bearing capacity of four-unit all-ceramic FPDs
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with respect to the type of zirconia framework and
cyclic fatigue in water. In both studies, the authors
used polyurethane (PUR) cast teeth covered with a thin
latex layer in the root area to simulate the periodontal
ligament (PDL). These teeth were then embedded in a
PUR socket to simulate bone support.

The second established method to analyze FPDs is
by finite element (FE) analysis. Initially, axisymmetric FE
models, which analyze the stress distribution in molar
crowns for different types of preparations, were cre-
ated.14,15 No root or just a small portion of the root was
modeled, presumably due to a lack of knowledge about
periodontal resilience. In later years, two-dimensional
FE models with a simulated root and PDL were cre-
ated.16–18 With increasing technologic advancements,
more complex three-dimensional (3D) models have
been developed, some considering roots and peri-
odontal resilience,19 and some considering neither.20–23

The aim of this study was to calculate stresses in an
all-ceramic four-unit FPD undergoing in vitro load test-
ing by way of FE analysis and to reveal the influence of
different parameters on the resulting stress distribution.
Two factors were to be considered: the choice of ma-
terial for the socket and abutment teeth supporting the
FPD in the experiment, and the method of embedding
the abutment teeth in the socket (ie, rigidly or re-
siliently). Finally, the respective stress results would be
compared with those obtained using an FE model ap-
proximating the in vivo situation.

Materials and Methods

A four-unit all-ceramic FPD spanning from the maxil-
lary left first premolar to second molar, as used in pre-
vious experimental studies for determining load-
bearing capacity,12,13 served as a master for construct-
ing the virtual model. The FPD was scanned optically
(ATOS II SO, GOM) both before and after veneering and

the surface coordinates were determined by means of
triangulation. Prior to scanning, a thin antireflex layer of
a special suspension with a grain size of approximately
1 µm was applied with an airbrush system. Afterwards,
the resulting polygon meshes were transferred to 3D
volume models by reverse engineering using a software
program (PointMaster, Knotenpunkt). Then, the frame-
work was virtually subtracted from the veneered FPD to
obtain a separate model of the veneering layer (Cercon
ceram S, Degudent). Connector cross sections of the
frame were shaped elliptically, with areas of (mesial to
distal) 12.5 mm2, 15.6 mm2, and 11.6 mm2, respectively.
The span between both abutment teeth amounted to
14.5 mm. Model teeth with layers of luting cement
(approximately 100-µm thick) and, if applicable, a
300-µm-thick layer in the root area for simulating re-
silience of either the PDL or latex layer, were created
(DesignModeler, ANSYS) and virtually embedded in a
PUR block, according to the aforementioned experi-
mental study (Fig 1).12,13 The expanded view in Fig 2
shows the constituents of the virtual model. 

A 3D FE model comprising 110,380 hexahedral
and tetrahedral elements was created by a software-
integrated meshing tool (DesignSpace, ANSYS), with
an element size of 0.5 mm preselected for the frame-
work and veneering layer in the connector area. All but
one material constant was taken from the literature;
Poisson ratio and Young modulus of the reinforced
PUR (AlphaDie Top, Schütz Dental) were determined
in a preliminary tensile test. By assigning appropriate
elastic properties to the various model parts, four
model versions were constructed. In version 1, the
socket and rigidly fixed abutment teeth were made of
a nickel-chromium (Ni-Cr) alloy. Version 2 was simi-
lar to version 1 but the layer in the root area was as-
sumed to be resilient and consisting of latex. Version
3 was made in correspondence to the in vitro study
with the socket and resiliently embedded abutment
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Fig 1 (above) (left) In-vitro cast and (right) virtual model (meshed) of the FPD with load
application (F) in the direction of the arrows.
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Fig 2 (right) Expanded view of the FPD model: (1) veneering layer, (2) zirconia frame-
work, (3) cement layer, (4) model teeth, (5) resilient interface layer, and (6) socket.
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teeth made of PUR. Version 4 approximated the in
vivo situation with the socket consisting of spongiosa,
abutment teeth composed of dentin, and a simulated
PDL.

