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Abstract

Aims: The goal of this review is to identify the antimicrobial proteins in the oral
fluids, saliva and gingival crevicular fluid and identify functional families and
candidates for antibacterial treatment.

Results: Periodontal biofilms initiate a cascade of inflammatory and immune
processes that lead to the destruction of gingival tissues and ultimately alveolar bone
loss and tooth loss. Treatment of periodontal disease with conventional antibiotics does
not appear to be effective in the absence of mechanical debridement. An alternative
treatment may be found in antimicrobial peptides and proteins, which can be
bactericidal and anti-inflammatory and block the inflammatory effects of bacterial
toxins. The peptides have co-evolved with oral bacteria, which have not developed
significant peptide resistance. Over 45 antibacterial proteins are found in human saliva
and gingival crevicular fluid. The proteins and peptides belong to several different
functional families and offer broad protection from invading microbes. Several
antimicrobial peptides and proteins (AMPs) serve as templates for the development of
therapeutic peptides and peptide mimetics, although to date none have demonstrated
efficacy in human trials.

Conclusions: Existing and newly identified AMPs may be developed for therapeutic
use in periodontal disease or can serve as templates for peptide and peptide mimetics

with improved therapeutic indices.
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Periodontitis is an inflammatory disease
that affects approximately half of US
adults over 30 years of age. Similarly,
54% of subjects examined in the 1998
UK Adult Dental Health survey exhib-
ited at least moderate pocketing on one
or more teeth (Morris et al. 2001). A
systematic review of periodontal health
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in Europe indicates that, on average,
60% of the adult population has clinical
attachment loss of >3 mm (Konig et al.
2010). Periodontal disease is character-
ized by the formation of mixed biofilms
on the teeth and gingival tissues. The
oral cavity is an environment exposed to
a multitude of bacteria with over 700
possible resident species of which 150-
200 are typically found in most indivi-
duals. It is thought that this bacterial
flora is controlled initially by the innate
immune system of oral epithelia, saliva
and gingival crevicular fluid, which is
rich in antimicrobial proteins and pep-
tides (AMPs) (Table 1). These AMPs
constitute a diverse class of host-defense
molecules that act early to combat inva-
sion and infection by bacteria and other
microorganisms, with over 45 identified
to date (Table 2). This group of proteins
and peptides has engendered consider-
able interest in the past decade as a

biological paradigm in innate immunity
and as a potential source of novel anti-
biotics (e.g., Brogden 2005, Ganz 2005,
Gordon et al. 2005, Wheeler and Hood
2005, Dale et al. 2006, Peschel and Sahl
2006, Schroder and Harder 2006, Talbot
et al. 2006, Kinane et al. 2007, Hirsch
et al. 2008, Kinane et al. 2008, Sorensen
et al. 2008, Gorr 2009). These AMPs
presumably protect oral tissues from
infection as minor cuts and abrasions
or even tooth extractions, which create
large lesions in the oral epithelium,
typically resolve without major infec-
tion or inflammation (Zasloff 2002b).
On the other hand, the normal oral flora
is in a balance between pathogens and
commensals that requires regular clean-
ing to be maintained. A decrease in oral
hygiene is quickly followed by the
build-up of oral biofilms on tooth sur-
faces and, if left untreated, will progress
to gingival inflammation and possibly
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periodontitis, alveolar bone loss and loss
of teeth. Thus, it appears that the AMPs
in the oral cavity do not solely control
bacterial growth and prevent biofilm
build-up. This critical narrative review
catalogs the AMPs found in saliva and
gingival crevicular fluid and points to
potential roles and uses in control of oral
bacteria and periodontal disease. A
combination of search strategies was
used in an effort to obtain a comprehen-
sive view of the existing literature:
PubMed was searched with the MeSH
terms ‘‘periodontitis’” and ‘‘anti-bacter-
ial agents’’; previous reviews were con-
sulted for relevant proteins and recent
updates on specific proteins were iden-
tified by a PubMed search for each AMP
limited to the publication years 2009—
2010. Clinical Trials were initially iden-
tified in ‘‘clinicaltrials.gov’’. In some
cases, these searches were broadened by
searching Google using specific protein
or drug names in combination with
“‘periodontal’” or ‘‘periodontitis’’.

Oral Bacteria and Infection

The oral cavity and airways are exposed
to many of the same bacteria, which are
either ingested or inhaled. However,
while the lower airways are essentially
sterile (Diamond et al. 2008), indicating
that airway host-defenses effectively
clear invading bacteria, the oral cavity
is host to over 700 species of bacteria,
with about 400 found in the periodontal
pocket. Newer pyrosequencing techni-
ques using short sequence tags for the
16S rDNA V6 region have led to even
higher estimates of microbial diversity in
saliva and plaque (Keijser et al. 2008). A
preliminary estimate identified 5669 and
10,052 phylotypes (species) in saliva and
plaque, respectively, using operational
taxonomic units (OTUs) at 3% differ-
ence. This may represent about 50% of
the total species present (Keijser et al.
2008). However, 95% of the sequences
were represented by the 1000 most abun-
dant OTUs, which approximates previous
estimates. Importantly, in the absence of
mechanical or chemical removal of oral
bacteria, they quickly form biofilms on
tooth surfaces. These biofilms can lead to
gingival infections, periodontitis and loss
of alveolar bone and teeth. Indeed, oral
infections and attendant inflammatory
diseases are among the most common
human infections.

