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BACKGROUND: Synovitis, which is characterized by

infiltration of inflammatory cells, often accompanies pro-

gression of clinical symptoms of the temporomandibular

joint (TMJ). Synovial fibroblasts of the TMJ are believed to

play important roles in progression of synovitis. The pur-

pose of this study was to examine production and gene

expression of chemokines by synovial fibroblasts stimula-

ted by tumor necrosis factor-a (TNF-a).
METHODS: Protein levels of chemokines were measured

by enzyme-linked immunosorbent assay (ELISA). Gene

expression of chemokines was analyzed by real-time

polymerase chain reaction (PCR).

RESULTS: Production of interleukin (IL)-8, growth-rela-

ted oncogene (GRO)-a, monocyte chemoattractant pro-

tein (MCP)-1, and regulated upon activation normal

T-cell expressed and secreted (RANTES) protein by

synovial fibroblasts was increased by TNF-a. In contrast,

stromal cell-derived factor (SDF)-1a, macrophage

inflammatory protein (MIP)-1a and -1b were not detect-

able in conditioned media of synovial fibroblasts, with or

without TNF-a treatment. Increases in gene expression

of IL-8, GRO-a, MCP-1, and RANTES in response to

TNF-a treatment were detected.

CONCLUSIONS: Increased protein production and gene

expression of chemokines by synovial fibroblasts in re-

sponse to TNF-a treatment appears to play an important

role in recruitment of inflammatory cells into synovium

and the progression of synovitis in the TMJ.
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Introduction

Intracapsular pathologic conditions of the temporo-
mandibular joint (TMJ) are characterized by symptoms
including limited mandibular movement, joint sound
and pain, and generally involve disk displacement
(DD)/internal derangement (ID), and/or osteoarthiritis
(OA) of the TMJ. Synovitis, which often accompanies
DD/ID and OA of the TMJ, is characterized by
chronic inflammatory changes including hyperplasia of
the synovial lining (1, 2), growth of small new blood
vessels (2), and infiltration of inflammatory cells (2–5).
Synovial cells produce a number of putative mediators
of inflammation. However, involvement of synovial
cells in pathologic conditions of the TMJ is poorly
understood, because it has been difficult to obtain
samples of synovial cells in sufficient quantities. Also,
there are no animal models that are universally
accepted for investigation of these diseases. In ortho-
pedic studies, cultured fibroblast-like cells from the
knee joint have been extensively used for investigation
of the mechanisms of inflammatory response (6–8) and
tissue degradation (9, 10). Our group has isolated and
characterized synovial cells from the human TMJ
(11–13).

Cytokines are mediators of cell–cell communication
that play important roles in immune and inflammatory
responses, wound healing, hematopoiesis, and mainten-
ance of normal homeostasis. Chronic inflammatory
diseases are often characterized by cyclic phases of
cellular infiltration and tissue breakdown, which appear
to be initiated and/or maintained partly by cytokine
activity. Chemokines are low-molecular weight cyto-
kines that are involved in regulation of leukocyte
accumulation and activation in inflammatory tissue.
All chemokines share certain primary structural simi-
larities, including a conserved 4-cystein motif. Four
chemokine subfamilies have been described based on the
positions of certain cystein residues (CXC, CC, C, and
CX3C); CXC and CC are the two main subfamilies (14).
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The CXC subfamily includes interleukin (IL)-8,
growth-related oncogene (GRO), and stromal cell-
derived factor (SDF). IL-8 and GRO-a are reported to
exert proinflammatory effects, mainly via effects on
neutrophils (14, 15). The CC subfamily includes mono-
cyte chemoattractant protein (MCP), regulated upon
activation normal T-cell expressed and secreted
(RANTES), and macrophage inflammatory protein
(MIP). CC chemokines appear to act on mononuclear
cells with varying degrees of specificity (14, 16–18).
Studies of chemokine expression have provided strong
evidence for their involvement in rheumatoid arthritis
(RA) (15, 19–22). Leukocytes recruited by chemokines
are believed to play a key role in inflammatory and
degenerative joint diseases by releasing degradative
enzymes, various products of oxidative metabolism and
inflammatory cytokines.
To assess the role of TMJ synovial fibroblasts in release

of chemokines involved in inflammatory and degradat-
ive diseases of the TMJ, we analyzed their production
and mRNA expression by synovial fibroblasts treated
with tumor necrosis factor (TNF)-a; elevated levels of
TNF-a have been found in synovial fluid obtained from
the TMJ in cases of DD/ID and OA (23, 24).

