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Periodontal disease, a polymicrobial

mixed infection, is a major oral disease.

It is caused by several microbial spe-

cies, such as Actinobacillus actin-

omycetemcomitans, Fusobacterium

nucleatum, Porphyromonas gingivalis,

Prevotella intermedia, Tannerella

forsythensis (formerly Bacteroides

forsythus) (1) and Treponema denticola.

Analysis of the human oral microbiota

has been limited by conventional cul-

ture-dependent methods; thus, more

oral bacteria remain uncultured and

uncharacterized. Consequently, studies

of causal microorganisms of oral dis-

eases including periodontal disease are,

in general, restricted to cultivable spe-

cies such as the aforementioned path-

ogens. It is therefore probable that a

large number of as-yet-to-be-cultured

organisms present in the human oral

cavity may play a role in periodontal

disease. The best model available at

present for determining microbial

diversity, without cultivation, is based

on isolation of DNA from the target

environment, polymerase chain reac-

tion (PCR) amplification of the ribo-

somal RNA (rRNA) gene, cloning the

amplicons into Escherichia coli, and

sequence analysis of the cloned 16S

rRNA gene inserts (2). These culture-

independent approaches have been

used to determine the diversity of

spirochetes in the subgingival pocket of

subjects with a range of periodontal
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Objectives: The application of molecular, mainly 16S ribosomal RNA (rRNA)-

based approaches enables researchers to bypass the cultivation step and has

proven its usefulness in studying the microbial composition in a variety of eco-

systems, including the human oral cavity. In this mini-review, we describe the

impact of these culture-independent approaches on our knowledge of the ecology

of the human oral cavity and provide directions for future studies that should

emphasize the role of specific strains, species and groups of microbes in perio-

dontal disease.

Materials and methods: Recent findings are summarized to elucidate the

relationship between periodontal disease and human oral microbiota, including

as-yet-to-be-cultured organisms.

Results: The real-time polymerase chain reaction (PCR) method was developed to

detect and quantify periodontopathic bacteria, such as Actinobacillus actino-

mycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella

forsythensis (formerly Bacteroides forsythus) and Treponema denticola. The

checkerboard DNA–DNA hybridization technique allowed enumeration of large

numbers of species in very large numbers of samples. 16S rRNA gene clone library

analysis revealed the diversity of human oral microbiota and the existence of

as-yet-to-be-cultured organisms that are presumed periodontal pathogens. In

addition, terminal restriction fragment length polymorphism (T-RFLP) analysis

was applied for assessment of diversity of human oral microbiota.

Conclusion: Culture-independent approaches are useful for studying the microbial

ecology in the human oral cavity and should be useful in the future to elucidate the

etiology of periodontal disease.
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conditions, including two healthy, one

adult periodontitis, three acute necro-

tizing ulcerative gingivitis, eight

refractory periodontitis, and one

human immunodeficiency virus (HIV)

periodontitis, and the prevalence of

cultivable and uncultivable treponemes

in oral diseases (3). In this mini-review,

we discuss the relationships between

periodontal disease and human oral

microbiota including as-yet-to-be-

cultured organisms.

Human oral spirochetes

The bacterial flora associated with

gingivitis (4, 5) and periodontitis (6)

have been investigated. Spirochetes are

the predominant microorganisms

known to proliferate in periodontal

disease sites among the bacterial flora.

Although the relationship between

periodontitis and oral treponemes has

been emphasized clinically, cultivation

studies of oral treponemes are limited

because of the oxygen sensitivity and

unique nutritional requirements of

these microorganisms and the long

cultivation period (7, 8). The following

species of cultivable oral treponemes

have been validated: Treponema amylo-

vorum (9), T. denticola (10), T. leci-

thinolyticum (11), T. maltophilum (12),

T. medium (13, 14), T. parvum (15),

T. pectinovorum (16), T. putidum (17),

T. socranskii (18), and �T. vincentii�.
(The last treponeme has not been val-

idated in a peer-reviewed publication.

It has been published however, in

Bergey’s Manual of Systematic Bac-

teriology (19) and is commonly used.)

These species are classified into two

groups according to the fermentation

of carbohydrates. The saccharolytic

oral treponemes contain six species

(T. amylovorum, T. lecithinolyticum,

T. maltophilum, T. parvum, T. pectino-

vorum, and T. socranskii), and the

asaccharolytic oral treponemes contain

four species (T. denticola, T. medium,

T. putidum, and �T. vincentii�). Paster

et al. (20) reported the phylogeny of

cultivable oral treponemes isolated by

Robert Smibert (Virginia Polytechnic

Institute, Blacksburg, VA, USA). They

proposed three novel species (Trepo-

nema Smibert-2, Treponema Smibert-3,

and Treponema Smibert-5) based on

16S rRNA gene sequence comparisons.