Of the 400 species of bacteria found
in the periodontal pocket not all are
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found in every individual. As an example,
in one study 69 of the 400 periodontal
bacteria were found in multiple subjects
(Paster et al. 2006). However, only
about eight bacterial species have con-
sistently been associated with the devel-
opment of periodontitis, including
Actinobacillus actinomycetemcomitans,
Porphyromonas gingivalis, Tannerella
forsythia, Treponema denticola, Fuso-

bacterium  nucleatum, Eubacterium
nodatum, Prevotella intermedia and
Prevotella  nigrescens  (Periodontics

1996, Socransky et al. 1998, Teles et
al. 2006). The first three are consensus
pathogens (Periodontics 1996) while P.
gingivalis, T. forsythia and T. denticola
belong to the red complex described by
Socransky et al.(1998).

The periodontal pathogens are typi-
cally found in gingival crevices and
periodontal pockets of both healthy
and diseased sites (Colombo et al.
2006, Teles et al. 2006) and population
studies have identified population sub-
groups with high, moderate or low sus-
ceptibility to inflammatory diseases,
including periodontitis (Loe et al.
1986). Thus, it is likely that differences
in host-defense mechanisms, including
antimicrobial protein profiles, determine
whether bacterial colonization pro-
gresses to overt disease. Similar differ-
ences in host-defenses may play a role
in the age differences noted for perio-
dontal disease, which is predominantly
associated with A. actinomycetemcomi-
tans in the young while P. gingivalis is
the dominant bacterial agent later in life
(Slots and Ting 1999).

Biofilms and Periodontitis

Dental plaque is a mixed microbial
biofilm that can be composed of hun-
dreds of bacterial species (Kolenbrander
et al. 2006). The biofilm bacteria and
their toxins perturb gingival epithelial
cells as the first stage in a cascade of
inflammatory and immune processes
that lead to the destruction of gingival
tissues and ultimately, in susceptible
patients, alveolar bone loss and tooth
loss as a result of periodontal disease.
Mixed biofilms are communities of
bacteria that communicate by quorum
sensing to change the bacterial physiol-
ogy. The biofilm contains channels to
aid nutrient transport and is typically
encapsulated by an extracellular poly-
saccharide matrix (Ten Cate 2006).
These features combine to make anti-
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biotic treatment difficult. Traditional
antibiotics were often selected against
metabolically active bacteria in a plank-
tonic state and are therefore less effec-
tive against the physiologically dormant
bacteria encapsulated in a biofilm (Ten
Cate 2006). As an example, the suscept-
ibility of A. actinomycetemcomitans to
several antibiotics decreases as the bio-
film matures (Takahashi et al. 2007).
Thus, plaque is typically removed by
mechanical debridement, which also
remains the main treatment option for
periodontitis. Depending on the extent
of the gingival infection and attendant
inflammation, surgery and tissue regen-
eration are further treatment option for
periodontitis.

The Role of Antimicrobial Proteins in
Periodontal Disease

Human saliva and gingival fluid con-
tains at least 45 different AMPs that
belong to several different functional
classes, ranging from small cationic
peptides to enzymes and large aggluti-
nating proteins (Table 1). It is thought
that this functional and structural diver-
sity is necessary to protect the oral
epithelia from the large number of pos-
sible invading microbes and maintain
the oral homeostasis of commensal and
pathogenic bacteria. Moreover, the
expression of anti-microbial proteins is
differentially regulated by different
periodontal pathogens (Handfield et al.
2005) (Table 2), suggesting that a spe-
cific antimicrobial ‘‘cocktail’’ constitu-
tes the physiological response to
individual pathogens. This mix may
also play a role in maintaining an appro-
priate balance between oral pathogens
and commensals.

Proteomic analyses have identified
differences in antimicrobial protein
expression in periodontal patients com-
pared with healthy or treated controls. A
proteomic analysis of salivary proteins
from aggressive periodontitis and nor-
mal controls revealed differential
expression of 11 proteins (Wu et al.
2009b), including the antimicrobial pro-
teins  lactotransferrin  and PSP/
SPLUNC2. A similar study analysed
the expression of salivary proteins
from periodontitis patients before and
after treatment (Haigh et al. 2010). PSP/
SPLUNC2, which is up-regulated in
periodontitis, was down-regulated after
treatment  while the calgranulins
S100A8 and A9 were up-regulated after
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Table 1. Functional classes of antimicrobial proteins

