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Chromosomal aberrations in squamous cell carcinomas
of the upper aerodigestive tract: biologic insights and
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Oncogenesis results from a progressive accumulation of

genetic aberrations consequent to a complex interplay

between carcinogenic factors and innate infidelity of

DNA surveillance mechanisms. Although the develop-

ment of genetic aberrations is random, those conferring

survival advantages are selected for in a Darwinian

manner, thus allowing continuous adaptation to selection

pressures. Chromosomal aberrations are a prominent

manifestation of genetic damage, which can be closely

linked with tumor behavior and outcome as exemplified

by curative treatment of chronic myelogenous leukemia

resulting from targeting the BCR-ABL translocation. In

the case of head and neck squamous cell carcinomas

(HNSCC), chromosomal changes are detectable at all

stages of tumor development, providing excellent

opportunities for genomic prognostication and therapy.

Several studies have shown that the overall genomic

profile of HNSCC is highly consistent, but individual

tumors vary significantly in their complement of genetic

alterations, thereby confounding clinical correlation. The

application of modern genetic and bioinformatic analytic

approaches has facilitated the identification of critical

genomic changes in HNSCC, many of which have been

linked to clinical outcome. These genetic aberrations

represent excellent targets for novel therapeutics, but

require validation. The initiation of phase III trials eval-

uating the therapeutic utility of genetic aberrations sug-

gests a promising future for genome-based treatment of

HNSCC.
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Introduction

Modern genetic theory is rooted in Gregor Mendel’s
work demonstrating that heredity is passed on in
discrete units. The content and localization of the
hereditary units remained obscure until Miescher’s
identification of structures that he termed nuclein in
white blood cells in 1869. Ultimately, the observations
of Sutton (1) that the segregation patterns of chromo-
some in meiosis matches the Mendelian inheritance and
the realization that human diseases (alkaptonuria) is
inherited according to Mendelian rules, established
Mendelian genetic theory (1–3). Wilhelm Johannsen
(4) coined the term gene to describe the Mendelian unit
of inheritance and more then a century later, Martin and
his colleagues showed that the wrinkled seed character-
istic in Mendel’s experiments was due to a transposon-
like insertion in a gene encoding starch-branding
enzyme (4). Extending from this work is the realization
that human disease results from genetic aberrations,
with cancer being the prototypic process.

Cancer develops when normal cells acquire specific
changes in their genetic information that allow them to
overcome normal growth regulatory mechanisms, in-
vade surrounding structures and spread to distant
anatomic sites (5). Cancer causing genetic changes
invoke increased activity of genes that induce cell
growth (proto-oncogenes), surrounding blood vessel
ingrowth (angiogenesis), cellular dissociation from the
environment and cellular migration (proto-oncogenes),
and inactivation of genes that limit these processes or
promote programmed cell death (tumor suppressor
genes) (6). Activation of proto-oncogenes may be
acquired through gene dosage increase (as a result of
chromosomal gain or genetic amplification), genetic
rearrangement (translocation) or changes in single
nucleotides in the blueprint of the gene (activating point
mutations) (7). On the contrary, tumor suppressor genes
are inactivated through loss of genetic information
(genetic deletion), inactivating mutations in the genetic
code (i.e. missense/nonsense mutations) and blockage in
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production of proteins (i.e. promotor hypermethylation)
(8, 9).
Normal cells may be born with mutations inherited