Treponema Smibert-2 was later con-

sidered a novel species, Treponema

parvum (15). The taxonomy of oral

spirochetes has been discussed in a

mini-review article (21).

Among the cultivable oral trepo-

nemes, T. denticola is frequently isola-

ted from sites of severe infection in

patients with periodontitis (22), and

many studies have attempted to

elucidate the role of T. denticola

in periodontitis (23–25). Although

T. socranskii is frequently isolated

from the subgingival plaque samples of

periodontitis patients, in addition to

T. denticola, it is difficult to cultivate

and identify (26, 27). The PCR tech-

nique can be used to detect and iden-

tify T. socranskii (28). This technique is

a rapid and reliable method for differ-

entiating T. socranskii from other cul-

tivable oral treponemes. Takeuchi

et al. (29) used this PCR technique

to identify T. socranskii in addition to

T. denticola and P. gingivalis and to

clarify the relationship between the

presence of these microorganisms and

the severity of clinical periodontal

parameters. Their findings suggest that

T. socranskii, T. denticola, and P. gin-

givalis are associated with the severity

of periodontal tissue destruction. In

addition, restriction fragment length

polymorphism (RFLP) analysis of 16S

rRNA genes amplified by PCR was

used to differentiate three subspecies of

T. socranskii (28). Recently, the rela-

tionship between T. socranskii ssp.

buccale and periodontal disease was

emphasized (30, 31). 16S rRNA gene

PCR-RFLP analysis was also used to

differentiate cultivable oral trepo-

nemes, including T. denticola, T. med-

ium, T. pectinovorum, T. socranskii,

and �T. vincentii� (32). Furthermore,

species-specific nested PCR was used

to detect T. amylovorum, T. denticola,

T. maltophilum, T. medium, T. pecti-

novorum, T. socranskii, and �T. vincen-
tii� in dental plaques (33).

Detection and quantification of
periodontopathic bacteria

The relationship between periodontal

disease and detection frequency of

putative periodontal pathogens was

exhaustively evaluated using PCR of

the 16S rRNA genes (34–38). These

findings suggest that several species are

strongly associated with periodontitis.

Accurate quantification of perio-

dontal pathogens in clinical samples

(saliva and subgingival plaque) is need-

ed for understanding the etiologic role

of these bacteria. The conventional

PCR (endpoint PCR) method detects

the plateau phase of the reaction, but is

not suitable for quantification of the

pathogens. In contrast, the real-time

PCR method allows monitoring of the

exponential phase. This method allows

rapid detection and quantification of

the bacteria in clinical samples. Real-

time PCR using the TaqMan system

was first used to quantitate T. forsy-

thensis in subgingival plaque (39).

Subsequently, this system was used to

determine both the density of P. gin-

givalis and the total number of bac-

terial cells in plaque samples (40). In

addition, real-time PCR using SYBR

Green dye and LightCycler system

(Roche Diagnostics, Mannheim, Ger-

many) was first used to detect and

quantify periodontopathic bacteria,

such as A. actinomycetemcomitans,

P. gingivalis, T. forsythensis, T. denti-

cola, and T. socranskii, in saliva and

subgingival plaque samples (41). Using

the LightCycler system, it is possible

to determine the amount of perio-

dontopathic bacteria within 1 hour

(A. actinomycetemcomitans: 40 min,

P. gingivalis: 34 min, T. forsythensis:

40 min, T. denticola: 32 min, T. soc-

ranskii: 46 min). Maeda et al. (42)

suggested that there was no significant

difference between the TaqMan and

SYBR Green chemistry in their spe-

cificity, quantitativity, and sensitivity.

In addition, they suggested that, since

the TaqMan assay required additional

manipulation and cost for the probe,

the SYBR Green assay might be suit-

able for routine clinical examinations.

Currently, detection and quantification

of periodontopathic bacteria by real-

time PCR method are generalized in

this field and many studies have

reported the usefulness of real-time

PCR (43–52). We anticipate that the

real-time PCR method will become in

the future an indispensable method for

the diagnosis of periodontal disease,
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evaluation of treatment, and prognos-

tic judgment.

Enumeration of bacterial species in
complex microbial ecosystems using
checkerboard DNA–DNA
hybridization

It has been difficult to conduct large-

scale studies of microbiologically

complex ecosystems using conven-

tional microbiological techniques. The

real-time PCR technique mentioned

above is not particularly suitable for

the examination of large numbers of

samples for large numbers of different

species. In contrast, molecular identi-

fication techniques in new probe-target

formats, such as checkerboard DNA–

DNA hybridization, permit enumer-

ation of large numbers of species in

very large numbers of samples (53).

