Increased mast cell density and protease content in actinic cheilitis

I. G. Rojas¹, A. Martínez², A. Pineda³, M. L. Spencer², M. Jiménez², M. I. Rudolph³

Departments of ¹Oral Surgery, ²Oral Pathology, College of Dentistry; ³Department of Pharmacology, College of Biological Sciences, Universidad de Concepción, Chile

BACKGROUND: Actinic cheilitis (AC) is a pre-malignant lesion caused by ultraviolet (UV) radiation and characterized by epithelial and connective tissue alterations. Mast cells (MCs), key contributors to solar elastosis in murine UV-irradiated skin, were characterized in order to assess their potential contribution to connective tissue degeneration in AC.

METHODS: Actinic cheilitis (n = 15) and normal lip (n = 8) biopsies were stained immunohistochemically for tryptase and enzymehistochemically for chymase to determine MC density and protease content. MC subpopulations (i.e. MC_T containing only tryptase, and MC_{TC} containing chymase and tryptase) and their distribution were also determined.

RESULTS: Mast cells and their proteases were increased in AC as compared with normal lip (P < 0.0001), and appeared degranulated especially around elastotic areas. MC_T predominated over MC_{TC} in AC and normal lip (P < 0.05). However, in AC MC_T were increased in the epithelium/connective junction and connective area (P < 0.05), while in normal lip MC_T predominated in connective and submucosal areas (P < 0.05).

CONCLUSION: The results suggest that increased MC density and protease content may contribute to elastosis formation in AC. In addition, changes in MC_T distribution may favor AC malignization.

J Oral Pathol Med (2004) 33: 567-73

Keywords: actinic cheilitis; chymase; mast cells; proteases; solar elastosis; tryptase

Introduction

Actinic cheilitis (AC) is a pre-malignant lesion that can transform into squamous cell carcinoma (SCC) of the lip (1, 2). It affects mainly the lower lip of older, fair-skinned people, excessively exposed to sunlight (3, 4). Mild to severe epithelial and connective tissue altera-

tions are usually found (1, 3). Epithelial changes include thickening of the epithelium and keratin layer, ulceration, acanthosis, and in more severe cases mild to severe dysplasia (3). In the connective tissue, solar elastosis and in most cases inflammation are found (3, 5). Solar ultraviolet (UV) radiation, known for its sunburning and immunomodulatory properties, has been recognized as the main etiological agent of AC (5–8).

Several studies have shown that mast cells (MCs) are significantly increased in UV-irradiated skin (9, 10). In addition, MCs have been implicated in the development of solar elastosis and connective tissue inflammation in UV-irradiated skin (9, 11, 12). It has been shown that UV light induces MC release and synthesis of several mediators capable of modulating, directly or indirectly, extracellular matrix (ECM) production and degradation (13–15). Among them are the serine proteases chymase and tryptase that directly degrade the ECM and activate collagenases (16-19). Human MCs are classified according to protease content in MC_T phenotype, if they only contain tryptase, and in MC_{TC} if they contain both tryptase and chymase (15, 20). Variations in MC phenotypes have been found in several malignant and premalignant lesions (21–23). Dermal MCs are also effector cells of UVB-induced immunosuppression, which can increase the susceptibility for skin cancer (8, 24, 25). Products of MC degranulation such as histamine and, tumor necrosis factor (TNF)- α , are key mediators of this UVB-induced immunosuppression (24, 26).

Despite the evidence implicating MCs in the development of photodamaged skin, MCs have not been yet studied in AC. Therefore, it was hypothesized that MCs were significantly increased in AC and could be key contributors to the connective tissue alterations found in AC. In order to assess this hypothesis, 15 lip biopsies of AC were analyzed for the content and distribution of MCs and their proteases chymase and tryptase, and compared with normal lip tissue.

Material and methods

Lip biopsies

Biopsies of lip vermilion from 15 non-smoker patients (three women and 12 men; ages ranged from 25 to 74,

Correspondence: Dr Isolde Gina Rojas DDS PhD, Departamento de Estomatología Quirúrgica, Facultad de Odontología, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Tel.: 56 41 207 122, Fax: 56 41 243 311. E-mail: grojas@udec.cl Accepted for publication March 25, 2004

Histopathologic studies

Tissue sections were deparaffinized through xylene and descending grades of ethanol to phosphate-buffered saline (PBS) and subsequently stained with hematoxylin and eosin. Sections were assessed for histopathologic signs of AC, including epithelial changes (hyperkeratosis, hyperplasia, atrophyl, acanthosis, ulceration and dysplasia) and connective tissue alterations (solar elastosis and inflammation).

