
594            The International Journal of Prosthodontics

©2015 by Quintessence Publishing Co Inc.

Epigenetics and Bruxism: Possible Role of  
Epigenetics in the Etiology of Bruxism
Aleksandra Čalić, DMDa/Borut Peterlin, MD, PhDb 

Bruxism is defined as a repetitive jaw muscle activity characterized by clenching 
or grinding of the teeth and/or bracing or thrusting of the mandible. There are two 
distinct circadian phenotypes for bruxism: sleep bruxism (SB) and awake bruxism, 
which are considered separate entities due to the putative difference in their etiology 
and phenotypic variance. The detailed etiology of bruxism so far remains unknown. 
Recent theories suggest the central regulation of certain pathophysiological or 
psychological pathways. Current proposed causes of bruxism appear to be a 
combination of genetic and environmental (G×E) factors, with epigenetics providing 
a robust framework for investigating G×E interactions, and their involvement in 
bruxism makes it a suitable candidate for epigenetic research. Both types of bruxism 
are associated with certain epigenetically determined disorders, such as Rett 
syndrome (RTT), Prader-Willi syndrome (PWS), and Angelman syndrome (AS), and 
these associations suggest a mechanistic link between epigenetic deregulation and 
bruxism. The present article reviews the possible role of epigenetic mechanisms in the 
etiology of both types of bruxism based on the epigenetic pathways involved in the 
pathophysiology of RTT, PWS, and AS, and on other epigenetic disruptions associated 
with risk factors for bruxism, including sleep disorders, altered stress response, 
and psychopathology. Int J Prosthodont 2015;28:594–599. doi: 10.11607/ijp.4126

Bruxism is defined as a repetitive jaw muscle activ-
ity characterized by clenching or grinding of the 

teeth and/or bracing or thrusting of the mandible.1 
There are two distinct circadian phenotypes of brux-
ism: sleep bruxism (SB) and awake bruxism, which are 
considered separate entities due to the putative dif-
ference in their etiology and phenotypic variance.1,2 
The prevalence of bruxism is high, with approximately 
8% of the general population estimated to suffer from 
SB and 20% from awake bruxism.2 The detailed etiol-
ogy of bruxism so far remains unknown.3 

Recent theories of the etiology of bruxism point 
to the central regulation of certain pathophysiologi-
cal or psychological pathways.4,5 Stress and anxiety 
are the risk factors most commonly proposed to in-
fluence these pathways in awake bruxism,6–8 while 

psychoactive substances3,9,10 and sleep disorders, 
such as sleep apnea, periodic limb movement syn-
drome, and snoring,11–14 represent the risk factors 
most commonly associated with SB. SB is associated 
with an event in sleep physiology called the arousal 
response.15 It may be an exacerbation of the existing 
motor status during sleep caused by the risk factors.15 
Recent genetic studies indicate that the etiology of SB 
involves the interaction of environmental and genetic 
factors.16 An indirect genetic effect, such as altered 
genetic sensitivity to environmental factors, most like-
ly underlies the development of bruxism.3,13

Quantitative genetic modeling of twin data has 
shown that a combination of an additive genetic ef-
fects model (A) and a unique environmental effects 
model (E), the AE-model, constitutes the best fitting 
genetic model for SB, which means that genes and en-
vironmental factors interplay in the etiology of SB.3,16 
The study of mechanisms of genetic and environmen-
tal interactions (G×E) in diseases calls for the use of 
specific research methodologies.16,17 Epigenetics pro-
vides a robust framework for investigating G×E inter-
actions, and their involvement in bruxism makes it a 
suitable candidate for epigenetic research.16,18 Further, 
both types of bruxism are associated with a group 
of epigenetically determined neurodevelopmental 
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1000 Ljubljana, Slovenia. Email: dr.keka.calic@gmail.com

© 2015 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. 
NO PART MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. 



Volume 28, Number 6, 2015            595
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disorders, including Rett syndrome (RTT), Prader-Willi 
syndrome (PWS), and Angelman syndrome (AS),19,20 
which suggests that a mechanistic link may exist be-
tween epigenetics and bruxism. SB is closely asso-
ciated with sleep and circadian alterations,11 which 
have also been linked to RTT, PWS, and AS, and to 
epigenetic deregulation.21–24

The present article seeks to determine the possible 
role of epigenetic mechanisms in the etiology of both 
types of bruxism based on the epigenetic pathways 
involved in the pathophysiology of RTT, PWS, and AS, 
and on other epigenetic disruptions associated with 
risk factors for bruxism, such as sleep disorders, al-
tered stress response, and psychopathology. 