through the germ line (10). More importantly, all cells
acquire a significant number of somatic genetic muta-
tions over the course of their lifetime (5). This as a
consequence of the physiologic imbalance between
inherent errors in DNA replication and exposure to
mutagenic influences on the one hand, and the fidelity
of intrinsic DNA repair mechanisms on the other hand
(7, 10). Based on the interplay of these processes,
mutagenesis is a random process and the chance of
inheriting oncogenic mutations is linearly related to the
extent of the mutational burden (10). Accordingly,
cancer develops at a higher rate in the setting of certain
inherited mutational syndromes, increased exposure to
mutagenic influences or diminished activity of DNA
repair (10, 11). Nonetheless, it has been under debate
whether the physiologic mutation rate is sufficient to
cause the large number of genetic mutations that are
found in cancer cells (>12 000 individual mutations)
(12–14). Studies of colorectal cancer have fueled this
debate (15). Early in the course of their development,
colorectal cancers may increase their chances of
acquiring critical oncogenic mutations through inacti-
vation of pathways maintaining genomic stability (16,
17). An important form of genetic instability in
colorectal cancers involves chromosomal instability
(CIN) (18). CIN may be a result of acquired defects
in DNA repair, mitotic spindle formation, and
chromosome segregation (19–21). CIN increases
genetic heterogeneity within the cellular population
thereby paving the way for perpetual Darwinian
selection and clonal outgrowth of cells with the fittest
genomic content (16, 22). This feature explains the
continuous adaptation to inhibiting influences (selective
pressures) that characterizes malignant behavior. The
�clonal selection’ theory is the root for deciphering the
�genetic barcode’ of human cancers and exploiting
the information for therapeutic benefit (23, 24). The
clinical relevance of chromosomal aberrations in cancer
is best exemplified by the therapeutic efficacy of
recently identified agents targeting the Philadelphia
(Ph)-chromosome in chronic myeloid leukemia (25–27).
The Ph-chromosome represents a reciprocal transloca-
tion between chromosomes 9 and 22 [t(9;22)(q34;q11.2)
resulting in a fusion of the tyrosine kinase proto-
oncogene c-ABL (chromosome 9q34) with the serine/
threonine kinase gene BCR (chromosome 22q11.2) (28).
The chimeric protein product features strong oncogenic-
ity through its constitutive tyrosine kinase activity (29,
30). Forty years after identification of the Ph-chromo-
some, treatment with tyrosine kinase inhibitors directed
offers a potential curative treatment for patients with
CML (31). This experience serves as the prototypic end-
point for genetic screening strategies in human cancers
including head and neck squamous cell carcinoma
(HNSCC). In this review, we will focus in on the
pathologic relevance of chromosomal aberrations occur-
ring in HNSCC and outline how they can be exploited for
therapeutic benefit.

Identification of chromosomal aberrations
in human cancer

Traditional analysis of chromosomal aberrations in
cancer cells has relied on microscopic evaluation of
Giemsa-stained chromosomal-banding patterns in cul-
tured tumor metaphase cells – i.e. conventional cyto-
genetic karyotyping (CCK) (3). These efforts have
revealed a number of key reciprocal chromosomal
translocations beyond the BCR-ABL translocation, such
as the RET/PTC rearrangement in papillary thyroid
carcinoma (32), the PAX8/PPARc rearrangement in
follicular thyroid carcinoma (33, 34) and several recur-
rent translocations in soft tissue sarcomas as well as
several numerical alterations in both hematogenic malig-
nancies and solid tumors (35). However, due to the low
resolution of classical-banding techniques, the difficulty
of culturing solid tumors, and the cytogenetic complexity
of most neoplasms, the majority of chromosomal alter-
ations in cancer remained obscure (36). The evolution of
polymerase chain reaction (PCR)-based genomic evalu-
ation techniques and fluorescence in situ hybridization
(FISH) has facilitated high-resolution chromosomal
analysis (without the need for culturing) and contributed
significantly to the analysis of solid tumors (Table 1) (36,
37). PCR-based allelotyping analysis [loss of heterozyg-
osity (LOH) analysis] through comparison of the numer-
ical balance between the maternally and paternally
inherited alleles of a given locus (normally 1:1), demon-
strates that the vast majority of human tumors are
characterized by allelic imbalance that may involve large
chromosomal regions of all chromosomal arms (38).
Although LOH of a given locus is traditionally viewed as
evidence for the presence of a putative tumor suppressor
gene deletion, a variety of genetic events can give rise to
LOH such as chromosomal gain, gene amplification,
mitotic recombination, break-induced replication, and
gene conversion (39). As LOH analysis alone is unable to
distinguish between these events, actual identification of
target genes based on LOH has been limited (40). This
shortcoming has been resolved with the improvement of
FISH-based analytic techniques. Comparative genomic
hybridization (CGH; based on competitive hybridiza-
tion of equal amounts of differentially labeled tumor and
normal reference DNA onto normal metaphase chromo-
somes; Table 1) and spectral karyotyping (SKY; visual-
ization of individual tumor metaphase chromosomes
through hybridization with chromosome-specific paint-
ing probes; Table 1), both well-established exponents of
this development, have contributed significantly to the
understanding of the genetic basis of solid tumors with
over 1500 published reports utilizing these techniques in
the present literature (41, 42). Based on CGH and SKY
analyses, gene amplifications associated with cisplatin
resistance of germ cell tumors (43), resistance of prostate
cancer to endocrine therapy (44), and resistance of colon
carcinoma cells to ecteinascidin 743 have been identified
(45). Recently, the resolution and speed of genome-wide
screening has been improved significantly by the
introduction of microarray-based analysis (array CGH,
cDNA microarray analysis, tissue microarray analysis)