Cationic Bacterial agglutination Metal ion Peroxidases Protease Activity against
peptides and adhesion chelators inhibitors bacterial cell walls
1 Adrenomedullin f-2-microglobulin Calgranulin A Lactoperoxidase Cystatin A Lysozyme C
Protein S100-A8  Salivary peroxidase
2 Azurocidin Fibronectin Calgranulin B Myeloperoxidase Cystatin B Peptidoglycan
CAP37 Protein S100-A9 recognition protein 1
Heparin-binding protein
3 f defensin-1 Mucin 7 Lactoferrin Cystatin C Peptidoglycan
hBD-1 Lactotransferrin recognition protein 3
4 f defensin-4A Prolatin-inducible protein  Psoriasin Cystatin D Peptidoglycan
f-defensin-2 Protein S100-A7 recognition protein 4
hBD-2
5 f Defensin 103 Proline-rich proteins Transferrin Cystatin S
p-defensin-3 Serotransferrin
hBD-3
6 Calcitonin gene-related Salivary agglutinin Cystatin SA
peptide 1 GP340 DMBT1
7 Cathelicidin Surfactant protein A Cystatin SN
(LL-37) pulmonary surfactant-
associated protein Al
8 C-C motif chemokine 28 Secretory leukoprotease
inhibitor protein
9 Hemoglobin Skin-derived
f-globin antileukoproteinase
o globin Elafin

10 Heparin binding growth factor
Fibroblast growth factor

11 Histatin 1

12 Histatin 3
(Histatin 5)

13 HNP-1
Neutrophil defensin 1

14 HNP-2
Neutrophil defensin 2

15 HNP-3
Neutrophil defensin 3

16  HNP-4
Neutrophil defensin 4

17 Neuropeptide Y
18  Statherin

19 (Substance P)
Protachykinin-1

20 Vasoactive intestinal peptide

See Table 2 for additional details for individual proteins.

treatment (Haigh et al. 2010). Direct
analysis of the antimicrobial peptide
LL-37 in gingival crevicular fluid
showed that the peptide is significantly
elevated in patients with chronic perio-
dontitis compared with the other groups.
Moreover, a positive relationship was
found between levels of LL-37 and
probing depth, clinical attachment level,
plaque index, bleeding on probing and
papilla bleeding index at sampled sites
(Turkoglu et al. 2009). In addition to
understanding the role of specific AMPs
in the pathology of periodontal disease,

these differences could lead to the
development of salivary markers for
diagnosis of periodontal disease (Gian-
nobile et al. 2009).

Antimicrobial proteins exhibit strik-
ing variation in their ability to kill
different species of oral bacteria or
different strains of the same species
(Diamond et al. 2009). As an example,
Streptococcus gordonii is not suscepti-
ble to hBD-3 or LL-37 while S. gordonii
10558 exhibits minimal inhibitory con-
centrations of 15-31 ug/ml for both pep-
tides (Ji et al. 2007a).

Antimicrobial Protein Deficiency and
Periodontitis

Several systemic diseases are associated
with an increased risk for periodontitis.
In some cases this appears to correlate
with reduced expression of antimicro-
bial proteins.

Diabetes is associated with an
increased risk for periodontitis, even in
children (Lalla et al. 2007). In a proteo-
mic study of saliva from diabetic chil-
dren and matched controls, it was noted
that the levels of statherin, proline-rich

© 2011 John Wiley & Sons A/S
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peptides P-B and P-C, Histatin 1 and 3
were significantly reduced in diabetes
(Cabras et al. 2010). In contrast, human
neutrophil peptide (HNP)-1,2,4 and
S100A9 were up-regulated in diabetic
patients compared with controls. Thus,
the altered complement of salivary anti-
microbial proteins may contribute to
periodontal disease in young diabetic
patients.

Morbus Kostmann disease is a severe
congenital neutropenia that is associated
with severe periodontitis (Putsep et al.
2002). The saliva, plasma and neutro-
phils from Kostmann patients are defi-
cient in LL-37 and patients exhibit a
30% decrease in a-defensins. This is not
an across-the-board reduction in anti-
microbial proteins because plasma
lactoferrin content is normal (Putsep
et al. 2002). In addition, treatment
with granulocyte-colony-stimulating factor
restores the number of neutrophils to
normal but patients continue to lack
LL-37 and exhibit periodontal disease
(Putsep et al. 2002, Carlsson et al.
2006). A bone marrow transplant in a
single patient restored both neutrophils
numbers and the levels of LL-37 and no
further dental problems were noted.
Similarly, patients with Papillon-Lefévre
syndrome and Haim-Munk syndrome
also exhibit low levels of LL-37 and
develop periodontitis (de Haar et al.
2006). In these patients, the LL-37 pre-
cursor cathelicidin is present at normal
levels but little is processed to the active
LL-37 peptide due to allelic mutations
of the cathepsin C gene CTSC (Hart
et al. 2000).

