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Cyclosporin A (CsA) is a widely used

immunosuppressive agent in organ

transplant patients (1). CsA acts

through the inhibition of T-lympho-

cyte activation and proliferation after

antigen recognition (2). The downreg-

ulation of nuclear factor of activated T

cells (NFAT)-activated interleukin-2

secretion by T cells is a key element of

this action (2,3). However, cells outside

the immune system may be targets for

the action of CsA and this may have

pathological consequences (4,5). The

response of particular tissues to CsA is

dependent on both the cell type and

their structural relationships within the

tissue (4). The proliferation of epider-

mal keratinocytes, hair epithelial cells,

renal tubule epithelial cells and lung

epithelial cells suggests that these tis-

sues are particularly sensitive to the

action of CsA (5–7). CsA inhibits cell

proliferation in renal tubule epithelial

cell lines through an effect on apoptosis

(4,5,8).

The gingiva is an important com-

ponent of the periodontium and com-

prises epithelial tissues and underlying

connective tissue. The main cell type of

the gingival epithelia is the keratino-

cyte and these cells have properties in

common with other keratinocytes of

stratified epithelial tissues, such as the
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Background and Objective: Gingival overgrowth (GO) is a side-effect of cyclosp-

orin A (CsA) therapy and is characterised by enlargement of the gingiva with

epithelial thickening and overproduction of extracellular matrix components. The

pathogenesis of the epithelial thickening in GO remains obscure. The objective of

the present study was to investigate the effects of CsA on the growth of oral

epithelial cells in vitro and to test the hypothesis that CsA influences apoptosis in

these cells.

Material and Methods: Cyclosporin was cocultured with an immortalized normal

human oral keratinocyte cell line (HOK-16B), an epitheloid cervical carcinoma

cell line (HeLa) and primary oral keratinocytes. Cell division was quantified using

a CyQUANT� kit. Apoptosis was induced using tumour necrosis factor-a (TNF-

a) and assayed by analysis of caspase-3 activity. Expression of the anti-apoptotic

protein, Bcl-2, was measured by western blotting.

Results: CsA exhibited a dose- and time-dependent inhibition of cell division in all

three keratinocyte cell cultures. Significantly, HOK-16B cells treated with high

doses of CsA (10 lg/ml) did not recover their proliferative capacity 3 d after

withdrawal of CsA, indicating that CsA-induced inhibition of growth is not

temporary. Concentrations of CsA that inhibited cell division (1 lg/ml) did not

have any effect on constitutive or TNF-a -induced apoptosis or Bcl-2 expression in

HOK-16B cells.

Conclusion: CsA inhibits oral epithelial cell division and this effect is not associ-

ated with changes in apoptosis in these cells. The action of CsA on oral epithelial

cells may be associated with a long-lasting stress signal, which might account for

some of the pathological effects of this drug.
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epidermis (9). Gingival overgrowth

(GO) is an unwanted effect of CsA

therapy (10). It is characterized by the

enlargement of the gingiva with epi-

thelial thickening, a large number of

proliferating fibroblasts and overpro-

duction of extracellular matrix com-

ponents (11,12). The pathogenesis of

the condition remains unclear (12). The

majority of work has focused on fac-

tors affecting the gingival fibroblasts

(13,14), but the gingival epithelium

may also be important. The gingival

epithelium is juxtaposed to dental pla-

que, which has been identified as a risk

factor for the condition (10). Plaque

may also act as a reservoir for CsA

(15,16) and there is evidence for accu-

mulation of CsA on the surface of the

gingival epithelium (15). Although the

pathological effects of CsA on the

gingival epithelium have been des-

cribed in detail (16–19), the mecha-

nisms underlying these observations

remain unknown. To our knowledge,

there are no published reports on the

direct effects of CsA on oral epithelial

cells in culture.

It has been suggested that fibroblast

accumulation in drug-induced GO is

caused by the inhibition of apoptosis

(20); we hypothesized that this may

also be the biological basis for the ob-

served effects of CsA on the gingival

epithelium. We therefore aimed to

study the effect of CsA on the prolif-

eration and apoptosis of oral epithelial

cells. We compared the effects of CsA

on an immortalized normal human

oral keratinocyte cell line (HOK-16B)

(21), an epitheloid cervical carcinoma

cell line (HeLa) and primary oral ker-

atinocytes. We found that CsA inhib-

ited cell division in all these cells.

Although CsA seemed to deliver a

long-lasting inhibitory signal to HOK-

16B cells, we found no evidence to

suggest that CsA influenced apoptosis

of these cells.