Chromosomal aberrations in squamous cell carcinomas

Wreesmann and Singh

450

J Oral Pathol Med



and high-throughput PCR-based analysis such as digital
karyotyping (Table 1) (46, 47). It is quite evident that the
accuracy of genomic analysis is improved significantly by
using multiple analytic techniques in concert. Using this
approach, Barlund et al. associated ribosomal protein S6
kinase activation with poor prognosis in breast cancer,
providing a paradigm for high-throughput identification
of disease markers and treatment targets (48). Recently,
we applied this approach to the analysis of papillary
thyroid cancer, identifying MUC1 activation as an
independent prognosticator of outcome in these tumors
(49). Although techniques for statistical analysis of
genomic data remain in evolution (50), it is clear that
these are a key adjunct for accurate interpretation and
combination of genetic screening results.

Recurrent chromosomal abnormalities
in HNSCC

The HNSCC constitutes an excellent model to study the
role of chromosomal aberrations in cancer initiation and
progression for several reasons. First, HNSCC develops
from normal aerodigestive mucosa progressing through
a series of histologically identifiable pre-malignant
stages (51). This cascade is initiated and promoted by
a complex interplay between established mutagens
including tobacco, alcohol, and human papilloma virus

(HPV) exposure (51). Secondly, HNSCC is associated
with an inherited genetic syndrome, namely Fanconi
anemia, predisposing affected patients to CIN, and SCC
development (52–54). Thirdly, studies have shown that
HNSCCs are characterized by a high rate of aneuploidy
including a recurrent pattern of both structural and
numerical aberrations (55, 56). The complexity of aber-
rations in HNSCC is evident from genomic screening
studies showing possible involvement of virtually every
chromosome in these tumors (57, 58). Nonetheless, the
core group of abnormalities is highly consistent between
tumors, suggesting they are likely to play an important
role in HNSCC pathogenesis and progression (57).

The LOH studies of HNSCC demonstrate that chro-
mosomal arms most frequently affected by allelic imbal-
ance include 1q, 3p, 3q, 4q, 6p, 8p, 9p, 11q, 13q, 14q, 17p,
19q, 22q (59, 60). These LOH events predominantly
reflect genetic gains, deletions, and amplifications as
suggested by CGH studies showing a high rate of copy
number aberrations in the LOH-affected chromosomal
regions (57, 58) (Fig. 1). Given that gains, losses, and
amplifications mainly result from structural chromoso-
mal aberrations in HNSCC [as evident from SKY studies
(56, 61); Fig. 1], it is likely that they are caused by
chromosomal double-strand breakage and fusion
events (39). These findings suggest that dysfunction of
the double-strand repair-recombination machinery

Table 1 Advantages and limitations of commonly used genome-wide screening techniques

Technique Advantages Limitations

CCK Overview of complete karyotype including structural
and numerical chromosomal changes

Limited resolution unable to identify origins of marker
chromosomes, and double minute chromosomes.