Metachromatic staining of mast cells

Mast cells were detected by the classical staining of sulfated proteoglycans in secretory granules. Briefly, tissue sections were dewaxed, rehydrated, and immersed in 0.1% toluidine blue (Sigma, St Louis, MO, USA) in 1% NaCl for 5–10 min. Slides were then rinsed in distilled water, dehydrated, and mounted.

Immunohistochemical staining of tryptase-positive mast cells

Tissue sections were stained for tryptase-positive MCs as previously described (21) with some modifications. Briefly, sections were deparaffinized in xylene and descending grades of ethanol to PBS. Endogenous peroxidase activity was blocked by incubation in 3% H_2O_2 in absolute methanol for 10 min, followed by a 30-min incubation in 10% goat serum in 1% bovine serum albumin-Tris buffered saline (BSA-TBS). Slides were then incubated with the primary antibody, monoclonal mouse-anti human MC tryptase (1:2000; Chemicon International, CA, USA), in 1% BSA-TBS for 1 h at room temperature, followed by incubation for 30 min with the secondary antibody, goat anti-mouse IgG-poly-HRP (Chemicon International, CA, USA). The reaction was developed for 5 min with 3-3'-diaminobenzidine (DAB; Chemicon International) and $3 \text{ ml/ml } H_2O_2$ in 50 mM Tris (pH = 7.6). Slides were then counterstained with Meyer's hematoxylin, dehydrated and mounted. Between steps the slides were washed three times in 1%BSA-TBS. Lip cancer sections were used as positive control, and omission of the primary antibody was used as negative control.

Enzymehistochemical staining of chymase-positive mast cells

Chymase-positive MCs were stained by using an incubation mixture containing the substrate N-acetyl-

l-methionine alpha-naphtyl ester (u-N-O-Met) as previously described (27). Briefly, sections 4 μ m thick were deparaffinized, rehydrated, and washed in 0.15 M phosphate buffer, pH 7.1. Sections were then incubated at room temperature for 10 min with a mixture of 5 mg of u-N-O-Met dissolved in 0.2 ml dimethyl formamide (Sigma), made up to a final volume of 25 ml with 0.15 M phosphate buffer, containing 3.2 mM Fast Blue salt (Sigma) as a capture reagent. The reaction was stopped by incubating with 1% cupric sulfate for 5 min. The slides were then washed with phosphate buffer, counterstained with saphranine-O, and mounted in aqueous medium (Paramount, DAKO, Carpinteria, CA, USA). As a negative control, the substrate was omitted from the incubation mixture.

Counting of tryptase- and chymase-positive mast cells

Tryptase- and chymase-positive cells were counted separately in serial sections of normal lip and AC using a Nikon Diaphot 300 microscope equipped with an OC-M calibrated eyepiece micrometer and connected to an ImagePro analysis program 4.0.1 (Media Cibernetics, Atlanta, GA, USA). MCs were counted in 30 counting fields per section at 40× magnification (counting field area = 0.4 mm²). In order to assess distribution, the counting fields were distributed in three areas located at the epithelial/connective tissue (E/C) junction, connective tissue and submucosa (10 adjacent counting fields per area) by two calibrated observers blinded to the objectives of this study. Results were expressed as MCs/mm² (mean \pm SEM).

Statistical analysis

All data were tabulated and statistical tests were performed with JMP-IN 3.2.1 (SAS Institute Inc., Cary, NC, USA). Significant statistical differences between groups were examined using unpaired *t*-test and oneway ANOVA. The nonparametric, Wilcoxon and Kruskal–Wallis tests were used when variables did not

Figure 1 Mast cell (MC) density and protease content in actinic cheilitis (AC). Slides were processed for toluidine blue staining of MC proteoglycans, immunohistochemical detection of tryptase-positive MCs (also used for total MCs), and enzymehistochemical detection of chymase-positive MCs. Results are expressed as mean MCs/ $mm^2 \pm SEM$ (n = 15 for AC samples, and n = 8 for normal lip samples). *P < 0.0001 (*t*-test), as compared with normal lip.