Epigenetic Mechanisms  

Broadly speaking, epigenetics is the study of all pro-
cesses and features that contribute to the emergence 
of properties in the origin of the phenotype (somatic 
or behavioral) and its modifications in evolution.25,26 It 
guides cell differentiation, growth, and development.27 
In a strict sense, molecular epigenetics represents a 
methodological approach to the search for epigenetic 
diagnostic markers and therapies for various diseas-
es,27 which could theoretically prove beneficial in the 
management of bruxism. It comprises molecular gene 
regulation and expression mechanisms at a critical 
control level that extend the DNA sequence.28,29 At 
the same time, these molecular mechanisms repre-
sent the molecular techniques most frequently used 
in epigenetic research.30

In each cell, DNA is packaged in a very specialized 
structure called chromatin, which consists of DNA 
wrapped around the octamers of histone proteins.31 
While an open local chromatin configuration allows 
for the binding of transcription machinery to the 
gene promoters leading to gene activation, a closed 
chromatin configuration is not permissive for tran-
scription.29 Epigenetic modifications such as DNA 
methylation, histone modifications, and noncoding 
RNAs control the state of chromatin in the vicinity of 
gene regulatory regions and regulate gene expres-
sion.27,29 DNA methylation occurs at the 5 position 
of cytosine residues, predominantly in the context 
of CpG dinucleotides. It is catalyzed by a family of 
enzymes called DNA methyltransferases (DNMTs), 
and is typically involved in gene silencing.27,29 DNA 
methylation not only is responsible for single gene 
regulation but also plays an important role in global 
X chromosome inactivation and genomic imprint-
ing.19 The histone modifications described so far 
include acetylation, methylation, phosphorylation, 
ubiquitination, SUMOylation, and ADP-ribosylation.29 
Specific concerted combinations of DNA methylation 

and histone modifications can affect local chromatin 
configuration and mark specific genes or chromo-
somes for either enhanced activity or transcriptional 
repression.32

The epigenome is highly susceptible to en-
vironmental exposures during early prenatal 
development, when an extensive reprogramming of epi-
genetic marks takes place to establish cell- and tissue- 
specific gene expression.28,33 Interferences with epi-
genetic reprogramming during early embryogenesis 
(eg, maternal stress, malnutrition, drug and alcohol 
abuse, toxins) hold significant potential to influence 
early gene programming in the developing em-
bryo.34–36 These mechanisms also influence DNA ex-
pression in specific cells in later life stages (eg, during 
neuro genesis, mandibular development).37,38

In summary, it seems likely that the whole develop-
mental period is vulnerable to epigenetic disruption, 
and that any agent with the ability to affect the epi-
genome can cause adverse developmental effects.27 
Once established, DNA methylation patterns can be 
passed from one cell generation to another and per-
sist into adulthood, thus providing the mechanism 
through which the early life environment can exert 
long-lasting effects on gene expression and pheno-
type.39 These pattern changes can also be inherited.39

Epigenetically Determined Diseases  
Associated with Bruxism 

Both types of bruxism occur as symptoms of certain 
neurological disorders, caused by disruptions in the 
epigenetic DNA expression regulation, such as RTT 
and other methyl CpG binding protein 2 (MECP2)-
related disorders, PWS, or AS.19,20

RTT is a progressive neurodevelopmental disorder 
caused by mutations in a gene encoding a protein 
involved in epigenetic regulation.19 Specifically, it is 
caused by de novo mutations in the MECP2 gene.20 
The mutation is detected in 90% of classic RTT phe-
notypes.40 The MECP2 gene, located on the X chro-
mosome, encodes a protein that binds to methylated 
sites of genomic DNA and facilitates gene silencing 
and genomic imprinting.21 As mentioned, DNA meth-
ylation is one of the most important mechanisms of 
epigenetic control of DNA expression and the most 
intensely studied epigenetic mechanism.41 MECP2 is 
essential for the normal development, maturation, and 
functioning of nerve cells.42 Its alterations in RTT have 
serious deleterious effects on the developing nervous 
system, which express themselves in various motor 
function disturbances, including bruxism.43