Functional Families of Antimicrobial
Proteins in the Oral Cavity, See
Tables 1 and 2 for details

Oral tissues express a large variety of
AMPs, which may contribute to the
host-defense of the oral cavity, although
their exact mode of action remains to be
determined (Chung et al. 2007, Dia-
mond et al. 2008). At least 45 AMPs
are secreted by oral epithelial cells,
neutrophils and salivary glands. All are
found in saliva and a subset are also
found in gingival crevicular fluid (Gorr
2009). Several antimicrobial peptides
are highly concentrated in gingival cre-
vicular fluid compared with saliva:
Adrenomedulin and f3-2-microglobulin
are enriched about 30-fold in gingival
crevicular fluid while the concentrations
of calgranulins, fibronectin, substance P

© 2011 John Wiley & Sons A/S

and calcitonin gene-related peptide
(CGRP) are 100-10,000-fold higher in
gingival crevicular fluid than whole
saliva. In contrast, the concentrations
of the «-defensins are 1000-fold lower
in gingival crevicular fluid than saliva.
The high expression of some antimicro-
bial peptides in gingival crevicular fluid
may be due to high local expression
rather than saliva contamination of gin-
gival crevicular fluid samples (Griffiths
et al. 1992). Alternatively, AMPs may
be selectively sequestered by binding to
the tissue in the gingival pocket.

The diversity of AMP gene products
is further amplified by post-translational
modifications (Ramachandran et al.
2006, Messana et al. 2008) or gene
polymorphisms (Oppenheim et al.
2007, Whitelegge et al. 2007). This
diversity presumably protects the oral
tissues from invasion or infection by the
large variety of microorganisms that
enter the mouth and airways. As noted
above, the resident flora is maintained in
a balance between pathogenic and com-
mensal bacteria. Interestingly, the mini-
mal inhibitory concentrations of most
AMPs to oral bacteria are higher than
their concentrations in the gingival cre-
vicular fluid. Thus it is not clear if the
AMPs exert direct antibacterial activity,
act as a group or if these peptides are
acting as sentinels of bacterial status that
stimulate other aspects of the immune
system (Diamond et al. 2008). The rapid
growth of bacterial biofilms in the
absence of oral hygiene supports the
view that the AMPs do not serve pri-
marily to kill and eliminate oral bacteria
but may serve to maintain the balance
between resident pathogens and com-
mensals and as sentinels for invading
microorganisms.

Individual testing of biological activ-
ity of AMPs in vitro has revealed func-
tional families that cover a broad range
of biological activities against oral bac-
teria. However, it is not yet clear why
the oral complement of AMPs leads to
maintenance of bacterial colonization
by commensals and pathogens, which
can increase to biofilm formation in the
absence of oral hygiene, while the simi-
lar complement of AMPs in the airways
maintain a near sterile environment
(Diamond et al. 2008). The promise of
antimicrobial peptide therapy may be
realized by over-expressing or supple-
menting individual antimicrobial pep-
tides for oral therapy or by devising
“‘cocktails’” of antimicrobial peptides
to combat a subset of oral pathogens.
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Cationic peptides

Cationic peptides is a large functional
family that is represented in oral cavity
and airways. Depletion of cationic
AMPs from human airway fluid also
eliminates the antibacterial activity
(Cole et al. 2002). It is not clear if the
cationic proteins in saliva play a similar
role. However, ion-exchange fractiona-
tion of human saliva identified fractions
that exhibited antimicrobial activity,
which was not apparent in the starting
material (S.-U. Gorr, unpublished obser-
vation).

The cationic peptide functional
family consists of peptides that typically
are bactericidal and/or bacteriostatic and
includes adrenomedullin, o-defensins
(HNP), f-defensins, cathelicidin, hista-
tins 1 and 3, statherin, C—C motif che-
mokine 28 (CCL28), azurocidin and the
neuropeptides CGRP, substance P neu-
ropeptide Y and vasoactive intestinal
peptide (Table 1) (Gorr 2009).

As an example of this functional
family, LL-37 is a cationic peptide that
is derived from the 18kDa precursor
protein cathelicidin by proteolytic clea-
vage. Cathelicidin is expressed in neu-
trophils and epithelial cells and LL-37 is
found in saliva and gingival crevicular
fluid (Murakami et al. 2002a, Puklo et
al. 2008). LL-37 exhibits dual function
by both killing bacteria and neutralizing
the lipopolysaccharide from Gram-
negative bacteria. As is the case for
several AMPs, the activity of LL-37 is
partially inhibited by saliva. On the
other hand, saliva protects the peptide
from proteolytic inactivation by gingi-
pain proteases secreted by the perio-
dontal pathogen P. gingivalis (Gutner
et al. 2009).

Bacterial agglutination and adhesion

Several antibacterial proteins are active
in bacterial agglutination or adhesion.
These include the small salivary
mucin-7 (MUC7) (MG2), which pro-
motes bacterial agglutination, surfactant
protein-A, proline-rich proteins, prolac-
tin-inducible protein and f-2-microglo-
bulin, which is notably present in most
(82%) biopsies from aggressive perio-
dontitis patients but largely absent from
normal controls and chronic severe
periodontitis specimens (Syrjanen et al.
1985). Saliva from prolactin-inducible
protein-knock-out mice exhibit signifi-
cantly lower agglutination of oral bac-
teria than saliva from wild-type control
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mice, suggesting that prolactin-induci-
ble protein contributes to host-defense
of the oral cavity by agglutinating oral
bacteria (Nistor et al. 2009). The sali-
vary agglutinin/GP340/Deleted in Mali-
gnant Brain Tumors-1 (DMBTI) is
a large glycoprotein that contains multi-
ple scavenger receptor cysteine-rich
repeats. The protein is expressed in
mucosal tissues, including salivary
glands and is found in saliva (Wilmarth
et al. 2004, Xie et al. 2005, Denny et al.
2008) DMBT1 has not been linked
directly to periodontitis but DMBTI
polymorphisms have been associated
with a high incidence of caries (Jonas-
son et al. 2007).