Need for tissue culture
LOH High-resolution detection of allelic imbalance

Feasible on archival DNA
No true genome-wide screen. Requirement for matched
normal reference
Does not identify origins of allelic imbalance
(i.e. gain, loss, amplification)

FISH Highly sensitive and specific gene mapping and
detection of numerical and
structural changes in metaphase chromosomes and interphase
nuclei (i.e. feasible on archival tissue)

No true genome-wide screen
Prior knowledge of aberrations/loci required

CGH Genome-wide detection and mapping of chromosomal gains,
loosen, and amplifications
Requires only small amount (2 lg) of (archival) DNA
No need for tissue culture or matched normal reference DNA

Limited resolution (<5 to 10 Mb)
Unable to detect balanced chromosomal
changes/structural aberrations

SKY High resolution overview of complete tumor karyotype including
structural and numerical aberrations

Does not detect inversions and subtle deletions

cDNA micrarray Simultaneous appraisal of expression levels of large number
(>10 000) of genes in one experiment

Does not detect expression levels of unknown
genes or foreign sequences

Typically needs matched normal reference
Array CGH Simultaneous detection of gene copy number of large

number of genes without need for
culturing, matched reference DNA or fresh frozen tissue

Does not detect structural aberrations or
DNA copy number of unknown genes or
foreign sequences (HPV, EBV viral integrations)

SAGE Genome-wide, quantitative evaluation of gene expression,
detects expression
of all expressed genes within cell

Very laborious

Digital
karyotyping

High resolution, quantitative, genome-wide appraisal of
DNA copy number
Detects foreign sequences (HPV, EBV viral integrations)

Very laborious, small (1000 bp) amplifications
or deletions not detected

Quantitative PCR Highly sensitive, quantitative evaluation of genetic copy number
without need for culturing, fresh frozen tissue or
matched reference DNA

No true genome wide, unbiased evaluation

PCR, polymerase chain reaction; CGH, comparative genomic hybridization; SKY, spectral karyotyping; EBV, Epstein–Barr virus; CCK, con-
ventional cytogenetic karyotyping; LOH, loss of heterozygosity; FISH, fluorescence in situ hybridization.
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contributes significantly to HNSCC pathogenesis, as has
been implicated for colorectal cancers (39).
The high level of aneuploidy in HNSCC suggests the

presence of inherent CIN – i.e. cellular vulnerability to
acquire chromosomal alterations (12). Studies investi-
gating the onset of CIN in HNSCC suggest that it occurs
early in tumorigenesis, as a significant number of

chromosomal aberrations (for example, LOH at chro-
mosomes 3p and 9p) are identifiable by LOH in the
earliest stages of neoplastic progression – i.e. mucosal
hyperplasia (62, 63). Based on this observation, Califano
et al. analyzed the presence of LOHevents along different
histopathologic stages of progression to HNSCC, show-
ing a stepwise increase in genomic complexity/aneuploidy

Figure 1 Ideogram showing DNA copy number changes identified by comparative genomic hybridization (CGH) in head and neck cancer cell
lines (n ¼ 12). Thin vertical lines on either side of the ideogram indicate losses (left) and gains (right) of the chromosomal region. The chromosomal
regions of the high-level amplification are shown by thick lines (right). (b) Ideogram showing all of the breakpoints noted in the cell lines identified
by spectral karyotyping (SKY; inverted 4¢,6¢-diamidino-2-phenylindole hydrochloride (DAPI)). The number of breakpoints in each chromosome
that were identified by SKY but could not be precisely assigned to a chromosomal band are noted in the box on top of the chromosome.
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from benign squamous hyperplasia to dysplasia, carci-
noma in situ and finally invasive carcinoma (63). More-
over, the authors associated individual genomic
aberrations with specific time-points in malignant pro-
gression leading to the development of a HNSCC genetic
progression model, similar to that proposed by Vogel-
stein for colorectal cancer (64). These findings have as
been confirmed and refined using a variety of different
analytic techniques, including CGH and microarray-
based studies (65–67). The clinical implications of deci-
phering the genetic progressionmodel are clear, including
prediction of risk for malignant progression and identi-
fication of molecular diagnostic and therapeutic targets
[as reviewed recently (51, 68)]. As an example, Mao et al.
demonstrated that pre-malignant lesions containing 3p14
or 9p21 alterations have a significantly higher likelihood
of evolving into HNSCC (33%) compared to pre-malig-
nant lesions without these changes (6%) (69). The
application of genetic knowledge for potential clinical
benefit can be further exemplified by: (i) the correlation
between the presence of genetically abnormal cells in
histologically benign mucosa within the surgical margins
of HNSCC resection specimens and a higher risk for
recurrence (70); (ii) the localization of unknown primary
HNSCC (71); and (iii) the detection of tumor cells in
saliva and circulating blood stream from patients with
HNSCC (72, 73). These studies foreshadow the intro-
duction of molecular blood tests for HNSCC detection
and molecular margin assessment as an aid to surgical
decision-making, once the findings are validated and
analytic techniques optimized.