Figure 2 Staining of tryptase- and chymase-positive mast cells (MCs) in serial sections of actinic cheilitis (AC) and normal lip. Immunohistochemical staining of tryptase-positive MCs is shown for normal lip (A) and AC (C). Enzymehistochemical staining of chymase-positive MCs is shown for normal lip (B) and AC (D). AC, actinic cheilitis; NL, normal lip; E, epithelium; El, elastosis; Inf, inflammation, BV, blood vessel.

have a normal distribution. Differences were considered statistically significant when P < 0.05.

Results

Histopathologic analysis of AC biopsies

The histopathological findings in the 15 AC specimens were as follows: epithelial changes such as hyperkeratosis (in six of 15 AC samples), acanthosis (seven of 15), atrophyl (five of 15), ulceration (one of 15) and hyperplasia (two of 15) were found combined or alone in the AC samples. One case of epithelial dysplasia combined with hyperkeratosis and atrophyl was also found. All the samples presented basophilic connective changes or solar elastosis, and chronic inflammation. The normal lip vermillion biopsies had absence of both inflammation and detectable actinic damage.

Mast cell density and protease content in AC

As the first approach to determine MC density in normal lip and AC samples, the classic metachromatic method of MC proteoglycans staining with toluidine blue was used. MC protease content was determined by enzymehistochemical staining of chymase and immunohistochemical staining of tryptase. As all MCs contain tryptase (MCs containing only chymase are extremely scarce) (20, 21), this method was also used to determine total MC density.

Regardless of the method, toluidine blue or tryptase staining, a significant increase in total MC density was

Increased MC density and protease content in actinic cheilitis Rojas et al.

Figure 3 Mast cell morphology and location in actinic cheilitis (AC) and normal lip. (A, a) Inactivated tryptase-positive MCs located around blood vessels in normal lip. (B, b) Degranulated tryptase-positive MCs infiltrating areas of elastosis in AC. MCs are indicated by arrowheads. AC, actinic cheilitis; NL, normal lip; E, epithelium, Inf, inflammation, El, elastosis, BV, blood vessel.

found in AC as compared with control lip (P < 0.0001, *t*-test Fig. 1). However, using immunohistochemistry against tryptase, higher MC numbers were detected in the AC samples (P < 0.0001) as compared with AC samples stained with toluidine blue. No significant differences in MC numbers were found in the normal lip samples stained with either toulidine blue or antitryptase antibody. MC densities for metachromatic staining were 5.2 ± 1 for normal lip vs. 14.6 ± 0.9 for AC, and for tryptase-positive MCs were 7.3 ± 0.9 for normal lip vs. 24 ± 1.7 for AC.

In relation to protease content, both, tryptase- and chymase-positive cells were significantly increased in AC as compared with normal lip (P < 0.001, Figs 1 and 2). Regarding location and morphology, in AC MCs were found in close proximity to the areas of elastosis, and they appeared enlarged and in a state of degranulation (Fig. 3B). On the contrary, MCs in normal lip looked

smaller, without signs of activation, and were found located around blood vessels and nerves (Fig. 3A).

Determination of MC subpopulations and their distribution in AC

To determine MC subpopulations (MC_T, MC_{TC}) in AC and normal lip, the formula (Total MCs = MC_T + MC_{TC}) was used as previously described (21), where Total MCs = tryptase-positive MCs and MC_{TC} = chymase-positive MCs. Results were confirmed by co-localization of serial sections stained either for tryptase- or chymase-positive MCs. It was found that the MC_T subpopulation predominated both in normal lip and in AC (P < 0.05, Wilcoxon test; Fig. 4).