Fibronectin is a 2386 amino acid
glycoprotein that is expressed in hepa-
tocytes and epithelial cells and is present
in saliva (Llena-Puy et al. 2004). The
protein induces bacterial agglutination
and plays a role in reducing bacterial
adhesion to oral surfaces (Llena-Puy et
al. 2000). Fibronectin also binds directly
to fimbrillin from P. gingivalis and
thereby inhibits the fimbrillin-induced
expression of inflammatory cytokines
in macrophages (Murakami et al.
1998). Low levels of fibronectin are
correlated with high levels of Strepto-
coccus mutans in children (Llena-Puy
et al. 2000) and periodontitis is asso-
ciated with a relative lack of fibronectin
in adults (Murakami et al. 1998).

Metal ion chelators

These proteins inhibit bacterial growth
by acting as divalent cation scavengers.
The 80kDa iron-binding glycoprotein
lactoferrin/lactotransferrin, which acts
as a scavenger of Fe' ions, exhibits
gene polymorphisms that have been
associated with aggressive periodontitis
(Wu et al. 2009a). The other members of
this functional family, Calgranulin A
(S100A8) and calgranulin B (S100A9)
form a dimer named calprotectin, which
is up-regulated in periodontitis and
detected in increased levels in gingival
crevicular fluid of periodontal patients
(Kido et al. 1999). Calprotectin protects
cells from bacterial invasion, including
the periodontal pathogen P. gingivalis
(Nisapakultorn et al. 2001).

Protease inhibitors

Proteases are important virulence fac-
tors for several bacteria. As an exam-
ple, P. gingivalis secrete gingipains
that bind and cleave multiple host-pro-

teins, including activation of coagula-
tion factors, cleavage of fibrinogen
(Imamura 2003) and cleavage of IL-8.
The IL-8 cleavage products differ by
cellular origin of IL-8 and differentially
affect chemotaxis and activation of
neutrophils in response to IL-8 (Dias
et al. 2008). Gingipains also activate
protease-activated  receptors  (e.g.,
PAR2), which mediates the expression
of the AMPs hBD-2 and CCL20 in
gingival epithelial cells (Dommisch et
al. 2007). Several protease inhibitors
are found in saliva and gingival crevi-
cular fluid to inactivate these and other
proteases. These include the cystatins,
a family of 14 human genes and two
pseudogenes. Seven of these genes are
expressed in saliva and act by blocking
the action of bacterial proteases (Dick-
inson 2002).

Secretory leucocyte protease inhibitor
and SKALP (skin-derived anti-leuco-
protease)/Elafin, also known as ESI
(elastase-specific inhibitor). The latter
is expressed in human submandibular
gland (Lee et al. 2002) and saliva (Tjab-
ringa et al. 2005, Lee et al. 2002). The
protein has an N-terminal domain that
acts as a transglutaminase substrate and
a C-terminal domain that exhibits anti-
elastase activity. In addition, the protein
kills both Gram-negative and Gram-
positive bacteria. This activity depends
on the presence of both peptide domains
(Simpson et al. 1999). Elafin consists of
a single four-disulphide core protein
domain, with the reactive site loop
expanding to the outside. The rigid,
strongly stabilized core renders elafin
unusually stable and resistant to proteo-
lysis (Guyot et al. 2005). Elafin expres-
sion is induced in inflamed epithelial
tissues and P. gingivalis up-regulates
Elafin expression in gingival epithelial
cells. While the protein is highly resis-
tant to most proteases, elafin is degraded
by gingipains from P. gingivalis (Kan-
tyka et al. 2009). The ability to disturb
the balance between proteases and pro-
tease inhibitor in infected gingival tissue
contributes to the degradation of host
proteins. Indeed, the protease inhibitors
SLPI and elafin are often inactivated at
sites of inflammation. Inactivation may
be due to microbial proteases, e.g. gin-
gipains, or host proteases secreted by
neutrophils at the site of inflammation
(Sallenave 2010). Protease inhibitors
based on the sequence of SKALP/Elafin
may prevent the tissue destruction
caused by inflammatory and bacterial
proteases.