Genetic heterogeneity of HNSCC: implications
for prognostication

Although HNSCC as a whole are characterized by a
highly recurrent pattern of chromosomal aberrations,
individual tumors vary significantly in the complement
of individual aberrations. The variances allow an
opportunity for segregation patients with HNSCC into
genomically defined groups. For example, based on
CGH analysis, Huang et al. suggested HNSCC could be
categorized into at least five different genetic subgroups,
a finding that was supported by the results of karyo-
typing analysis by Hoglund et al. (55, 74). The precise
implication of the genetic categorizations remains to be
defined but may reflect the pathogenetic influences
underlying HNSCC development (75). For example,
comparison of CGH findings in HNSCCs occurring in
patients with Fanconi anemia and a matched cohort of
sporadic HNSCCs from the general population showed
a dramatic difference in the pattern of chromosomal
aberrations (D. I. Kutler, P. H. Rao, V. B. Wreesmann,
A. Goberdhan, I. Ngai, A. G. Huvos, O. Levran,
K. Pujara, R. Diotti, A. D. Auerbach and B. Singh,
personal communication). Specifically, Fanconi anemia-
associated HNSCC were characterized by a high rate of
deletions of the chromosomal regions 9q, 10q, and 22q,
which are rarely detected in sporadic HNSCC (76). The
higher prevalence of HPV in HNSCC from the Fanconi
anemia population may be an explanation for the

observed differences, as HPV-positive HNSCC feature
a genetic profile different from HPV-negative HNSCC
(77, 78). Additional evidence implicating a carcinogen-
specific pattern of aberrations in HNSCC is derived
from the divergent genomic profile of HNSCC occurring
in non-smokers compared with those in heavy smokers,
similar to that observed in SCCs of the lung (76, 79–83).
However, the considerable overlap of carcinogenic
exposures within individual cases and differences in
carcinogen sensitivity between individual patients makes
the establishment of a carcinogenic cause specific
pattern of genomic aberrations difficult (76).

The observed genomic heterogeneity in HNSCC may
also be used to predict clinical behavior. Several recent
studies suggest that chromosomal aberrations may be
superior predictors of treatment response and disease
outcome compared to classical clinicopathologic factors,
with relative risk ratios exceeding those of tumor node
metastasis (TNM) staging and other clinical variables by
up to 20-fold (57, 58). A variety of individual chromo-
somal aberrations have been associated with dismal
outcome of HNSCC, involving 3p (84, 85), 3q (86),
8p21–23 (85, 87), 9p21 (85, 88), 10q (89), 11q13 (90),
11q23 (91), 14q (92), 18q (93), and 22q (94). Interest-
ingly, some of these genomic abnormalities (3p, 3q26,
9p21) represent early events in the HNSCC progression
model (63, 67) suggesting that the course of HNSCC
may be determined early in its development. A key
limitation in deciphering the clinical significance of
genomic data revolves around issues pertaining to
multiple testing and confounding variables. Few studies
have applied rigorous statistical analysis to overcome
the analytic issues. Bockmuhl et al. recently identified
gains/amplifications at 3q26 and 11q13 and deletions of
8p21–22 as independent outcome predictors after con-
trolling CGH data for multiplicity of testing in 113
surgically resected HNSCC (58). In addition, Ashman
et al. illustrated the independent prognostic significance
for deletion of chromosome 22 in a panel of 45 HNSCC
(95). However, each of these reports contains statistical
limitations. To address these limitations, we developed a
novel statistical approach applicable to the analysis of
complex chromosomal data by combining bioinformat-
ics and statistical methods. We applied this approach to
the analysis of CGH profiles of 82 HNSCC, identifying
independent prognostic significance for overrepresenta-
tions of the chromosomal regions 11q13 and 12q24 and
deletions of 5q11–15, 6q14–21, and 21q11–21 (57). In
this regard, the 6q14 deletion is of particular interest
because it was recently shown to harbor a locus involved
in HNSCC cell survival (96). It is likely that the
accuracy of genetic prediction will increase with the
development of bioinformatic approaches toward the
analysis of increasingly complex data from high-resolu-
tion genomic screening data. This is evident from three
recent studies demonstrating the ability to predict the
development of HNSCC recurrence based on a combi-
nation of high-resolution molecular profiling and rigor-
ous statistical scrutiny (97–99). In addition, the
identification of molecular prognostic factors will be
critically dependent on assembly of homogeneous study
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populations as the molecular profile of HNSCC is
known to be influenced by multiple clinicopathologic
variables that may obscure survival correlations.