Materials and methods
Cell culture
Human synovial tissue was obtained from two patients
with ID who underwent arthrotomy of the TMJ (18-
years-old female and 20-years-old female). The patients
gave complete informed consent for the surgery and the
use of their tissue in research. Isolation and primary
cultures of synovial fibroblasts were performed accord-
ing to the guidelines established by the Institutional
Review Board of Nihon University School of Dentistry
at Matsudo (EC03-003).
Synovial fibroblasts from the TMJ were prepared

using the outgrowth according to the method of Ogura
et al. (11). For the experiments, we used synovial
fibroblasts from the sixth to eighth doubling passages.

ELISA
Synovial fibroblasts were plated at 5 · 104 cells per well
in 24-well plates with Ham’s F12 medium supplemented
with 100 unit/ml of penicillin G (Banyu Pharmaceutical
Co., Tokyo, Japan), 100 lg/ml of kanamycin sulfate
(Sigma Chemical Co., St Louis, MO, USA), 250 ng/ml
of fungizone (Flow Laboratories, McLean, VA, USA),
5 mM HEPES buffer (pH 7.2), and 10% fetal calf serum
(FCS). The confluent-stage cells were cultured for 24 h
in medium identical to the medium described above
except that it contained 2% FCS, and were then treated
with 10 ng/ml TNF-a (Pepro Tech EC Ltd, London,
UK) or were left untreated. After incubation with or
without TNF-a for 4, 8, 24 or 48 h, the culture
supernatants were collected, centrifuged and kept at
)80�C until used.
Levels of chemokines in conditioned media were

measured using commercial enzyme-linked immuno-
sorbent assay (ELISA) kits according to protocols as

recommended by the manufacturers. IL-8, MCP-1,
RANTES, MIP-1a, and MIP-1b were purchased from
PIERCE Endogen (Rockford, IL, USA), and GRO-a
and SDF-1a were purchased from R&D Systems
(Minneapolis, MN, USA).

Total RNA extraction
The synovial fibroblasts incubated with or without TNF-
a for 4 h were homogenized using 1 ml of TRIZOL
reagent (Life Technologies, Gaithersburg, MD, USA)
and the FastPrep FP120 homogenizer (BIO 101, Vista,
VA, USA), then added 200 ll of chloroform. The
aqueous phase was transferred to a new tube, added
chloroform. The aqueous phase was transferred a new
tube, and then added isopropanol. Total cellular RNA
was precipitated in isopropanol. The RNA precipitate
was stored in ethanol at )80�C until used.

Real-time PCR
cDNA was synthesized using a GeneAmp RNA PCR kit
(Perkin-Elmer, Norwalk, CT, USA). Briefly, cDNA
synthesis was carried out at 42�C for 15 min in a final
volume of 20 ll containing 2 lg of total RNA, 2.5 U/ll
of MuLV Reverse Transcriptase, 5 mM MgCl2, 1 mM
NTP, 1 U/ll of RNase inhibitor, 2.5 mM Random
Hexmers and oligo d(T)16, and polymerase chain reac-
tion (PCR) buffer II.

The real-time PCR was performed using a DyNAmo
SYBR Green qPCR kit (Finnzymes, Espoo, Finland).
The PCR mixture contained 20 pmol of forward and
reverse primers and 2 ll of cDNA. Amplification was
performed using aDNAEngineOpticon 1 (MJResearch,
San Francisco, CA, USA), with preheating at 95�C for
10 min, followed by 40 cycles of 94�C for 15 s, 55�C for
30 s and 72�C for 30 s. The amplicons were detected
directly by measuring the increase in fluorescence caused
by the binding of SYBR Green I dye to gene-specific,
amplified, double-stranded DNA (SYBR fluorescence
systems in real-time PCR can be used to semiquantita-
tively analyze mRNA expression with assistance by
on-line monitoring). Following the completion of PCR
amplification, the temperature was raised from the
annealing temperature to 95�C formelting curve analysis.