Peroxidases

Lactoperoxidase and myeloperoxidase
are found in saliva where they form
the principal components of the perox-
idase system of saliva (Thalin et al.
2006). Both enzymes catalyse the oxi-
dation of thiocyanate ions (SCN ™) by
hydrogen peroxide to form the bacter-
icidal reaction product hypothiocyanite
(OSCN ™) (Ashby 2008). Further bac-
tericidal products are produced by the
oxidation of chloride and iodide (Miya-
saki et al. 1986, Ihalin et al. 2001,
Ashby 2008). The reaction products
produced by both peroxidases are active
against A. actinomycetemcomitans, P.
gingivalis and oral streptococci (Miya-
saki et al. 1986) (Ihalin et al. 2001). The
concentration of myeloperoxidase in
gingival crevicular fluid is about 5 ug/
ml with no significant differences
between chronic periodontitis, aggres-
sive periodontitis and healthy controls,
respectively (Puklo et al. 2008). On the
other hand, antibiotic treatment of perio-
dontal patients for 3 months resulted in
reduced levels of myeloperoxidase in
gingival crevicular fluid (Kaner et al.
2006).

Activity against bacterial cell walls

Two types of proteins show activity
against bacterial cell walls. Lysozyme
(1,4-p-N-acetylmuramidase) is a 14 kDa
protein that is expressed widely in
mucosal epithelia and found in saliva
and gingival crevicular fluid. The
enzyme is mainly active against the
cell wall of Gram-positive bacteria by
hydrolysing peptidoglycans. The other
protein type with activity against cell
wall peptidoglycans are peptidoglycan
recognition proteins 3 and 4, which are
expressed in mucosal epithelia, includ-
ing salivary glands. These large proteins
(89-115 kDa disulphide linked homo- or
hetero-dimers) bind to cell wall pepti-
doglycans but do not permeabilize bac-
terial membranes (Lu et al. 2006). The
proteins are bacteriostatic for most
Gram-positive and Gram-negative bac-
teria but not for non-pathogenic bacteria
or C. albicans (Lu et al. 2006).

Peptides Derived from Host-Defense
Proteins

In addition to the already identified
AMPs, new peptides are continually
discovered or developed from existing
proteins. Hundreds of existing AMPs
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are accessible in on-line databases,
including CAMP: collection of anti--
microbial peptides http://www.bicnirrh.
res.in/antimicrobial/index.php (Thomas
et al. 2010), AMSDb: anti-microbial
sequence database (http://www.bbcm.
units.it/ ~ tossi/pagl.htm) (A. Tossi,
University of Trieste), APD: antimicro-
bial peptide database (http://aps.unmc.
edu/AP/main.php) (Wang and Wang
2004) and PepBank http://pepbank.mgh.
harvard.edu/ (Shtatland et al. 2007). These
peptides and the numerous possible
modifications represent a rich source
for the identification and testing of anti-
microbials with activity/toxicity profiles
that are beneficial against periodontal
pathogens.

Peptides of human origin have parti-
cular promise as therapeutic agents with
low host toxicity. In addition, the co-
evolution of these peptides with the oral
microflora suggests that they may result
in lower rates of bacterial resistance
(Peschel and Sahl 2006). It is important
to note that bacterial resistance has been
observed in vitro and the development
of resistance could potentially result in
severe consequences for the effective-
ness of the endogenous human peptide
(Bell and Gouyon 2003). This concern is
somewhat mitigated, however, by the
alternate host-defense mechanisms that
function in the human body such that we
do not rely on a single peptide for
protection (Hancock 2003).

Human saliva may be a rich source of
new AMPs, in addition to the existing
proteins described above. The human
salivary proteome contains over 1100
proteins (Xie et al. 2005, Denny et al.
2008), many of which have not yet been
functionally identified. One approach
for the identification of new peptides is
the analysis for antimicrobial consensus
motifs in peptide sequences (Yount and
Yeaman 2004). Structural similarities of
new proteins and existing proteins also
provide functional clues. Thus, the
PLUNC family was recently identified
in the oral cavity and airway epithelia
(Bingle and Craven 2002). Based on the
sequence of the PLUNC proteins and a
predicted similarity to the known anti-
bacterial and endotoxin-binding proteins
bactericidal/permeability-increasing pro-
tein (BPI) and lipopolysaccharide-bind-
ing protein (LBP), it was predicted that
these proteins contribute to host-defense
in the oral cavity and airways (Bingle
and Gorr 2004). Comparative analysis
of known anti-endotoxin peptides in BPI
and LBP (Dankesreiter et al. 2000) with
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the predicted structure of the PLUNC
protein Parotid Secretory Protein, led to
the design of a series of antimicrobial
peptides that exhibit anti-endotoxin
activity (Geetha et al. 2005), bacterial
agglutinating activity and act to increase
bacterial clearance by macrophages in
cell culture (Gorr et al. 2008).

As a further example of antimicrobial
peptides derived from human proteins,
hemoglobin gives rise to the antibacter-
ial peptides hemocidins. These peptides
are active at low pH and potentiate the
activity of other AMPs, including LL-
37, lysozyme and defensins (Mak et al.
2007). While hemoglobin is found in
both saliva and gingival crevicular fluid,
the hemocidins have not yet been
described in the oral cavity. Their func-
tion in conjunction with other AMPs at
acidic pH may make them attractive
agents for the treatment of dental bio-
films.