Candidate genes driving selection for
chromosomal aberrations: implications
for treatment

As cancer development and progression is primarily
caused by genomic aberrations, genes whose expression

is directly influenced by such aberrations may be
biologically relevant and attractive targets of innovative
therapeutic interventions (48, 49, 100). Analogous to the
clinical implications of the Ph-chromosome in leukemia,
the consistent presence of chromosomal aberrations in
HNSCC suggests multiple targeting opportunities.
However, unlike translocation events, identification of
individual genes driving selection for chromosomal
deletions and gains has been difficult to decipher, as
regions of chromosomal amplification can be as large

Table 2 Candidate genes proposed as targets of chromosomal aberrations identified in human squamous cell carcinomas

Chromosomal location Gene Authors Evidence

1q32 ATF3 Pimkhaokham (2000) Amplified/overexpressed in ESCC
1q32 CENPF Pimkhaokham (2000) Amplified/overexpressed in ESCC
3p14 FHIT Ohta (1996) Deleted/underexpressed in HNSCC
3p21 RASSF1A Hogg (2002) Deleted/hypermethylated in HNSCC
3q25.3 Cyclin L Redon et al. (103) Amplified/overexpressed in HNSCC
3q25.3 TIPARP Katoh (2003) Amplified/overexpressed in HNSCC
3q26 TERC Yokoi (2003) Amplified/overexpressed in LSCC
3q26 EIF-4G1 Cromer (2003) Amplified/overexpressed in HNSCC
3q26 DVL3 Cromer (2003) Amplified/overexpressed in HNSCC
3q26 PIK3CA Singh et al. (86) Amplified/overexpressed in HNSCC
3q26 SCCRO Singh (2003) Amplified/overexpressed in HNSCC
3q27 AIS Hibi (2000) Amplified/overexpressed in HNSCC
5p13 SKP2 Yokoi (2002); Zhu (2004) Amplified/overexpressed in LSCC/ESCC
5q21 APC Kok (2002) Mutated/deleted in HNSCC
7p11 EGFR Shimizu (1980) Amplified/overexpressed in HNSCC
7q22 EPHB4 Cromer (2003) Amplified/overexpressed in HNSCC
7q22 MCM7 Cromer (2003) Amplified/overexpressed in HNSCC
7q22–31 MPP11 Resto (2000) Amplified/overexpressed in HNSCC
8p21–22 TRAIL-R2 Pai (1998); Lee et al. (92) Mutated/deleted in HNSCC
8p23 PCM1 Garnis (2003) Deleted in HNSCC
8p23 CSMD1 Sun (2001) Homozygous deletions in HNSCC
8q24 PTK2 Agochiya (1999) Amplified/overexpressed in HNSCC
8q22 LRP12 Garnis (2003) Amplified/overexpressed in HNSCC
9p21 CDKN2A Kamb (1994) Deleted/underexpressed in HNSCC
9p23–24 GASC1 Yang (2000) Amplified/overexpressed in ESCC
10q23 PTEN Okami et al. (109) Homozygous deletions in HNSCC
10q25 MCH3 Soung (2003) Mutated/deleted in HNSCC
11q13 BRMS1 Cromer (2003) Amplified/overexpressed in HNSCC
11q13 SART1 Cromer (2003) Amplified/overexpressed in HNSCC
11q13 Cyclin D1 Inaba (1992) Amplified/overexpressed in HNSCC
11q13 TAOS1 Huang et al. (74) Amplified/overexpressed in HNSCC
11q13 GST-pi Cullen et al. (119) Amplified/overexpressed in