All material constants are listed in Table 1. The re-
silient lining of the tooth roots in the PUR socket for
simulating the PDL behaves nonlinearly and gets more
stiff the greater the load applied (hyperelasticity).
Because of the software-given restriction to linear
elastic calculation, hyperelasticity could only be ap-
proximated by assigning an effective modulus of
elasticity, which was chosen as the geometric mean of
the moduli of elastomer and PUR. By applying an
occlusal force of 1,630 N evenly over two circular areas

on the occlusal surface near the connector between the
maxillary left second premolar and first molar, loading
conditions were tailored according to the aforemen-
tioned in vitro study (Fig 1).12,13,34 In the experiment, the
force of 1,630 N led to failure of 63.2% of FPDs (Weibull
analysis). In all simulated cases, the PUR socket was vir-
tually fixed at the bottom to prevent any displacement.
The connections between the different parts of the
model were defined as being bonded. Formerly, in a se-
ries with FE models of increasing mesh density de-
scribed elsewhere,25 convergence of stress results had
been verified, and the model delivering acceptable
accuracy at the least computational effort possible
was selected for use in this and other studies.
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Table 1 Material Constants in the FE Model*

Material Young modulus (MPa) Poisson ratio Source

Zirconia 210,000 0.27 Munz and Fett24

Veneering ceramic 70,000 0.20 Manufacturer s data
PUR 3,525 0.33 Dittmer et al25

Glass-ionomer cement 15,900 (median) 0.33 (median) Denisova et al26

Resilient lining 92 0.49 Calculated†

Ni-Cr alloy 200,000 0.30 Marxkors and Meiners27

Suansuwan and Swain28

Dentin 18,300 0.30 Anusavice et al29

Goel et al30

Versluis et al31

Spongiosa 1,370 0.30 Meijer et al32

PDL 69 0.45 Farah et al33

PUR = polyurethane; PDL = periodontal ligament.
*Linear elasticity and isotropy assumed. 
†Geometric mean of Young moduli for elastomer and PUR deemed to simulate the hyperelasticity of latex.

Fig 3 Overview of stress distribution on
surfaces of the framework, resilient layer,
and cross-section through the connector
area between the maxillary left second pre-
molar and first molar in versions 1 through
4. Note, the PUR block is left out for clarity.

Version 1 Version 2

Version 3 Version 4
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Results

In all model versions (1 through 4), the maximum ten-
sile stresses within the entire structure developed close
to the surface of the framework at the gingival embra-
sure of the connector between the premolars and mo-
lars (Fig 3). Generally, the peak tensile stress was higher
when FPDs were supported more resiliently, either by
introduction of a simulated PDL or by choice of a less
stiff material for the abutment teeth and socket (Fig 4).
Maximum tensile stress in the connector area between
the second premolar and first molar rose from 289 MPa
in version 1, to 331 MPa in version 2, up to 633 MPa in
version 3, and decreased to 557 MPa in version 4. 

In all four versions, maximum displacements were
observed in the pontic region near the point of force ap-
plication, mainly in the direction of force application
with a slight shift towards the buccal side. Displacement
increased from version 1 to 3 and amounted to 22 µm
in version 1, 36 µm in version 2, and 115 µm in version
3, which simulated the in vitro model of Kohorst et
al.12,13 Simulating the in vivo PDL in version 4 revealed
a maximum displacement of 104 µm in the pontic re-
gion and at the same time, an axial intrusion of the abut-
ment teeth of approximately 110 µm.

As is evident from the cross-sectional view of the
stress distribution in the connector between the sec-
ond premolar and first molar, the stress gradient within
the framework ran almost vertically from the basal to
the occlusal side (Fig 3). Maximum principal stresses
ranged from 633 MPa (tension, basal side) to –669
MPa (compresssion, occlusal side). The veneering layer
unconsidered, maximum compressive stresses ap-
peared in versions 1 and 2 at the distocervical dentin
area of the premolar, while in versions 3 and 4 they ap-
peared close to the point of force application in the
connector area between both pontics (Fig 3).

Discussion

Formerly reported FE analyses dealing with FPDs have
all identified the connector area as the part with the
highest stress concentrations within the struc-
ture.17,22,23,35,36 These findings compare well with the re-
sults of the present study. In all four versions, the lo-
cation of maximum tensile stress was in the framework
close to its surface at the gingival embrasure of the
connector between the premolars and molars (Fig 3).
In versions 1 and 2, maximum compressive stresses
were found in the cervical dentin area near the resid-
ual ridge. This is in agreement with the results of Oruc
et al37 and Yang et al,17 who also observed a stress con-
centration in this region. Additionally, the axial intru-
sion of the abutment teeth of 110 µm (version 4) cor-
responds quite well with physiologic tooth mobility,
whose upper limit is in the order of 150 µm.38