Classic RTT predominantly affects girls and is 
characterized by a short period of developmental 
stagnation after the first 6 to 18 months of normal 
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development, followed by a rapid retardation of ac-
quired language and motor skills, and finally by a pe-
riod of long-term stability.20 Immaturity in brainstem 
mechanisms in RTT is expressed by the presence 
of early sleeping disorders such as sleep bruxism, 
nocturnal awakenings, and difficulty falling asleep.22 
Repetitive, stereotypic movement of limbs and jaws, 
sleep apnea, and cardiac abnormalities are a frequent 
finding in RTT patients.44 Awake bruxism represents 
the second most frequent stereotypy in RTT (pres-
ent in 90% of RTT phenotypes)44,45 and is the main 
oral manifestation of this syndrome.43 Awake bruxism 
also seems to be highly indicative of the presence of 
an MECP2 mutation in RTT phenotypes.44 It causes 
extensive tooth wear and muscular dysfunction in 
RTT patients and often requires dental treatment.43

PWS and AS are neurological disorders caused by 
different epigenetic imprinting defects on chromo-
some 15 in the q11–q13 region.19 Genomic imprint-
ing is the expression of certain genes in specific 
regions of the genome, which is regulated by their 
parental inheritance.46 This expression is regulated 
by epigenetic marks, specifically DNA methylation 
and histone modifications that are established on ei-
ther the paternal or maternal chromosomes.19 PWS 
is caused by a lack of paternal contribution in the 
15q11–1q13 region (possibly the HBII-85 gene), while 
AS is due to a lack of maternal contribution (a defect 
in the UBE3A gene).19 Patients with these diseases 
display a range of neurological findings, a delayed 
development of motor skills and speech, and intel-
lectual disability.19,47

In PWS patients, the dysfunction of hypothalamic-
pituitary-adrenocortical axis (HPA) function leads to 
growth hormone deficiency, lack of satiety, hyperfagia, 
and excessive obesity.19 Sleep disorders such as sleep 
bruxism, excessive daytime sleepiness, and sleep ap-
nea are common in individuals with PWS.23 Further, 
they show an excessive level of tooth wear due to both 
awake and sleep bruxism, possibly in combination 
with excessive acidic food intake, gastroesophageal 
reflux, and hyposalivation.48 Most young adults with 
PWS need extensive prosthetic restorations because 
of bruxism and advanced tooth wear.48

In addition to severe psychomotor delay and 
speech problems, patients with AS display stereo-
typies, including awake bruxism, gait ataxia and/or 
tremulousness of the limbs, and a specific behav-
ioral phenotype.49 Seizures and an abnormal EEG 
are frequently found in AS patients.19 Further, they 
exhibit a vast range of sleep disorders, including 
sleep bruxism, prolonged sleep latency, night awak-
enings and reduced total sleep time, enuresis, sleep 
terrors, somnambulism, nocturnal hyperkinesia, and 
snoring.24

Epigenetic Disruptions Associated with the 
Pathophysiologic Events Involved in Bruxism 

SB is strongly associated with the pathophysiology of 
sleep and breathing.50 Sleep and breathing disorders 
are also a constant finding in RTT, AS, and PWS,22–24 
in which bruxism is the main oral symptom.43,48,49 Like 
RTT, AS, and PWS, sleep and breathing pathologies 
(eg, sleep apnea) have also been associated with dif-
ferent DNA methylation disruptions, histone modu-
lation mechanisms, noncoding RNAs, and genomic 
imprinting defects.21,51,52 Data from human subjects 
reveal that the levels of DNA methylation and those 
of associated factors are connected with circadian 
rhythms and exhibit rhythmic oscillations.21 Further, 
DNA methylation associated factors have been prov-
en to be subject to modulation by external chronobio-
logical cues (zeitgebers), specifically through MECP2 
modulations in the central nervous system,21,53 which 
is also the main mechanism involved in RTT. Animal 
studies confirm the association between MECP2 
mutations and circadian alterations.21 Bruxism also 
seems to be highly indicative of the presence of an 
MECP2 mutation in RTT phenotypes.44

Adverse prenatal environmental factors, such as 
maternal stress, malnutrition, and poor sleeping hab-
its; in utero alcohol, nicotine, and drug exposure; pre-
mature birth; and low birth weight, influence these 
epigenetic mechanisms and have detrimental effects 
on the organization of the circadian rhythms, which 
can increase the risk of sleep disturbances and poor 
sleep quality.54–56 An altered function of the HPA 
axis has been suggested as a potential mechanism 
underlying these associations.35 Cocaine inhibits the 
reuptake of monoamines at the presynaptic junction, 
leading to higher levels of activation in the catechol-
aminergic systems and higher concentrations of nor-
epinephrine, serotonin, and dopamine in the synaptic 
cleft.57 An altered function catecholaminergic system 
has been proposed as a possible pathophysiologic 
mechanism in both types of bruxism as well.58