The initial template concentration was derived from
the cycle number at which the fluorescent signal crossed
a threshold (CT) in the exponential phase of the PCR.
The number of transcripts was determined based on the
threshold cycles of chemokines and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). DCT (CT-chemo-
kine ) CT-GAPDH) indicated the relative amount of
the chemokine transcript. DDCT (DCT-treated ) DCT-
control) represented the relative n-value compared with
the control. The quantity 2)n represented the difference
in chemokine expression between TNF-a-treated cells
and controls.

The following chemokine sense and antisense primers
were used: IL-8, 5¢-ATCACTTCCAAGCTGGCCGT-
GGCT-3¢ and 5¢-TCTCAGCCCTCTTCAAAAACTT-
CTC-3¢; GRO-a, 5¢-TGCAGGGAATTCACCCCAAG-
3¢ and 5¢-CAGGGCCTCCTTCAGGAACA-3¢; MCP-1,
5¢-CCAATTCTCAAACTGAAGCTCGCAC-3¢ and
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5¢-GTTAGCTGCCAGATTCTTGGGTTGTG-3¢; RAN-
TES, 5¢-TACACCAGTGGCAAGTGCTC-3¢ and 5¢-GA-
AGCCTCCCAAGCTAGGAC-3¢; GAPDH, 5¢-ATCAC-
CATCTTCCAGGAG-3¢ and 5¢-ATGGACTGTGGT-
CATGAG-3¢.

Statistical analysis
Data are expressed as the mean ± SD. Significant
differences between groups of control (without TNF-a)
and TNF-a treatment in chemokine production were
analyzed by Student’s t-test. Statistical significance
for multiple comparisons were assessed by two-way
ANOVA or one-way ANOVA.

Results
Protein levels of chemokines
In experiments, we examined production of IL-8, GRO-
a, MCP-1, RANTES, SDF-1a, MIP-1a, and MIP-1b by
synovial fibroblasts treated with 10 ng/ml of TNF-a for
24 h (Table 1). Significant increases in IL-8, GRO-a,
MCP-1, and RANTES were observed in the conditioned
medium from synovial fibroblasts treated with TNF-a.
Untreated synovial fibroblasts constitutively produced a
large amount of MCP-1 and a small amount of GRO-a.
In contrast, the levels of SDF-1a, MIP-1a, and MIP-1b
were below the limit of detection in conditioned medium
from synovial fibroblasts incubated with or without
TNF-a.

We examined the kinetics of production of IL-8,
GRO-a, MCP-1, and RANTES by synovial fibroblasts
incubated with or without 10 ng/ml of TNF-a for 4, 8,
24 or 48 h. Production of IL-8, GRO-a, MCP-1, and
RANTES increased from 4 to 48 h after the addition of
TNF-a, compared with the untreated controls (Fig. 1a,
c, e, g). In the next experiment, synovial fibroblasts were
incubated for 24 h with concentrations of TNF-a
ranging from 0.1 to 100.0 ng/ml. Production of IL-8,
MCP-1, RANTES, and GRO-a increased in a dose-
dependent manner, although there was no significance in
production of RANTES between 0.1 ng/ml of TNF-a
and the control. Production of GRO-a was significantly
increased by all concentrations of TNF-a tested

(0.1–100.0 ng/ml), and a plateau was reached approxi-
mately at a dose of 10.0 ng/ml (Fig. 1b, d, f, h).

Level of chemokine mRNA
The mRNA expression of IL-8, GRO-a, MCP-1, and
RANTES, which were detectable in the conditioned
medium from synovial fibroblasts, was examined by
real-time PCR. When synovial fibroblasts were treated
with 10 ng/ml of TNF-a for 4 h, mRNA levels increased
as follows, compared with controls: IL-8, approximately
12-fold; GRO-a, 2.5-fold; MCP-1 and RANTES, five-
fold (Table 2).

Discussion

Inflammatory arthropathies are characterized histologi-
cally by infiltration of inflammatory cells and enlarge-
ment of the synovial lining layer. Accumulation of
neutrophils, activated T cells and macrophages at
inflamed synovial tissue may lead to significant structural
damage to joints with RA (8–10, 25–27). Inflammatory
cells have also been detected in synovial tissue and fluid
from patients with intracapsular pathologic conditions of
the TMJ (2–4). Themechanisms leading to cell infiltration
of the synovium and joint degeneration have been
somewhat elucidated, but little information is available
about synovial fibroblasts from the TMJ.