To study distribution of total MCs and their subpopulations in AC vs. normal lip, MC density was determined in 30 counting fields located in three areas within each section, the area of epithelium/connective (E/C)

Figure 4 Determination of mast cell (MC) subpopulations in normal lip and actinic cheilitis (AC). MC subpopulations were determined using the formula (Total MCs = MC_T + MC_{TC}). Results are expressed as mean MCs/mm² ± SEM (n = 15 for AC samples, and n = 8 for normal lip samples). *P < 0.02 (Wilcoxon and Kruskal–Wallis) as compared with MC_{TC} in normal lip. **P < 0.0005 (Wilcoxon and Kruskal–Wallis) as compared with MC_{TC} in AC.

junction, connective tissue (where elastosis was found in all samples), and the underlying submucosa. In both, normal lip and AC, total MCs and MC_{TC}, were significantly higher in the connective tissue area as compared with both the E/C junction and submucosa (P < 0.03, Wilcoxon and Kruskal–Wallis tests; Fig. 5a,c). However, MC_T subpopulations had a different distribution pattern in both normal lip and AC. In normal lip, MC_T were increased in both connective tissue and submucosa as compared with the E/C junction (P < 0.02, ANOVA and Tukey–Kramer tests; Fig. 5b), whereas in AC, MC_T were increased in the E/C junction and the connective tissue as compared to the submucosa (P < 0.01, ANOVA and Tukey–Kramer tests; Fig. 5b).

Discussion

Mast cells have been recognized as important effector cells of the deleterious effects of UV light on the skin (8, 9). The results of this study showed that MCs and their proteases, tryptase and chymase, were significantly increased in UV-induced lesions of the lip, such as AC. Furthermore, enlarged, degranulating MCs were found infiltrating and/or surrounding areas of elastosis, which may suggest a role for MCs in the ECM changes found in AC.

In AC, as well as in chronically UV-irradiated skin, the connective tissue presents degenerative changes known as basophilic degeneration or elastosis (3, 5). This process is characterized by collagen degeneration and replacement of the ECM by a network of altered elastic material (28, 29). Studies have shown that several proteases of macrophage and fibroblast origin, including cathepsin G and gelatinases A and B, are increased in elastotic tissues (30–32). MC products have also been associated with elastosis formation (9, 10). Gonzalez et al. (9) found that MC-deficient mice did not develop solar elastosis in UV irradiated skin as compared with controls. Several preformed and newly formed MC mediators, released

Increased MC density and protease content in actinic cheilitis Rojas et al.

Figure 5 Distribution of mast cell (MC) subpopulations in normal lip and actinic cheilitis (AC). Number of total MCs (a), MC_T (b), and MC_{TC} (c) were determined at the epithelial/connective (E/C) junction, connective tissue, and submucous tissue. Results are expressed as mean MCs/mm² ± SEM (n = 15 for AC samples, and n = 8 for normal lip samples). (a and c) *P < 0.05 (Wilcoxon and Kruskal–Wallis) as compared with E/C junction and submucosa. (b) *P < 0.05 (ANOVA and Tukey–Kramer) as compared with E/C junction. **P < 0.05(ANOVA and Tukey–Kramer) as compared with submucosa.

upon activation, are important modulators of ECM degradation and apposition (15, 19, 33–36). For example, MC_T and MC_{TC} , contain tryptase, a potent pro-angiogenic enzyme, that has been recently recognized as a potent ECM-degrading gelatinase-type enzyme (35, 37). The MC_{TC} subset contains chymase, which participates in ECM remodeling by modulating collagenase activity and fibroblast function (38, 39). In addition, enzymes linked to elastosis formation, such as cathepsin G, carboxypeptidase, and gelatinases A and B are also found in MC_{TC} (15, 40). As both MC subsets, MC_T and MC_{TC} , were significantly increased in AC, and in close relation to elastotic tissue, it may be possible that MCs play an important role in mediating the connective tissue alterations found in this lesion.

Actinic cheilitis is a pre-malignant lesion that could transform into SCC of the lip (5, 41, 42). However the events leading to AC transformation remain to be 571

elucidated. Several studies have shown that MC subpopulations and their distribution could vary depending on the malignancy of the lesion (21–23). In SCC of the lip, Yang and colleagues (22) found that MC_{TC} predominated. The present study showed that MC_T was the predominant phenotype in AC, which was similar to normal lip. However, a different distribution pattern of MC_T was found in AC as compared with normal lip. While in normal lip MC_T predominated in the connective and submucosal areas, in AC MC_T were significantly increased in the area of epithelium and connective tissue junction as well as in the connective tissue zone. This may suggest that alterations in the epithelial cells as a result of actinic damage, may lead to increased numbers of MC_T in the adjacent area, or viceversa. The mediators involved in the changes in MC subpopulation distribution and density in AC remain to be elucidated.