Material and methods

Cell culture

Ethical approval for this study was

obtained from the Joint Ethics Com-

mittee of Newcastle University and

Newcastle Health Care Trust. KB cells

(ECACC 94050408) were serially cul-

tured in RPMI-1640 supplemented

with 10% fetal calf serum (FCS), 2 mM

L-glutamine, 100 U/ml penicillin and

100 lg/ml streptomycin (Sigma-Ald-

rich, Poole, UK). The KB cell line was

originally derived from human oral

epidermoid carcinoma. Genetic analy-

sis confirmed that the KB cell line is

derived from a HeLa contaminant and

is now described more accurately as a

human cervix epitheloid cell line (22).

The human papilloma virus (HPV)-

immortalized human oral keratinocyte

HOK-16B cell line (21) was cultured at

37�C, in 5% CO2, in the serum-free

medium, KBM� (BioWhittaker UK,

Wokingham, UK) supplemented with

0.1 ng/ml epidermal growth factor

(EGF), 5 lg/ml insulin, 30 lg/ml

bovine pituitary extract, 0.5 lg/ml

hydrocortisone, 50 lg/ml gentamycin

and 50 lg/ml amphotericin (Bullet-

Kit�; BioWhittaker UK). Biopsies of

human gingiva were obtained from

patients undergoing gingival surgery or

from healthy volunteers in the

Departments of Periodontology and

Oral Surgery, Newcastle Dental Hos-

pital. Primary cultures of oral kera-

tinocytes were established from

gingival biopsies using the mouse 3T3

fibroblasts as a feeder layer (23).

Before reaching confluence, keratino-

cytes were harvested and subcultured

in serum-free medium KBM with

BulletKit� (BioWhittaker UK).

Cyclosporin preparation

Solutions of CsA were prepared in

ethanol and optimal immunosuppres-

sive concentrations were determined by

measurement of the inhibition of T-cell

proliferation. Peripheral blood

lymphocytes were stimulated in 96-well

plates, precoated with CD3 (ortho-

clone OKT3), in the presence of vary-

ing concentrations of CsA. After 72 h,

each culture was labelled with 1 lCi of
[3H]-thymidine (TRA61; Amersham,

International, Chalfont, UK); the cells

were harvested onto fibreglass filters,

after a further 6 h, for beta-scintilla-

tion counting (LKB microbeta). It was

found that CsA was inhibitory at

concentrations between 0.1 and 10 lg/
ml (data not shown), and these con-

centrations were used in subsequent

cell-culture experiments.

Cell proliferation assay

Cells were seeded in 96-well plates

(Greiner Bio-one, Stonehouse, UK) at

densities of 1000–2000 cells per well.

Various concentrations of vehicle

(ethanol) or CsA solutions were added,

24 h after seeding, to three or five

replicate cultures, and incubation was

continued for different periods of time.

After treatment, the medium was

removed by gentle suction and plates

were stored at )20�C until use. Cell

proliferation was assessed using the

CyQUANT� nucleic acid fluorescence

assay kit, according to the manufac-

turer’s instructions (Molecular Probes,

Leiden, the Netherlands). Calibration

curves for each cell line showed the

fluorescence reading to be linearly

related to the cell number (data not

shown). In order to determine whether

the inhibitory effects of CsA on kera-

tinocyte proliferation were permanent

or temporary, the ability of HOK-16B

cells to recover from CsA treatment

was analysed. Triplicate wells of HOK-

16B cells were incubated with CsA

concentrations (0.01–10 lg/ml) for

72 h, after which the medium was

removed and replaced with nontreated

culture medium for 48 h. Control cul-

tures, containing equivalent volumes of

ethanol, were grown in parallel. Cell

numbers were determined, before and

after the 48-h recovery period, in par-

allel plates.

Caspase-3 activity assay

The effect of CsA on apoptosis in cell

culture was determined by assays for

the intracellular enzyme, caspase-3,

which initiates the DNA degradation

associated with this process. Cells were

seeded in T25 tissue culture flasks

(Greiner Bio-one) and cocultured for

24 h with 1 lg/ml CsA and tumour

necrosis factor-a (TNF-a) (Peprotek,

TOTAM Biologicals, Peterborough,

UK) at concentrations of 500 U/ml for

HOK cells and 1000 U/ml for KB cells.