Chemokines are considered key players in the process
of leukocyte diapedesis from the vasculature into tissues
in inflammatory diseases (20, 22). Studies of the chemo-
tactic activity of several of these proteins in vitro indicate
relatively rigid patterns of target cell selectivity. For
example, IL-8 and GRO-a (members of the CXC
subfamily) are predominantly chemotactic for neutro-
phils (14, 15). In contrast, MCP-1 (a member of the CC
subfamily) is highly specific for monocytes (14, 16),
whereas RANTES, MIP-1a, and -1b (members of the
CC subfamily) are chemotactic factors for monocytes
and T-lymphocytes (14, 17, 18). SDF-1 (a member of
the CXC subfamily) is considered a homing factor for
hematopoietic stem cells (28). Levels of these chemo-
kines have been found to be elevated in synovial
fibroblasts in RA (14, 16, 17, 20–22).

The purpose of the present study was to analyze
chemokine production by synovial fibroblasts from the
TMJ in response to TNF-a, which is one of the cytokines
that has been detected in synovial fluid obtained from
patients suffering from intercapsular pathologic condi-
tions with DD or OA (23). Studies suggest that the
presence of TNF-a in synovial fluid is associated with
pain in the TMJ, and elevated levels of TNF-a have been
found in synovium exhibiting chronic inflammation (24).
In the present study, production of IL-8, GRO-a, MCP-
1, RANTES, SDF-1a, MIP-1a, and -1b was examined in
synovial fibroblasts treated with TNF-a. Production of
IL-8, GRO-a, MCP-1, and RANTES by synovial
fibroblasts significantly increased in response to TNF-a.
In contrast, production of SDF-1a, MIP-1a, and -1b by
synovial fibroblasts, with or without TNF-a treatment,
was below the detection limit of the ELISA kit we used.
Gene expression of IL-8, GRO-a, MCP-1, and RANTES

Table 1 Effect of TNF-a on chemokine production in synovial
fibroblasts from human TMJ

Control TNF-a

IL-8 0.02 ± 0.07 32.32 ± 10.80*
GRO-a 1.80 ± 0.13 12.23 ± 1.85*
MCP-1 14.49 ± 0.96 58.85 ± 7.02*
RANTES 0.03 ± 0.01 2.27 ± 0.34*
MIP-1a <0.025 <0.025
MIP-1b <0.009 <0.009
SDF-1a <0.156 <0.156

Results are expressed as mean ± SD (n ¼ 4).
TNF, tumor necrosis factor-a; TMJ, temporomandibular joint; IL,
interleukin; GRO, growth-related oncogene; MCP, monocyte chemo-
attractant protein; RANTES, regulated upon activation normal T-cell
expressed and secreted protein; MIP, macrophage inflammatory
protein; SDF, stromal cell-derived factor.
*P < 0.005, compared to the control (without TNF-a).

Chemokines in synovial cells from human TMJ

Ogura et al.

359

J Oral Pathol Med



by synovial fibroblasts was also increased by treatment
with TNF-a, although the degree of stimulation was
different for each chemokine.

In the present kinetics experiments, production of
IL-8 and GRO-a was increased soon after exposure
to TNF-a (4 and 8 h), indicating that neutrophil

Figure 1 Time courses and dose–responses of chemokine levels in conditioned medium of synovial fibroblasts from human temporomandibular
joint (TMJ). In time course experiment, the cells were incubated with (d) or without ( ) 10 ng/ml of tumor necrosis factor (TNF)-a for 4, 8, 24 or
48 h. (a) Interleukin (IL)-8; (c) growth-related oncogene (GRO)-a; (e) monocyte chemoattractant protein (MCP)-1; (g) regulated upon activation
normal T-cell expressed and secreted (RANTES). In the dose–response experiment, the cells were treated with varying concentrations of TNF-a for
24 h. Results are expressed as mean ± SD (n ¼ 4). Asterisk (*) indicated significantly different (P < 0.005), for control vs. TNF-a stimulation.
Significant difference (P < 0.001) for control vs. TNF-a stimulation and during time-course were assessed by two-way ANOVA. Significant
difference (P < 0.001) during dose dependence in TNF-a were assessed by one-way ANOVA.
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infiltration occurs in the early stage of inflammatory
responses. After exposure to TNF-a for 4 h, production
of RANTES (a potent chemoattractant for CD4+/
CD45RO+ memory helper T-lymphocytes) was in-
creased to a lower degree than the other chemokines.
This suggests that T-lymphocytes do not migrate into
inflammatory sites as early as neutrophils and mono-
cytes.

