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Bone is a mineralized tissue that

undergoes continuous remodeling by

the combined action of osteoclasts,

osteoblasts and osteocytes (1), which

are influenced by several systemic, local

and environmental factors (2). These

factors regulate the proliferation,

differentiation, function and survival of

bone cells (3). Among systemic factors,

estrogen is a hormonewell known for its

inhibitory function on bone resorption

(4–6). More recently, it has been shown

that estrogen depletion promotes

intense resorptive activity in the alveo-

lar bone of rats (7,8). There is evidence

that estrogen promotes an increase

in the levels of osteoprotegerin, a pro-

tein that inhibits osteoclast formation
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Background and Objective: Bone is a mineralized tissue that is under the influence

of several systemic, local and environmental factors. Among systemic factors,

estrogen is a hormone well known for its inhibitory function on bone resorption.

As alveolar bone of young rats undergoes continuous and intense remodeling to

accommodate the growing and erupting tooth, it is a suitable in vivo model for

using to study the possible action of estrogen on bone. Thus, in an attempt to

investigate the possibility that estrogen may induce the death of osteoclasts, we

examined the alveolar bone of estrogen-treated rats.

Material and Methods: Fifteen, 22-d-old female rats were divided into estrogen,

sham and control groups. The estrogen group received estrogen and the sham

group received corn oil used as the dilution vehicle. After 8 d, fragments con-

taining alveolar bone were removed and processed for light microscopy and

transmission electron microscopy. Sections were stained with hematoxylin and

eosin and tartrate-resistant acid phosphatase (TRAP)–an osteoclast marker.

Quantitative analysis of the number of TRAP-positive osteoclasts per mm of bone

surface was carried out. For detecting apoptosis, sections were analyzed by the

Terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling

(TUNEL) method; TUNEL/TRAP combined methods were also used.

Results: The number of TRAP-positive osteoclasts per mm of bone surface was

significantly reduced in the estrogen group compared with the sham and control

groups. TRAP-positive osteoclasts exhibiting TUNEL-positive nuclei were

observed only in the estrogen group. In addition, in the estrogen group the

ultrastructural images revealed shrunken osteoclasts exhibiting nuclei with con-

spicuous and tortuous masses of condensed chromatin, typical of apoptosis.

Conclusion: Our results reinforce the idea that estrogen inhibits bone resorption

by promoting a reduction in the number of osteoclasts, thus indicating that this

reduction may be, at least in part, a consequence of osteoclast apoptosis.
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(9–12). In the tibia of estrogen-treated

rats, a decrease in the number of oste-

oclasts was shown, and osteoclast dis-

integration (6) or death was suggested

(13). Therefore, the mechanism by

which estrogen acts upon skeletal tis-

sues remains unclear (14).

Some systemic and local factors are

capable of switching on the chain of

molecular events that leads to the

programmed cell death (apoptosis) of

bone cells (15–18). Apoptosis contri-

butes to the homeostatic regulation of

bone by controlling the life span and

the number of bone cells (19). Osteo-

blast and osteocyte apoptosis has been

observed under physiological condi-

tions (20–22) and in estrogen-deficient

rats (16,17). Moreover, it has been

suggested that apoptotic osteocytes

may attract osteoclasts to specific

bone sites and thereby contribute to

the control of bone remodeling (23).

The chances of observing images of

the extremely rapid events of apoptosis

are rare. Apoptosis of osteoclasts has

not been observed in vivo, i.e. under

physiological conditions (20,24). The

alveolar bone of young rats undergoes

continuous and intense remodeling to

accommodate the growing and erup-

ting tooth (25) and it is therefore a

suitable in vivomodel for using to study

the action of estrogen on bone cells.

Thus, in an attempt to investigate

the possibility that estrogen may

induce the death of osteoclasts, we

examined the alveolar bone of estro-

gen-treated young rats using quantita-

tive analysis of tartrate-resistant acid

phosphatase (TRAP)-positive osteo-

clasts on the bone surface. In addition

to hematoxylin and eosin-stained sec-

tions, the TUNEL method, TRAP and

TUNEL combined methods, and

transmission electron microscopy were

used to detect apoptosis.