Cyclohexamide (30 lg/ml for HOK-

16B cells and 2 lg/ml for KB cells) was

used to sensitize the cells to TNF-a.
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After incubation, supernatants (con-

taining dead cells) were retained and

adherent cells were harvested with

0.05% Trypsin–EDTA. Supernatants

and detached cells were then centri-

fuged (400 g, 5 min, 4�C), and the

pellets were resuspended in culture

medium and transferred to centrifuge

tubes to be pelleted by centrifugation

(4000 g, 5 min, 4�C). Pellets were

treated with lysis buffer [10 mM HE-

PES pH 4.0, 2 mM EDTA, 0.1%

CHAPS, 5 mM dithiothreitol (DTT),

10 lg/ml pepstatin A, 10 lg/ml apro-

tinin, 20 lg/ml leupeptin, 1 mM phe-

nylmethanesulfonyl fluoride (PMSF)]

and frozen/thawed four times in liquid

nitrogen and a 37�C water bath.

Lysates were then centrifuged at

5000 g for 5–10 min, and the superna-

tants retained for measurement of

caspase-3 activity using a FluorAce�
Apopain Assay Kit, according to the

manufacturer’s instructions (Bio-Rad,

Hemel Hempstead, UK). Briefly, 10 ll
of supernatant was loaded in triplicate

into black 96-well plates (Greiner

Bio-one) and mixed with reaction

buffer containing a fluorescently

labelled peptide substrate for caspase-3

(AC-DEVD-AFC, final concentration

40 lg/ml). Release of fluorescence by

cleaved AFC was monitored in a

multiwell plate fluorescence spectro-

photometer (Bio Tek FL600, excitation

390–400 nm and emission 510–550 nm,

Fisher Scientific, Loughborough, UK)

with regular measurements taken dur-

ing a 3-h period. Caspase-3 activity

was calculated by comparing the sam-

ple Dfluorescence with a calibrated

AFC standard curve. Protein concen-

tration in cell lysates was measured

using a bicinchoninic acid (BCA) Pro-

tein assay (Pierce & Warriner, Chester,

UK) and the specific activity of cas-

pase-3 per unit of protein was thus

determined (unit of activity/min/g of

protein).

Western blot for Bcl-2 expression

HOK-16B cells, grown to 60–70%

confluency in six-well plates (Greiner

Bio-one), were incubated for 72 h with

1.5 mM CaCl2 (Sigma) and/or 1 lg/ml

CsA. After incubation, the cell layers

were washed with ice-cold phosphate-

buffered saline (PBS) and lysed with

100 ll of ice-cold 1· sodium dodecyl

sulphate (SDS) sample buffer [50 mM

HEPES, 150 mM NaCl, 0.2 mM

Na2CO3, 1 mM MgCl2, 10% (v/v) gly-

cerol, 1% (v/v) Nonidet P-40, 0.1% (w/

v) SDS, 1 : 50 protease inhibitor

cocktail; Sigma]. Extracts were centri-

fuged (14,000 g for 5 min at 4�C),
diluted in H2O (1 : 5) and equivalent

amounts of protein (BCA assay) mixed

with 2· sample buffer [125 mM Tris-

HCl, pH 6.8, containing 4% (w/v)

SDS, 20% (v/v) glycerol, 0.02% (w/v)

bromophenol blue, 1% (v/v) b-merca-

ptoethanol and 1 : 50 protease inhib-

itor cocktail], heated for 5 min at 95�C
and separated by SDS–polyacrylamide

gel electrophoresis (SDS–PAGE) using

15% gels. Separated proteins were

transferred to a nitrocellulose mem-

brane (Optitran BA-S83; Schleicher &

Schuell, London, UK) using a semidry

electro-blotter (BDH, NELS, Newton

Aycliffe, UK). A prestained protein

marker (Bio-Rad) was used to monitor

the molecular weight of the separated

proteins. Ponceau’s staining was per-

formed to assess the quality of the

transfer and to confirm equal protein

loading. The membrane was blocked

for 1 h at room temperature in a buffer

of 137 mM NaCl, 2.7 mM KCl, 25 mM

Tris-HCl, pH 7.4, 0.1% Tween 20

(TBS/Tween), containing 5% (w/v)

dried skimmed milk. Primary anti-

bodies were diluted in TBS/Tween

containing 5% (w/v) bovine serum

albumin (BSA) and incubated with the

blots for 1 h. Dilutions (1 : 100) of

monoclonal mouse anti-human Bcl-2

(Dako, Glostrup, Denmark) and anti-

human actin (Oncogene, Nottingham,

UK) were used. Horseradish peroxi-

dase (HRP)-linked goat anti-mouse

immunoglobulin G (IgG) (Cell Signal-

ling Technologies, Danvers, MA,

USA) was used as a secondary anti-

body at a 1 : 2000 dilution.