In several cancers, such as breast cancer, the MC_T phenotype has been associated with inflammation and angiogenesis, which in turn favor cancer malignization and spreading (21, 23, 43, 44). Therefore MCs, in addition to contribute to connective tissue degeneration, may also be stimulating angiogenesis and inflammation in AC, along with their well-known immunosuppressive role in UV-irradiated tissues (24, 26). These effects may alter the microenvironment around the UV-damaged epithelium, which may contribute to malignization and spreading of the AC lesion.

In summary, this study showed that MCs were significantly increased in AC, and that active tryptaseand chymase-positive MCs were found specially around areas of elastosis. In addition, MC_T was the predominant subpopulation in AC, which was similar to normal lip, but with a different distribution pattern. Future studies should further characterize the contribution of MCs to elastosis in AC, and their possible role in AC malignization.

References

- 1. Picascia DD, Robinson JK. Actinic cheilitis: a review of the etiology, differential diagnosis, and treatment. J Am Acad Dermatol 1987; 17: 255–64.
- 2. Main JH, Pavone M. Actinic cheilitis and carcinoma of the lip. J Can Dent Assoc 1994; 60: 113–6.
- Kaugars GE, Pillion T, Svirsky JA, Page DG, Burns JC, Abbey LM. Actinic cheilitis: a review of 152 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 88: 181–6.
- 4. Nicolini S, Ascorra C, Guzman C, Latife AV. Actinic cheilitis in Quinta fishing workers: prevalence and associated histopathological aspects. *Odontol Chil* 1989; **37**: 169–74.
- 5. Lundeen RC, Langlais RP, Terezhalmy GT. Sunscreen protection for lip mucosa: a review and update. *J Am Dent Assoc* 1985; **111**: 617–21.
- 6. Kripke ML. Immunologic mechanisms in UV radiation carcinogenesis. *Adv Cancer Res* 1981; **34**: 69–106.
- 7. Streilein JW, Taylor JR, Vincek V, et al. Immune surveillance and sunlight-induced skin cancer. *Immunol Today* 1994; **15**: 174–9.

- Hart PH, Grimbaldeston MA, Finlay-Jones JJ. Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. *Clin Exp Pharmacol Physiol* 2001; 28: 1–8.
- 9. Gonzalez S, Moran M, Kochevar IE. Chronic photodamage in skin of mast cell-deficient mice. *Photochem Photobiol* 1999; **70**: 248–53.
- 10. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol 1979; 73: 59-66.
- Ikai K, Danno K, Horio T, Narumiya S. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice. *J Invest Dermatol* 1985; 85: 82–4.
- 12. Kligman LH, Murphy GF. Ultraviolet B radiation increases hairless mouse mast cells in a dose-dependent manner and alters distribution of UV-induced mast cell growth factor. *Photochem Photobiol* 1996; **63**: 123–7.
- Kaarsen LL, Poulsen TD, de Fine Olivarius F, Wulf HC. Mast cells and elastosis in ultraviolet-irradiated hairless mice. *Photodermatol Photoimmunol Photomed* 1995; 11: 1–5.
- Walsh LJ. Ultraviolet B irradiation of skin induces mast cell degranulation and release of tumor necrosis factoralpha. *Immunol Cell Biol* 1995; 73: 226–33.
- Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. *J Leukoc Biol* 1997; 61: 233–45.
- Lees M, Taylor DJ, Woolley DE. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. *Eur J Biochem* 1994; 223: 171–7.
- Gruber BL, Marchese MJ, Suzuki K, et al. Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. *J Clin Invest* 1989; 84: 1657–62.
- Saarinen J, Kalkkinen N, Welgus HG, Kovanen PT. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem 1994; 269: 18134–40.
- Nishikori Y, Kakizoe E, Kobayashi Y, Shimoura K, Okunishi H, Dekio S. Skin mast cell promotion of matrix remodeling in burn wound healing in mice: relevance of chymase. *Arch Dermatol Res* 1998; **290**: 553–60.
- Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. *Proc Natl Acad Sci USA* 1986; 83: 4464–8.
- 21. Cabanillas-Saez A, Schalper JA, Nicovani SM, Rudolph MI. Characterization of mast cells according to their content of tryptase and chymase in normal and neoplastic human uterine cervix. *Int J Gynecol Cancer* 2002; **12**: 92–8.
- 22. Yang M, Zhang X, He A. Mast cells in the labial cancer: histochemical and electron microscopical study. *Zhonghua Kou Qiang Yi Xue Za Zhi* 1997; **32**: 13–5.
- Kankkunen JP, Harvima IT, Naukkarinen A. Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. *Int J Cancer* 1997; 72: 385–8.
- Hart PH, Grimbaldeston MA, Swift GJ, Sedgwick JD, Korner H, Finlay-Jones JJ. TNF modulates susceptibility to UVB-induced systemic immunomodulation in mice by effects on dermal mast cell prevalence. *Eur J Immunol* 1998; 28: 2893–901.
- 25. Alard P, Niizeki H, Hanninen L, Streilein JW. Local ultraviolet B irradiation impairs contact hypersensitivity induction by triggering release of tumor necrosis factoralpha from mast cells. Involvement of mast cells and