CDDP-resistant HNSCC
11q13 EMS1 Schuuring (1998) Amplified/overexpressed in HNSCC
11q21–23 cIAP1 Imoto (2001) Amplified/overexpressed in ESCC
13q14 DICE1 Li (2003) Mutated/deleted in ESCC
13q33–34 ING1 Gunduz (2000) Mutated/deleted in HNSCC
14q12–13 BAZ1A Yasui (2001) Amplified/overexpressed in ESCC
14q12–13 SRP54 Yasui (2001) Amplified/overexpressed in ESCC
14q12–13 NFKBIA Yasui (2001) Amplified/overexpressed in ESCC
14q12–13 MBIP Yasui (2001) Amplified/overexpressed in ESCC
14q12–13 HNF3 Yasui (2001) Amplified/overexpressed in ESCC
14q12–13 AA9918651 Yasui (2001) Amplified/overexpressed in ESCC
14q12–13 AA167732 Yasui (2001) Amplified/overexpressed in ESCC
16q23–24 WWOX Kuroki (2002) Mutated/deleted in ESCC
18p11.3 YES1 Nakakuki (2002) Amplified/overexpressed in ESCC
18p11.3 TYMS Nakakuki (2002) Amplified/overexpressed in ESCC
18p11.3 HEC Nakakuki (2002) Amplified/overexpressed in ESCC
18p11.3 TGIF Nakakuki (2002) Amplified/overexpressed in ESCC
18q21.1 DPC4 Hahn and Weinberg (8) Deleted/underexpressed in HNSCC
20q AIB1 Fujita (2003) Amplified/overexpressed in ESCC
20q BTA Fujita (2003) Amplified/overexpressed in ESCC
20q DcR3 Fujita (2003) Amplified/overexpressed in ESCC
20q E2F1 Fujita (2003) Amplified/overexpressed in ESCC

HNSCC, head and neck squamous cell carcinoma; ESCC, esophageal squamous cell carcinoma; LSCC, lung squamous cell carcinoma.
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as 1 Mb in size or more and several genes within the
amplified region may be overexpressed but have no
clinical or biologic significance (101–103). Accordingly,
validation of individual targets becomes complicated
and is often non-conclusive. Nonetheless, a growing
number of genes that putatively drive selection for
chromosomal alterations in HNSCC have been identi-
fied. Well established examples include FHIT (3p) (104),
PIK3CA (3q26.3) (102, 105), EGFR (7p12) (106), MYC
(8q24) (107), CDKN2A (9p21) (108), PTEN (10q23)
(109), Cyclin D1 (11q13) (107), and p53 (17p13) (110)
whose oncogenic role is supported by functional studies
(Table 2). As an example, constitutive activation of
PIK3CA in HNSCC through 3q26.3 amplification
results in resistance to p53-induced apoptosis and
consequent immortalization, malignant progression,
and treatment resistance (102). Recent studies report
several novel genes whose expression is dysregulated in
HNSCC that are located within the altered chromo-
somal regions. These genes are important subjects of
future functional validation studies (Table 2). Addi-
tional candidate genes for chromosomal alterations in
HNSCC may include genes driving selection for chro-
mosomal aberrations occurring in SCCs with a common
etiology such as those occurring in the anogenital tract,
esophagus, and lung (Table 2).

Once identified, therapeutic targeting of genes dri-
ving selection for chromosomal aberrations is an
obvious next objective of molecular-therapeutic efforts.
For example, recent studies used an adenovirus
(ONYX-015) selectively replicating in p53-deficient
HNSCC tumor cells showing early (phase I and II)
clinical efficacy (111–113). Similarly, efforts are under-
way to target oncogenes in HNSCC. Antisense Cyclin
D1 (11q13 amplification) treatment has been shown to
inhibit HNSCC xenograft proliferation and induces
apoptosis leading to tumor shrinkage in mice and is
currently being considered for human trials (114, 115).
We previously identified a novel oncogene within the
3q26.3 amplicon, named SCR-related oncogene
(SCCRO; G. Reddy, P. O-charoenrat, I. Sarkaria,
B. Singh, personal communication), overexpression