Poor and disturbed sleep has a wide spectrum of 
detrimental consequences, ranging from neuroendo-
crine and cardiovascular alterations to poor psycho-
logical well-being and psychiatric disorders.59–61 The 
level of maternal anxiety possibly mediates the asso-
ciation between prenatal cocaine exposure and sleep 
difficulties.57 The association of the development of 
psychopathology and altered stress response with 
DNA methylation disruptions and histone modifica-
tions has been extensively documented in the scien-
tific literature.31,62 Awake bruxism is also associated 
with psychological and psychiatric disorders, includ-
ing altered stress responsiveness,58 schizophrenia,63 
anxiety, and aggressive behavior.64–66
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Serotonin plays a crucial role in psychological and 
psychiatric disturbances, arousal response, circadian 
rhythm regulation, and muscle tone maintenance.67 
Psychiatric disturbances, including anxiety, suicidal-
ity, schizophrenia,68–71 and sleep disorders such as 
sleep apnea,72 show strong associations with the 
polymorphism of genetic markers that are part of the 
serotonin transmission system. Variation in serotonin-
transporter-linked polymorphic region 5-HTTLPR 
and its contribution to altered stress sensitivity rep-
resent one of the most extensively investigated fields 
of epigenetic neuropsychiatric research.17 Serotonin 
transporter protein gene SLC6A4 has been shown 
to play an important role in the pathophysiology of 
mood disorders, and its expression is strongly influ-
enced by altered DNA methylation statuses.73 DNA 
methylation profiles within the serotonin transporter 
gene also moderate the association of 5-HTTLPR and 
cortisol stress reactivity.74 Serotonin alterations have 
been proposed to play a role in the pathophysiology 
of both types of bruxism.4 A recent molecular genetic 
study has confirmed a strong correlation between the 
occurrence of the serotonin receptor gene HTR2A 
rs6313 polymorphism and increased risk for SB.13

Conclusion 

Bruxism is a complex disorder with a controversial 
etiology. Evidence from genetic studies indicates that 
bruxism is caused by a mix of genetic and environ-
mental (G×E) factors, but the heritability of bruxism 
has still not been explored in detail. No studies have 
yet been conducted to investigate the association of 
bruxism with epigenetics, even though epigenetics 
specifically focuses on research modalities that inves-
tigate G×E interactions. Further, both types of bruxism 
are associated with three representative neurode-
velopmental disorders that are caused by epigenetic 
disruptions, including RTT, PWS, and AS, and these 
associations suggest a direct link between epigenetic 
deregulation and bruxism. There have been no studies 
of the association between sleep pathology, bruxism, 
and epigenetics, although SB is closely associated with 
sleep disturbances and the latter have been linked to 
similar epigenetic disruptions like RTT, PWS, and AS. 

Future research focusing on the genes and mecha-
nisms involved in the epigenetic pathophysiology of 
RTT, AS, PWS, and other risk factors for bruxism is 
warranted. The results of such investigations could 
help shed light on some of the etiologic and diagnos-
tic dilemmas concerning both types of bruxism.
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Literature Abstract

Cross-Sectional Study on the Prevalence and Risk Indicators of Peri-Implant Diseases

This cross-sectional study assessed and identified the prevalence and risk indicators of peri-implant diseases in patients treated in 
a university setting. A total of 186 patients with 597 implants were included in the study. Personal data (age, gender, frequency of 
dental visit, history of periodontal treatment, causes of tooth loss, diabetes, osteoporosis, and head and neck radiotherapy), clinical 
data (plaque scores, presence of keratinized tissue, pocket probing depth, and bleeding on probing [BOP]), and radiographic data 
(vertical bone loss at mesial and/or distal surfaces of implants) were recorded. Peri-implant mucositis was defined when at least 
one site had positive BOP. Peri-implantitis was diagnosed when there was BOP at one surface and > 2 mm of radiographic bone 
loss. Results showed statistically significant associations between high plaque score and peri-implant mucositis, between history of 
periodontal disease and peri-implantitis, as well as between implant location and peri-implantitis (implants placed in the maxillary 
arch had higher risk of peri-implantitis compared to those placed in the mandible). The authors found that hard and soft tissue has 
a significant protective effect against peri-implant mucositis. No statistically significant association was found between peri-implant 
mucositis and smoking, diabetes, osteoporosis, head and neck radiotherapy, or frequency of dental visit. The authors concluded that 
history of periodontal disease and level of oral hygiene were the most important risk indicators for peri-implantitis and peri-implant 
mucositis, respectively. The study did not put types of prosthetic restoration and bone loss at buccal/labial and lingual surfaces of 
implant into consideration.
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