It has been reported that IL-8 levels in synovial fluid
from patients with RA correlated with the parameters
associated with disease activity and neutrophil turn over
(28). Neutrophils, which product degradative enzymes
by degranulation and reactive oxygen species through
the action of the membrane-bound nicotinamide aden-
ine dinucleotide phosphate (NADPH) oxidase, may be
trigger in the extracellular matrix degradation. Although
neutrophils are predominantly associated with acute
phases inflammation, the production of reactive oxygen
species has even been proposed as a mechanism leading
to persistent synovitis of chronic disease, although a
hypoxic-reperfusion event (29). Furthermore, CXC
chemokines containing the sequence Glu-Leu-Arg, the
so-called ELR motif, including IL-8 and GRO-a,
promote angiogenesis (30). Enhance of IL-8 and
GRO-a productions from synovial cells may also lead
to growth of small new blood vessels in synovium from
TMJ.

The synovial fibroblasts constitutively produced
MCP-1 at high levels. Cells in synovium are classified
as type A or type B based on their ultrastructural
characteristics. Type A cells are frequently described as
macrophage-like, and probably arise from bone mar-
row-derived monocytes. Evidence suggests that MCP-1
plays an important role in the emergence of type A cells
in synovium.

In a recent study using bone marrow stromal cells, IL-
1b increased production of IL-8 and GRO-a (CXC
chemokines) to a greater degree than MCP-1 and

RNATES (CC chemokines), and TNF-a increased
production of MCP-1 and RANTES to a greater degree
than IL-8 and GRO-a (21). In a previous study, we
found that chemokine production by TMJ synovial
fibroblasts was increased by treatment with IL-1b (12,
13). Those previous findings are similar to the present
increases in production of IL-8 and MCP-1 by synovial
fibroblasts in response to treatment with TNF-a. TNF-a
increased production of RANTES to a greater degree
than treatment with IL-1b, whereas IL-1b increased
production of GRO-a to a greater degree than treatment
with TNF-a. Both of IL-1b and TNF-a are known to
induced a rapid activation of transcription factors, such
as NF-jB and AP-1 (31, 32), and increase in mitogen-
activated protein (MAP) kinase phosphorylation, such
as p38 MAP kinase, and the subsequent activation of its
enzyme (33) in synovial fibroblasts, although IL-1b and
TNF-a bind to distinct cellular receptors. Recently,
Barchowsky et al. reported that IL-1 is more effective
than TNF at inducing MMP-1 gene expression in rabbit
primary synovial fibroblasts (RSF). They suggested that
this is due in part to the fact that TNF is less effective
than IL-1 at activating the MAPK/AP-1 pathway (34).
The dichotomy of IL-1 and TNF-elicited signaling may
be contribute to different regulation between IL-1b and
TNF-a in chemokine production by synovial fibroblasts
from TMJ.

The present findings indicate that the protein and gene
expression levels of chemokines IL-8, GRO-a, MCP-1,
and RANTES by TMJ synovial fibroblasts are increased
by treatmentwithTNF-a, although the levels of basal and
TNF-a-stimulated production were different for each
chemokine. These results suggest trafficking of various
leukocyte populations depending on the inflammatory
status of the TMJ. The following sequence of events is
consistent with these findings: (i) chemokines produced
by synovial fibroblasts stimulate chemotaxis of neutro-
phils, macrophages and T-lymphocytes; (ii) these inflam-
matory cells produce inflammatory cytokines such as
TNF-a, matrix degradative enzymes, and various prod-
ucts of oxidative metabolisms; (iii) the enzymes and
oxidative metabolisms cause degradation of extracellular
matrix; and (iv) the inflammatory cytokines stimulate
synovial fibroblasts to produce more chemokines. Thus,
although chemotaxis is a necessary element of homeo-
stasis, excessive production of chemokines appears to
contribute to destruction of joints.

In conclusion, TNF-a-stimulated chemokine produc-
tion by synovial fibroblasts appears to be related to
abnormalities associated with intracapsular pathologic
conditions of the TMJ. The present findings also
indicate that cultured synovial fibroblasts from TMJ
have important advantages for studies of cellular and
molecular responses in the TMJ.
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