As shown in Fig 4, an increase in maximum tensile
stresses was observed when the FPD support was as-
sumed to be more resilient. The use of a resilient elas-
tomer layer in comparison to a rigid abutment tooth in-
duced 14.5% higher tensile stresses (versions 1 and 2).
Risk of failure rises with higher stresses, and tensile
stresses in particular affect the crack growth in ce-
ramics positively. As a result of these findings, it can be
concluded that FPDs will also fail earlier in vivo if sup-
port is more resilient. Yang et al17 investigated the need
for modeling supporting structures and simulated bone
loss, which resulted in higher movement of abutment
teeth. They concluded that a loss of bone increases
stress generated in the structures. That mobility and re-
silience of abutment teeth significantly influence
stresses is in agreement with the findings of the cur-
rent study (Fig 4). Supporting these results, Molin et al39

showed, by 3D FE analysis of a three-unit FPD, that a
simulated PDL induces 40% higher stress values than
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Fig 4 Highest maximum principal stress for the different model
versions.
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a nonligament model. Rees40 found much higher vari-
ations in stresses when varying the supporting struc-
tures and pointed out the need to model both the PDL
and alveolar bone when undertaking FE analysis of
teeth. However, it has to be mentioned that these two
cited studies simulated the in vivo and not the in vitro
situation.

Different in vitro studies have also investigated the
influence of abutment tooth resilience on the load-
bearing capacity of FPDs. Major differences in mate-
rials used to simulate the resilient layer are obvious. In
two studies, a polyether layer was used,41,42 while an-
other two43,44 used a material based on silicon. All four
studies concluded that load-bearing capacity is con-
siderably lower when the support is more resilient.
This clearly underlines the results of this study. Only
Kern et al10 found that a more resilient support does not
affect the load-bearing capacity of FPDs.

A further aspect evaluated in the current work was
the influence of abutment tooth material on stress dis-
tribution in FPDs. As seen in Fig 4, the use of bone,
dentin, and PDL material constants in version 4 led to
68.3% higher stress than the simulation with abutment
teeth made of Ni-Cr alloy and an elastomer layer (ver-
sion 2). Hence, abutment tooth material seems to have
a great influence on stresses in loaded FPDs, and so it
is of crucial importance to consider it when experi-
mentally simulating the in vivo situation. There are
some disadvantages to using natural abutment teeth
regarding restrictions in reproducibility and compara-
bility between various specimens. To avoid these dis-
advantages, Kohorst et al12,13 generated a model with
artificial abutment teeth made of reinforced PUR, which
has an elastic modulus lower than dentin but similar to
bone. This experimental situation served as the guide-
line for version 3 of the FE model presented in this
study. As shown in Fig 4, maximum tensile stress de-
veloped in version 3 is only 14% higher in comparison
to version 4, which simulates the in vivo situation.
Therefore, the in vitro situation is acceptably approxi-
mated by version 3. In contrast, version 2, using a high
modulus material for the abutment teeth and socket,
deviates further from the in vivo situation with respect
to stresses in the framework. This leads to the sug-
gestion that a moderately rigid material (PUR) be used
for model teeth and the socket in in vitro load tests of
FPDs. This additionally provides a 10% safety margin
by creating higher stresses in the FPD, resulting in a
correspondingly lower load-bearing capacity in the
experiment compared with the in vivo situation. 

Another important factor affecting stress distribution
and hence, load-bearing capacity, is the method of
loading the FPD.25,45 While evenly distributed occlusal
forces are the ideal case, the more or less concentrated
loads applied at the neighboring rims of the pontics in

the in vitro experiments by Kohorst et al12,13 as well as
in the FE analysis of this study represent a worst case
scenario, with higher stresses in the FPD than under
usual clinical loading conditions.

FE analysis is an approximate method for simulating
the behavior of structures under a load. Naturally, the
model could only consist of a finite number of elements.
The assumption of linearly elastic behavior in the case
of latex was an additional approximation, which was at
least partly compensated for by the introduction of an
effective elastic modulus. Finally, residual stresses gen-
erated by thermal loading during veneering have not
been considered. These stresses are in the order of 80
to 110 MPa46 and would have to be superposed to the
ones created by mechanical loading. Nevertheless,
comparison of the stress results obtained for the dif-
ferent model versions under equivalent conditions is
possible, and gives an appraisal of the influence of the
supporting structures on load-bearing capacity. 

Conclusions

Based on the findings of this study, it can be con-
cluded that abutment tooth and socket material, as well
as the type of tooth support, have a significant influ-
ence on stresses generated in FPDs during in vitro
load tests. To produce stresses in the FPD as close as
possible to those of the in vivo load case, it is particu-
larly important to use resiliently embedded abutment
teeth made of a moderately rigid material (eg, rein-
forced PUR) to support specimens. Transferring these
results to the in vivo situation means that risk of fail-
ure of an FPD is likely to rise with increasing resilience
of the abutment teeth, especially if occlusal contacts
are directed over the pontic/connector region rather
than being spread over the retainers.
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