Hybridizing proteins were detected

using an enhanced chemiluminescence

(ECL) reaction, which was performed

following the manufacturer’s instruc-

tions (ECL + plus western blotting

detection system; Amersham) and

blots were developed by exposure to

X-ray film (Super Rx Medical X-ray

film; Fujifilm, London, UK). Extracts

from the T-cell leukaemia line, MOLT-

16, were used as a positive control for

Bcl-2 expression.

Statistics

The statistical differences between

groups were determined by analysis of

variance (ANOVA), with a one-way

classification, using MINITAB software.

Significant F ratios were tested using

Tukey’s test. Statistical significance

was assumed at the 5% level.

Results

CsA inhibits epithelial cell growth

Exposure to CsA concentrations of

£ 0.1 lg/ml did not influence the total

cell number compared with control

cultures (Fig. 1). However, at higher

concentrations, CsA had a dose-

dependent inhibitory effect on cell

division. CsA concentrations of 1 lg/
ml inhibited cell proliferation in all

three cell types, and the co-incubation

of HOK-16B cells with a CsA concen-

tration of 10 lg/ml almost completely

inhibited cell proliferation (Fig. 1).

HOK-16B cells do not recover from
the effects of CsA on cell
proliferation

CsA concentrations of 1 and 10 lg/ml

inhibited HOK-16B cell division

(Fig. 2A). The cells were able to re-

cover from the inhibitory effect of

1 lg/ml CsA, whereas pre-incubation

of the cells with 10 lg/ml CsA had an

inhibitory effect that persisted, even

after the 48-h recovery incubation

(Fig. 2B).

CsA has no effect on TNF-a-induced
apoptosis in HeLa and HOK-16B cells

Background levels of caspase-3 activity

in both HeLa and HOK-16B cell lines

were not affected by treatment with

1 lg/ml CsA for 24 h (Fig. 3). To

investigate a potential effect of CsA on

apoptosis induced by environmental

factors, we used TNF-a, a cytokine

produced during primary immune

responses to infections and known

to induce apoptosis in target cells.
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Treatment with TNF-a for 24 h in-

duced a substantial increase in caspase-

3 activity in both KB and HOK-16B

cells (Fig. 3). However, co-incubation

with 1 lg/ml CsA had no effect on

TNF-a-induced apoptosis levels in

either cell line (Fig. 3).

CsA has no effect on Bcl-2
expression in HOK-16B cells

Western blot experiments revealed that

HOK-16B cells constitutively ex-

pressed only very low levels on Bcl-2

protein (Fig. 4). CsA (1 lg/ml), alone

or in combination with Ca2+ (a known

keratinocyte-differentiation factor),

had no effect on Bcl-2 protein expres-

sion in HOK-16B cells (Fig. 4).

Discussion

The antiproliferative effect of CsA on

epithelial cells is shared by some

minimally immunosuppressive or non-

immunosuppressive cyclosporin ana-

logues, suggesting that the relevant

molecular mechanisms differ from

those responsible for immunosuppres-

sion (24,25). In contrast, CsA stimu-

lates the growth of hair follicle

keratinocytes, causing hypertrichosis

(19); thus, the effects of CsA are not

consistent in all epithelial cell types. In

the present study, we showed that CsA

exhibited a dose- and time-dependent

inhibition of cell division in an

immortalized normal human oral ker-

atinocyte cell line (HOK-16B) and in

primary oral keratinocytes in culture.

The effect was maintained for at least

48 h after removing CsA, although it

would be interesting to investigate

whether this effect was more long

lasting. It is not clear how the observed

inhibition of cell growth relates to the

epithelial thickening observed in CsA-

induced GO. Moreover, Nurmenniem

et al. demonstrated an increase of epi-

thelial mitotic activity in the gingiva of

patients undergoing therapy with CsA

or nifedepine compared with similar

sections from healthy controls (26).

However, no correlation between mi-

totic activity and thickness of the oral

epithelium was found (26). In contrast,

others have found that CsA has little

or no effect on markers of epithelial

cell proliferation in sections of GO

tissue (15,27). These results suggest

that epithelial hyperplasia is not caused

by an increased keratinocyte-prolifer-

ation rate, but by an enhanced kera-

tinocyte life span, or an alteration in

the ability of the cells to undergo

apoptosis in a balanced manner. It is

difficult, however, to relate the results

of our in vitro experiments to the in

vivo observations on tissue sections.