through amplification of which is associated with poor
outcome of HNSCC (116, 117). In mouse xenograft
models of HNSCC, RNAi treatment of SCCRO
transfected xenografts result in a therapeutic benefit,
suggesting a key role for this gene in HNSCC
tumorigenesis (E. Maghami, K. Patel and B. Singh,
personal communication). Perhaps, the most promis-
ing subjects of therapeutic targeting efforts are chro-
mosomal aberrations induced by selection pressures
such as chemotherapy. For example, Wang et al.
showed that resistance of metastatic colon cancer to
5-fluorouracil (5-FU) treatment is mediated through
amplification of thymidylate synthase, a cellular target
of 5-FU (118). Likewise, it was recently shown that
resistance of HNSCC to cisplatin is associated with
overexpression through amplification of glutathione
S-transferase pi (11q13), a gene involved in detoxifi-
cation of many xenobiotic substances through conju-
gation to glutathione (119). At present, the most
prominent exponents of the molecular generation are
the small molecule tyrosine kinase inhibitors such as
ZD1839 (�Iressa’) (120), which target aberrant EGFR
receptor signaling commonly present in cancer and
have demonstrated clinical efficacy in the treatment of
SCRs of both the upper and lower aerodigestive tract
(121–123). Recently, it was shown that lung tumors
sensitive to ZD1839 may be identifiable by the
presence of activating mutations in the EGFR gene,
suggesting that the clinical efficacy of this agent in
HNSCC may be increased significantly as well (124,
125). However, the overall effectiveness of single gene
targeting, in the genetically heterogeneous tumor
environment that is developmentally multifactorial,
has been disappointing. Accordingly, several efforts
(including several multi-institutional phase III trials)
are underway to combine molecular and conventional
therapies, showing promising results (Table 3).

Conclusions

The application of modern genetic analytic techniques
has led to the identification of an array of genetic

Table 3 Molecular therapeutics in phase II and III clinical trials at the NCI (http://www.cancer.gov/clinicaltrials)

Phase III randomized study of Ad5CMV-p53 gene therapy (INGN 201) vs. methotrexate in patients with refractory squamous cell carcinoma of the
head and neck (INTROGEN-T301)a

Phase III randomized study of cisplatin and fluorouracil with or without Ad5CMV-p53 gene therapy (INGN 201) in patients with unresectable
recurrent squamous cell carcinoma of the head and neck (INTROGEN-T302)a

Phase III study of Zd1839 (IressaTM: Astrazeneca, Wilmington, DE, USA) vs. methotrexate for previously treated patients with squamous cell
carcinoma of the head and neck
(ZD1839IL/0704)a

Phase I/II study of erlotinib and docetaxel in patients with locally advanced, metastatic, or recurrent squamous cell carcinoma of the head and neck
(OSU-02H0084)a

Phase I/II randomized study of bevacizumab and erlotinib in patients with recurrent or metastatic head and neck cancer (UCCRC-11956A)a

Phase I/II study of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell cancer of the head and neck (PMH-PHL-002)a

Phase II study of flavopiridol in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (NCI-00-C-0128)a

Phase II study of gefitinib in patients with recurrent and/or metastatic squamous cell cancer of the head and neck (UUMC-8429-01)a

Phase II randomized pilot study of adjuvant celecoxib in patients with early stage head and neck cancer or non-small cell lung cancer (NU-02V2)a

Phase II study of perifosine in patients with recurrent or metastatic squamous cell head and neck cancer (UCCRC-12198A)a

An open-label phase II study of lonafarnib in patients with recurrent squamous cell carcinoma of the head and neck (P02530)a

Phase II study of OSI-774/cisplatin/taxotere in head and neck squamous cell cancer (ID02-668)a

aTrial IDs between brackets.
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aberrations in HNSCC many of which have been
correlated with tumor progression, aggressive behav-
ior, and clinical outcome of HNSCC. Several gene
targets of genetic aberrations have been identified and
successfully targeted to form therapeutic benefit.
Given the findings to date, it is likely that the clinical
utility of genetic aberrations will allow improved
diagnostics, prognostication, and therapeutics in
patients with HNSCC.
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