Anti-microbial peptides constitute a
relatively new class of compounds that
has shown promise as effective antibio-
tics to many bacterial species and fungi
in vitro. A recent review of the patent
literature shows the broad range of pep-
tides in development (Pathan et al.
2010). It is hoped that this class of
antibiotics will include clinically useful
peptides that could exhibit both high in
vivo efficacy and low host toxicity.
However, a 2005 review noted the con-
tinuing challenges in obtaining approval
from the U.S. Food and Drug Adminis-
tration for these peptides (Gordon et al.
2005). Thus, continued peptide selection
and optimization for in vivo conditions
is needed to further develop these pep-
tides for therapeutic use.

Targeting of Antimicrobial Peptides

Broad-spectrum antibiotics and AMPs
can reduce beneficial commensal bac-
teria in the oral cavity and broad appli-
cation of AMPs may be associated with
patient toxicity. As an approach to over-
come these concerns, systems are being
developed to more precisely deliver the
AMPs to the target bacteria. Specifically
targeted antimicrobial peptides consist
of a targeting peptide, linker region and
antimicrobial peptide component. The
targeted peptides retained antimicrobial
activity and selectively killed targeted
bacteria in mixed cultures of Pseudo-
monas aeruginosa, S. mutans, Escher-
ichia coli and Staphylococcus epidermis
(He et al. 2009). Using this building
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block approach additional targeting
domains were combined with antimicro-
bial domains to generate peptides that
specifically targeted and killed S.
mutans (He et al. 2010).

Anti-Microbial Peptide Mimetics

As outlined above, the clinical use of
AMPs is associated with significant chal-
lenges. In some cases the natural peptides
have been modified to generate peptides
with more favourable efficacy/toxicity
profiles (Zasloff 2002a). An alternate
approach is the design and synthesis of
peptide mimetics that retain the biologi-
cal activity of AMPs but are more readily
produced, exhibit favourable therapeutic
index and are stable under physiological
conditions (Tew et al. 2006). One such
non-peptide compound mPE shows low
toxicity, is active against clinical isolates,
including antibiotic-resistant bacteria and
did not cause resistance in Staphylococ-
cus aureus over 17 passages. mPE is
active against both Gram-negative and
Gram-positive oral pathogens in both the
planktonic and biofilm culture (Tew
et al. 2006). Similar mimetics based on
the structure of defensin have shown a
high therapeutic index in pre-clinical
studies (Beckloff et al. 2007). The func-
tional domain of BPI protein has been
used to design a modified p-enantiomer
(XOMA 629, Xoma, Berkeley, CA,
USA), which is highly active against a
wide variety of bacteria and fungi (Lim
et al. 2001). Structure function analysis
of naturally occurring peptides will pro-
vide additional sources for the design and
tuning of peptide mimetics that take
advantage of the biological activity of
AMPs but avoid some of the challenges
associated with their synthesis and ther-
apeutic use. In the oral cavity, it may be
of particular importance to develop anti-
biotics that control harmful pathogens
without eliminating beneficial commen-
sals that are needed for microbiological
balance.

Regulation of Antimicrobial Peptide
Expression

Rather than use AMPs as exogenous
therapeutic agents, the stimulation of
endogenous peptide expression is a pos-
sible approach to antimicrobial therapy.
Although many AMPs are regulated by
bacteria and bacterial toxins (Diamond
et al. 2008, Gorr 2009, Dommisch et al.
2010) this is not an attractive option for
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therapy. However, alternative regulatory
mechanisms have been described. Thus,
LL-37 and hBD-2 are up-regulated by
1,25-dihydroxy vitamin D3 in several
human cell types (Wang et al. 2004) and
PSP expression is up-regulated by 17-f
estradiol in human gingival epithelial
cells (Shiba et al. 2005).

An interesting regulatory system for
antimicrobial peptides has been des-
cribed in the intestine (Gudmundsson
et al. 2010). Shigellosis is associated
with reduced intestinal levels of LL-37
and hBD-1. The rabbit homologue of LL-
37, CAP-18 is induced by sodium buty-
rate in a rabbit model of the disease. This
treatment reduced clinical illness and the
bacterial load in the stool (Raqib et al.
2006). A clinical trial is underway to
determine if butyrate is an effective treat-
ment in human shigellosis patients (Clin-
icalTrials.gov Identifier: NCT00800930).
It is not clear if this approach can be
directly applied to periodontal disease
since gingival epithelial cells undergo
apoptosis and autophagy in the presence
of butyrate (Tsuda et al. 2010).

A current clinical trial is examining
the expression of chromogranin A in
periodontitis. The endocrine protein
chromogranin A has been detected in
saliva (Kanno et al. 2000) and is the
precursor for potential antimicrobial pep-
tides (Shooshtarizadeh et al. 2009). The
goal is to determine if chromogranin
peptides exhibit antimicrobial activity in
gingival crevicular fluid samples from
diabetic patients with and without perio-
dontitis  (ClinicalTrials.gov Identifier:
NCT00399620). This trial is diagnostic
and does not include treatment or pre-
vention using the chromogranin peptides.