Interactions between different cell

types (e.g. fibroblasts and keratino-

cytes) may be important in the patho-

genesis of GO (12). Also, the local

immune response to dental plaque may

modify tissue responses to CsA and

other drugs (11,12).

The aberrant regulation of growth

factors, such as EGF and keratinocyte

growth factor (KGF), may be a

pathogenic mechanism relevant to

CsA-induced GO (28–30). CsA induces

transforming growth factor-b (TGF-b)
synthesis and secretion by fibroblasts, a

mechanism that is thought to be

important in CsA-induced tissue

fibrosis and GO (13,14,28). TGF-b-
induced growth arrest in epidermal

keratinocytes is associated with

Fig. 1. Epithelial cell proliferation is inhibited by cyclosporin A (CsA) treatment in a dose-

dependent manner. Data from experiments with KB cells (Fig. 1A), primary oral keratino-

cytes (Fig. 1B) and HOK-16B cells (Fig. 1C) are illustrated. Cells were initially seeded and

preincubated for 24 h and then cultured for up to 96 h with ethanol control (n) or CsA at the

following final concentrations: 0.01 lg/ml (h), 0.1 lg/ml (•), 1 lg/ml (̂) or 10 lg/ml (m). Cell

proliferation was measured using the CyQUANT� nucleic acid fluorescence assay kit, and

mean (± standard deviation) data from three independent cultures are presented. *p < 0.05.

Fig. 2. HOK-16B cells fail to recover from inhibition by high concentrations of cyclosporin

A (CsA). HOK-16B cells were grown in medium containing different concentrations of CsA

or the equivalent volume of ethanol vehicle for 72 h (m, vehicle; ˆ , CsA). Cell numbers were

determined immediately after CsA treatment (Fig. 2A) or after a 48-h recovery period in

CsA-free medium (Fig. 2B). Data represent the mean data (± standard deviation) from

three independent cultures. *p < 0.05.
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resistance to apoptosis (29). Further-

more, inhibition of apoptosis has been

proposed to explain fibroblast accu-

mulation in drug-induced GO (20).

The pathway of apoptosis mediated by

TNF-a is relevant to keratinocyte

homeostasis, and CsA-induced apop-

tosis in epithelial cells is mediated by

caspase-3 (30,31). Furthermore, CsA

inhibits renal epithelial cell growth by

the induction of apoptosis (4,5,30,32).

In hepatoma cells, CsA opposes TNF-

a-induced apoptosis in vitro, and this

effect is regulated by CsA action on the

calcineurin pathway involved in T-cell

activation, but also thought to regulate

cytotoxicity induced by TNF-a (33). In

contrast, we found that TNF-a-in-

duced apoptosis in both KB and

HOK-16B cells was not influenced by

CsA. Similarly, no differences were

observed in keratinocyte apoptosis in

the gingiva of patients with CsA-in-

duced apoptosis compared to similar

tissues from systemically healthy indi-

viduals (34). Thus, the effects of CsA

on apoptotic pathways may be cell-

type specific.

We showed that the epithelial cells

could not recover from exposure to

high-dose CsA. CsA may induce a

major stress on the epithelial cells,

influencing a number of biochemical

pathways (2). This may result in the

activation of cytoprotective mecha-

nisms aimed at maintaining cell survi-

val, perhaps including altered growth

factor synthesis, and which may be

enhanced by localized connective tissue

reactions and inflammatory processes.

CsA may influence cell survival

through effects on intracellular media-

tors involved in cell stress signalling,

such as Bcl-2 or heat shock proteins

(35,36). For example, CsA upregulates

Bcl-2 in endothelial cells, promoting

cell survival during stressful conditions

(37). However, we were not able to

demonstrate any effect of CsA on the

intracellular levels of Bcl-2 in oral

keratinocytes. The nuclear factor-jB
(NF-jB) pathway protects keratino-

cytes from premature apoptosis during

the process of upward migration and

differentiation (29,31). The sensitivity

or resistance to apoptosis in keratino-

cytes and other cells may be deter-

mined by the steady-state levels of NF-

jB and other molecules that influence

cell survival.

In conclusion, we have observed that

CsA has a significant and long-lasting

inhibitory effect on the cell division of

both primary oral keratinocytes and an

oral keratinocyte cell line. This effect

seems to be independent of both basal

and TNF-a-induced apoptosis and is

not associated with any changes in Bcl-

2. Further detailed experiments, inves-

tigating the effects of CsA on intracel-

lular pathways and the influence of

other cells relevant to gingival physi-

ology, will be required to delineate the

mechanism underlying these observa-

tions and their relationship to the

pathogenesis of GO.
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