The checkerboard DNA–DNA

hybridization technique was first des-

cribed in 1994 by Socransky et al. (54).

Using 40 species-specific DNA–DNA

hybridization probes to detect oral

bacteria, it was revealed that subgin-

gival plaque contains bacterial species

in different complexes (55). Socransky

et al. (55) observed five major com-

plexes using cluster analysis (Table 1).

The red complex, consisting of P. gin-

givalis, T. forsythensis, and T. dentico-

la, showed the strongest relationship

with clinical measures of peridontal

disease, particularly pocket depth and

bleeding on probing. The checker-

board DNA–DNA hybridization

technique has been used to compre-

hensively examine the microbial com-

position of supra and subgingival

plaque in subjects in health and perio-

dontitis (56, 57), the salivary micro-

biota levels in relation to periodontal

status (58), the relationship of cigarette

smoking to the composition of the

subgingival microbiota (59, 60), the

differences between the subgingival

microbiota in subjects from dif-

ferent geographic locations (61), the

relationship of ethnic/racial group,

occupational and periodontal disease

status (62), and effects of different

periodontal therapies (63, 64).

Recently, it was reported that the

checkerboard DNA–DNA hybridiza-

tion technique is useful for the enu-

meration of bacterial species in

microbiologically complex systems

(53). This technique is rapid, sensitive,

and relatively inexpensive. It over-

comes many of the limitations of cul-

tivation-based approaches. Paster

et al. (65) developed a PCR-based,

reverse capture, checkerboard hybrid-

ization protocol to differentiate

between species of oral streptococci,

which are very closely related phylo-

genetically. Based on these techniques,

DNA microarray will be developed in

the near future.

Bacterial diversity in the human
oral cavity

16S rRNA gene clone library analysis

was first used in 1994 to determine the

genetic diversity of cultivable and

uncultivable spirochetes in the gingival

crevice of a patient with severe perio-

dontitis by Choi et al. (66). These

investigators found that the clones fell

into 23 clusters differing by about

1–2%. Their findings indicate an

unexpected diversity of oral trepo-

nemes from a single patient. There-

after, this method was applied to

analyze the diversity of asaccharolytic

Eubacterium species (67). In addition,

Kroes et al. (68) used this method to

characterize the breadth of bacterial

diversity within the human subgingival

crevice. Although the subject popula-

tion was small, Sakamoto et al. (69)

also used this method to compare the

oral microbiota in the saliva from two

patients with periodontitis and from a

periodontally healthy subject. There

was no clonal sequence affiliated with

periodontopathic bacteria in the saliva

from the healthy subject, whereas a

number of periodontal pathogens such

as Campylobacter rectus, P. intermedia,

P. gingivalis, and T. socranskii were

detected in the saliva from the patients

with periodontitis. In addition, a

number of previously uncharacterized

and uncultured microorganisms were

recognized. Subsequently, Paster et al.

Table 1. Microbial complexes in subgingival plaque

Complex Species

Red complex Porphyromonas gingivalis

Tannerella forsythensis

Treponema denticola

Orange complex Campylobacter gracilis

Campylobacter rectus

Campylobacter showae

Eubacterium nodatum

Fusobacterium nucleatum ssp. nucleatum

Fusobacterium nucleatum ssp. polymorphum

Fusobacterium nucleatum ssp. vincentii

Fusobacterium periodonticum

Peptostreptococcus micros

Prevotella intermedia

Prevotella nigrescens

Streptococcus constellatus

Green complex Actinobacillus actinomycetemcomitans serotype a

Campylobacter concisus

Capnocytophaga gingivalis

Capnocytophaga ochracea

Capnocytophaga sputigena

Eikenella corrodens

Yellow complex Streptococcus gordonii

Streptococcus intermedius

Streptococcus mitis

Streptococcus oralis

Streptococcus sanguis

Purple complex Actinomyces odontolyticus

Veillonella parvula

Other species Actinobacillus actinomycetemcomitans serotype b

Actinomyces naeslundii genospecies 2 (A. viscosus)

Selenomonas noxia
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(31) demonstrated that the predomi-

nant subgingival bacterial community

consisted of 347 species or phylotypes,

based on analysis of 2522 16S rRNA

clones and estimated that the total

species diversity in the oral cavity is

approximately 500 species. A similar

technique was also used to compare the

bacteria found in children with severe

caries to those found in caries-free

children (70) and to determine the

prevalent species and phylotypes in

advanced lesions of children with

noma (71). According to the most

recent report (72), it is presumed that

over 700 bacterial species (phylotypes

are included) inhabit the oral cavity,

and more than half of these cannot be

cultivated.