572

Langerhans cells in susceptibility to ultraviolet B. J Invest Dermatol 1999; **113**: 983–90.

- Hart PH, Jaksic A, Swift G, Norval M, El-Ghorr AA, Finlay-Jones JJ. Histamine involvement in UVB- and cisurocanic acid-induced systemic suppression of contact hypersensitivity responses. *Immunology*. 1997; **91**: 601–8.
- 27. Lexow U, Grossarth C, von Deimling O. Histochemical demonstration of mouse submandibular esterproteases with a new chromogenic substrate. *Histochemistry* 1979; **60**: 327–34.
- Imayama S, Nakamura K, Takeuchi M, et al. Ultraviolet-B irradiation deforms the configuration of elastic fibers during the induction of actinic elastosis in rats. *J Dermatol Sci* 1994; 7: 32–8.
- 29. Kligman LH. The hairless mouse and photoaging. *Photo-chem Photobiol* 1991; **54**: 1109–18.
- 30. Cavarra E, Fimiani M, Lungarella G, et al. UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal fibroblasts: a possible contribution to the remodeling of elastotic areas in sun-damaged skin. *Biol Chem* 2002; 383: 199–206.
- Koivukangas V, Kallioinen M, Autio-Harmainen H, Oikarinen A. UV irradiation induces the expression of gelatinases in human skin in vivo. *Acta Derm Venereol* 1994; 74: 279–82.
- Saarialho-Kere U, Kerkela E, Jeskanen L, et al. Accumulation of matrilysin (MMP-7) and macrophage metalloelastase (MMP-12) in actinic damage. *J Invest Dermatol* 1999; 113: 664–72.
- Metcalfe DD, Baram D, Mekori YA. Mast cells. *Physiol Rev* 1997; 77: 1033–79.
- 34. Cairns JA, Walls AF. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. *J Clin Invest* 1997; **99**: 1313–21.
- Blair RJ, Meng H, Marchese MJ, et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997; 99: 2691–700.

- 36. Fang KC, Raymond WW, Blount JL, Caughey GH. Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. *J Biol Chem* 1997; **272**: 25628–35.
- 37. Fajardo I, Pejler G. Human mast cell beta-tryptase is a gelatinase. *J Immunol* 2003; **171**: 1493–9.
- 38. Taipale J, Lohi J, Saarinen J, Kovanen PT, Keski-Oja J. Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995; 270: 4689–96.
- Fukami H, Okunishi H, Miyazaki M. Chymase: its pathophysiological roles and inhibitors. *Curr Pharm Des* 1998; 4: 439–53.
- Fang KC, Wolters PJ, Steinhoff M, Bidgol A, Blount JL, Caughey GH. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. *J Immunol* 1999; 162: 5528–35.
- Onofre MA, Sposto MR, Navarro CM, Motta ME, Turatti E, Almeida RT. Potentially malignant epithelial oral lesions: discrepancies between clinical and histological diagnosis. Oral Dis 1997; 3: 148–52.
- 42. McIntyre GT, Oliver RJ. Update on precancerous lesions. Dent Update 1999; 26: 382–6.
- Ribatti D, Vacca A, Marzullo A, et al. Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkinś lymphomas. *Int J Cancer* 2000; 85: 171–5.
- 44. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. *Genes Dev* 1999; **13**: 1382–1397.

Acknowledgments

This work was supported by Grants DIUC 202105005-1.0 and 201103010-1 from Universidad de Concepción, and Grant FONDECYT 1020458.

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.