Clinical Applications

The limits of conventional antibiotic/anti-
microbial approaches in the treatment of
periodontitis are well recognized (Her-
rera et al. 2008, Sanz and Teughels 2008,
Angaji et al. 2010). Thus, new
approaches for non-mechanical perio-
dontal therapy are desirable. An attractive
option is to mine the innate host-defense
system for potential therapeutic com-
pounds that would be effective against
periodontal pathogens with limited side
effects and host toxicity. The clinical use
of AMPs is associated with several per-
ceived advantages, including their broad-
spectrum activity (antibacterial, antiviral,
antifungal), rapid onset of killing, cidal
activity, potentially low levels of induced

resistance, and concomitant broad anti-
inflammatory activities. On the other
hand a number of disadvantages must
be overcome, including the systemic
and local toxicity, reduced activity based
on salt, serum, and pH sensitivity, sus-
ceptibility to proteolysis, pharmacoki-
netic and pharmacodynamic issues,
sensitization and allergy after repeated
application, natural resistance, confound-
ing biological functions (e.g., angiogen-
esis) and high manufacturing costs
(Gordon et al. 2005). Despite the discov-
ery of hundreds of AMPs in the past 25
years, only few are in current clinical use.
One such peptide is polymyxin B, which
is in clinical use for ophthalmic infec-
tions, often in formulations that include
Neosporin. The peptide shows high anti-
bacterial activity but is also associated
with significant toxicity. Thus, polymyx-
in use was discontinued for many years
but has recently resumed in lower doses.
Polymyxin E (colistin) is also in clinical
use but is associated with similar nephro-
toxicity and neurotoxicity at high doses.
Despite these drawbacks, the rise in
bacterial resistance to other antibiotics
has led to a re-evaluation of these ‘‘old-
er’” AMPs (Stein and Raoult 2002).

A recent review noted that no new
peptide antibiotics have been approved
by the US Food and Drug Administration
in recent years (Gordon et al. 2005),
although research and clinical trials are
ongoing for several promising peptides
and peptide mimetics (Zhang and Falla
2009). These include the Histatin 5
derived 12-mer (PAC 113) (PacGen
Biopharmaceuticals, Vancouver, British
Columbia, Canada), which appeared to
prevent the development of experimental
gingivitis in healthy subjects (Paquette
et al. 2002). PAC-113 has completed
phase IIb clinical trials as a mouth rinse
for the treatment of oral candidiasis in
HIV patients. Other AMPs include the
magainin mimetic mPE (Polymedix Inc.,
Radnor, PA, USA); a synthetic decapep-
tide KSL-W and a mimetic based on
defensins (PMX-30063, Polymedix Inc.)
(Zhang and Falla 2009). The latter has
passed Phase I safety evaluation in
healthy subjects and Phase II trials are
planned for 2010. The functional families
of AMPs are large and diverse. Thus,
while the development of antimicrobial
peptides has not yet resulted in new
approved therapeutics, the continued
development of these drugs is justified
by the ongoing struggle with bacterial
infections and resistance to existing anti-
biotics.

Conclusions

While treatment of periodontitis with
conventional antibiotics has had mixed
success and does not appear to be effec-
tive in the absence of mechanical deb-
ridement (Herrera et al. 2008), AMPs
have unique properties that may make
them suitable for the prevention or
elimination of oral biofilms and the
associated inflammation of gingival tis-
sue. Many AMPs are both bactericidal
and anti-inflammatory and can block the
inflammatory effects of bacterial toxins.
The peptides have co-evolved with oral
bacteria, which have not developed sig-
nificant resistance to these peptides.
Although these peptides do not appear
to prevent biofilm formation on their
own, they are often found in saliva in
less than effective concentrations. Thus,
they may prove effective when adminis-
tered in higher doses or as an adjunct to
other therapy. Peptides of human origin
are unlikely to exhibit toxicity in near
physiological concentrations. A key to
successful antimicrobial peptide therapy
may be the use of multiple AMPs to
mimic the in vivo mix of antibacterial
activities.

Forty-five antibacterial proteins are
found in human saliva and many of
these are also found in gingival crevi-
cular fluid. Careful mining of the
increasing number of proteins identified
in saliva, gingival crevicular fluid and
oral epithelial cells by proteomic
approaches, promises to reveal addi-
tional AMPs. Much work remains to
be performed to determine how these
peptides interact to achieve the antibac-
terial properties of healthy oral tissues.
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Clinical Relevance

Scientific rationale for study: Human
antibiotic peptides and proteins have
promise as novel antibiotic reagents
for the treatment of periodontal dis-
ease.

Principal Findings: Saliva and gin-
gival crevicular fluid contains at least

45 different AMPs that belong to
different functional families. These
proteins and peptides may serve as a
source of novel antimicrobial agents
that are developed to combat perio-
dontal pathogens with low host-toxi-
city or bacterial resistance.

Practical Implications: Antimicro-
bial peptide deficiency is linked to
the development of periodontitis.
Research on antimicrobial peptides
and proteins will provide lead com-
pounds that could be developed into
new treatments for periodontal dis-
ease.
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