Detection of novel oral phylotypes
associated with periodontitis

Leys et al. (73) investigated the rela-

tionship between the presence of

T. forsythensis and a novel phylotype,

oral clone BU063 identified by Paster

et al. (31), and periodontal health sta-

tus. Harper-Owen et al. (74) designed

and validated phylotype-specific PCR

primers for phylotypes PUS3.42,

PUS9.170, and PUS9.180 identified by

Dymock et al. (75) and determined

their incidences in subgingival plaque

samples from subjects with periodon-

titis and from healthy controls. In a

previous study (69), a number of novel

oral phylotypes, representing as yet

uncultured organisms, were identified.

Among these phylotypes, Sakamoto

et al. (76) designed specific PCR

primers for five phylotypes AP12,

AP21, AP24, AP50, and RP58, which

are deeply branched particularly in the

phylogenetic tree, and determined the

prevalence of these phylotypes in 45

patients with periodontitis and 18

healthy subjects. Among the phylo-

types tested, phylotype AP24, which is

closely related to oral clone DA014

(99% sequence similarity) reported

previously (31), was significantly asso-

ciated with saliva and subgingival pla-

que samples from patients with

periodontitis (p < 0.01), but the dif-

ference was not statistically significant

in the presence of other phylotypes.

These data suggest that phylotype

AP24 may play an important role in

periodontal disease. It is important to

examine not only known periodonto-

pathic bacteria but also as-yet-to-

be-cultured organisms in the study

of periodontal disease. Although

attempts have been made to isolate

phylotype AP24 from subgingival pla-

que and saliva samples, such attempts

have not yet been successful. However,

novel Prevotella species were isolated

from the human oral cavity in the

process of the research (77, 78).

Recently, it was reported that

members of the uncultivated bacterial

division TM7 (79), which have been

detected in the human oral cavity (31),

might play a role in the multifactorial

process leading to periodontitis (80). In

contrast, several phylotypes were

associated with periodontal health (73,

81). Kumar et al. (81) reported that

clone W090 from the Deferribacteres

phylum and clone BU063 from the

Bacteroidetes phylum were associated

with periodontal health. In the future,

as a new index of periodontal disease,

it is expected that the relationship

between periodontal disease and other

novel phylotypes is investigated in

more detail.

Application of terminal restriction
fragment length polymorphism
analysis in periodontics

A phylogenetic approach based on

16S rRNA has been applied to

investigate the diversity of cultivable

and uncultivable species in the human

oral cavity, without requiring culti-

vation (30, 31, 68, 69). 16S rRNA

gene clone library analysis can pro-

vide direct sequence information.

However, analysis of individual 16S

rRNA clones is an expensive and

extremely inefficient approach for

comparison of a multitude of bacter-

ial communities.

Terminal restriction fragment length

polymorphism (T-RFLP) is an alter-

native molecular approach that allows

the assessment of a diversity of com-

plex bacterial communities and rapid

comparison of the community struc-

ture and diversity of different ecosys-

tems (82). This technique has been used

for assessing the diversity and structure

of complex bacterial communities in

various environments (83–90) and has

been evaluated in separate review arti-

cles (91, 92). In addition, the T-RFLP

analysis program (TAP) has been

developed and published on the

worldwide web (http://rdp.cme.msu.

edu/html/analyses.html) (93).

Sakamoto et al. (94) used T-RFLP

analysis to characterize and compare

oral microbiota present in saliva sam-

ples of 18 healthy subjects and 18

patients with periodontitis. They pre-

sented the first report on characteriza-

tion of oral microbiota based on

T-RFLP patterns. Their study indica-

ted that T-RFLP analysis is useful for

the assessment of diversity of oral

microbiota and rapid comparison of

the community structure between sub-

jects with and without periodontitis. In

contrast, two groups (95, 96) used

denaturing gradient gel electrophoresis

(DGGE) analysis to study bacterial

community structure in pockets of

periodontitis patients. However, it is

difficult to create a database from the

band profiles obtained by DGGE

analysis compared with the terminal

restriction fragment (T-RF) profiles

obtained by T-RFLP analysis. T-RF

lengths can be predicted from known

16S rRNA gene sequences. Multiple

species can be predicted for the same

T-RF length, but it is possible to

identify bacterial species by analysis

of digests with multiple restriction

enzymes. Changes in the subgingival

microbiota in adult Down’s syndrome

patients with periodontitis (63), and

adult periodontitis patients after sca-

ling and root planing (97) or antibiotic

(amoxicillin or metronidazole) therapy

combined with scaling and root pla-

ning (62) have been investigated using

checkerboard DNA–DNA hybridiza-

tion or PCR techniques. However,

these studies report changes in only a

limited part, which represents the cul-

tivable known species, of the subgin-

gival microbiota. Recently, Zijnge

et al. (96) used DGGE analysis, which

takes into account the presence of

unidentified and hard-to-cultivate spe-

cies present in the subgingival plaque

(like T-RFLP analysis), to study

shifts in the subgingival microbiota

before, 1 day after and 3 months after

280 Sakamoto et al.



treatment. Although the subject popu-

lation was small, Sakamoto et al. (98)

used T-RFLP analysis to study the

change of oral microbiota in saliva and

subgingival plaque samples of patients

with periodontitis before and 3 months

after periodontal treatment. Significant

changes in the T-RFLP patterns of

subgingival plaque samples of the

patients were noted after 3 months of

improved oral hygiene, and full mouth

supra- and subgingival scaling and

root planing (Fig. 1). Although the

proportions of T-RFs larger than

1000 bp were notable in the T-RFLP

patterns generated after digestion with

HhaI of the samples from the patients

before treatment, the proportions of
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Fig. 1. Terminal restriction fragment length polymorphism patterns of 16S rRNA genes from subgingival plaque samples of a patient with

periodontitis taken before treatment and after treatment generated after digestion with HhaI (a) and MspI (b). 16S rRNA genes were

amplified with universal primers 27F and 1492R. Almost all the terminal restriction fragments were presumed to be species or phylotypes

detected by the 16S rRNA gene clone library analysis. E., Eubacterium; Fi., Filifactor; Fu., Fusobacterium; N., Neisseria; Po., Porphyromonas;

Pr., Prevotella; S., Streptococcus; T., �Terrahaemophilus�; V., Veillonella. Reproduced with permission from Sakamoto et al. (98). � (2004)

Society for General Microbiology.
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these T-RFs were significantly reduced

or not detected after treatment. T-RFs

larger than 1000 bp comprised several

phylotypes of Peptostreptococcus spe-

cies, including phylotype AP24 (76).

Peptostreptococcus species are mem-

bers of the normal commensal flora of

humans and animals, but some species

are associated with anaerobic infec-

tions, including gingivitis and perio-

dontitis. Peptostreptococcus micros has

been associated with periodontal dis-

ease (99). Consequently, monitoring of

the proportion of T-RFs larger than

1000 bp in the T-RFLP pattern may be

useful for the evaluation of the prog-

nosis of periodontal disease. T-RFLP

analysis data were in agreement with

real-time PCR and 16S rRNA gene

clone library analysis data. After

3 months, the P. gingivalis population

was markedly reduced (3.1 · 10)3%),

although the proportion of P. gingiva-

lis before treatment was 7.6%. The

proportion of the T-RF presumed to

be P. gingivalis was 5.9%, and became

undetected after 3 months. In addition,

T-RF presumed to be P. intermedia,

which is an important periodontal

pathogen, could be differentiated from

the T-RF presumed to be P. gingivalis

by being 2-bp larger. Before treatment,

the proportion of the T-RF presumed

to be P. intermedia was 2.8%. After

3 months, this T-RF was not detected.

These findings indicate that T-RFLP

analysis is useful for evaluation of the

effects of medical treatment of perio-

dontitis. However, further analyzes of

digests with multiple restriction

enzymes (four or five) are necessary

because multiple species, which belong

to different genera, were detected from

the same T-RF.

Conclusion

With the advancement of molecular

biology in recent years, the initiation

and progression mechanisms of perio-

dontitis are becoming clearer gradually.

As the culture-independent approaches

have revealed the diversity of human

oral microbiota and the existence of a

large number of as-yet-to-be-cultured

organisms which are presumed as per-

iodontal pathogens, the researches on

periodontal disease and human oral

microbiota are coming to a new turn.

Using the sequence information of 16S

rRNA gene obtained, it is possible to

detect not only known oral species but

also the newly identified uncultivated

species (phylotypes) directly in clinical

samples. At present, a Human Oral

Microbe Identification Microarray

(HOMIM) slide system for the identi-

fication of essentially all of the more

than 600 species encountered in the oral

cavity is under development (100). This

microarray should be extremely useful

in clinical studies to simultaneously

examine the roles of all bacterial species

present at sites of oral diseases. The

culture-independent approaches des-

cribed in this mini-review will become

indispensable in the future to elucidate

the etiology of periodontal disease.
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