Material and methods

The principles of laboratory animal

care (NIH publication 85–23, 1985)

and national laws on animal use were

observed in the present study, which

was authorized by Ethical Committee

for Animal Research of the São Paulo

State University, Brazil (Araraquara

Dental School-UNESP).

Fifteen, 22-d-old female Holtzman

rats (Rattus norvegicus albinus) from

the São Paulo State University animal

house were placed into estrogen, sham

or control groups (five rats in each

group). Rats in the estrogen group

received estrogen (estradiol hexa-

hydrobenzoate, Benzoginoestril ap�;

Hoechst Marion Roussel, São Paulo,

Brazil) diluted in corn oil. The animals

received an intramuscular injection of

0.125 mg/100 g body weight estrogen

[based on Silberberg & Silberberg (26)

and Chow et al. (27)], daily, for 7 d.

The rats of the sham group received

the same dose of the corn oil used to

dilute the estrogen. Twenty-four hours

after the last injection, the rats from

the sham group and the estrogen group

were killed. In the control group, the

rats did not receive any treatment.

The rats were killed with chloral

hydrate (600 mg/kg), and fragments of

the maxilla containing alveolar bone

surrounding the upper molars were

removed and immediately immersed in

the fixative solution.

Light microscopy

The specimens containing alveolar

bone were fixed in 4% formaldehyde

(freshly derived from paraformalde-

hyde) buffered at pH 7.2 with 0.1 M

sodium phosphate, at room tempera-

ture, for 48 h. After decalcification for

40 days in 7% disodium ethylene-dia-

minetetracetic acid (EDTA) solution

containing 0.5% formaldehyde, in

sodium phosphate 0.1 M, at pH 7.2,

the specimens were dehydrated in gra-

ded concentrations of ethanol and

embedded in paraffin. Sections 6 lm
thick were stained by hematoxylin and

eosin, submitted to TUNEL method,

the TRAP reaction, and TUNEL/

TRAP combined methods.

Terminal deoxynucleotidyl
transferase-mediated dUTP Nick-End
Labeling (TUNEL) method

For detection of DNA breaks, we used

the TUNEL method (28). The Apop

Tag� Peroxidase In Situ Apoptosis

Detection kit (Chemicon International,

Chemicula, CA, USA) was used, as

previously described (29).

Deparaffinized sections adhered to

silanized (3-aminopropyltrithoxysylane;

Sigma Chemical Co., St Louis, MO,

USA) slices were washed in phosphate-

buffered saline (50 mM sodium phos-

phate, 200 mM NaCl, pH 7.2) and

treated with 20 lg/ml proteinase K

(Oncor-Protein Digesting Enzyme) in

phosphate-buffered saline, at room

temperature. The sections were subse-

quently treated with 3% hydrogen

peroxide to block endogenous peroxi-

dase and then immersed in an equili-

bration buffer. The reaction was

followed by incubation in solution

containing terminal deoxynucleotidyl

transferase (TdT), in a humid chamber

at 37�C, for 1 h. The sections were

immersed in the stop/wash solution

and were then incubated in the anti-

digoxigenin-peroxidase. After washing

in phosphate-buffered saline, they were

treated with 0.06% 3.3-diaminobenzi-

dine tetrahydrochloride (Sigma Chem-

ical Co.) in phosphate-buffered saline

and then counterstained with Carazzi’s

hematoxylin. Sections of mammary

gland provided by the manufacturer of

the kit were used as positive controls

for the TUNEL method. Negative

controls were incubated in a TdT

enzyme-free solution.

TRAP

The TRAP method was used as an

osteoclast marker (30). Deparaffinized

sections were incubated in a solution

prepared by dissolving 8 mg of naphtol

AS-BI (Sigma Chemical Co.) in 500 ll
of N-N-dimethylformamide followed

by the addition of 50 ml of 0.2 M

sodium acetate buffer (pH 5.0) and

70 mg of Fast Red Salt TR (Sigma

Chemical Co.). Sodium tartrate

dihydrate (50 mM) was added to the

solution. After incubation at 37�C, the
sections were washed in distilled water

and stained with hematoxylin. As a

control of specificity for TRAP activ-

ity, some sections were incubated in

substrate-free medium. For the

simultaneous demonstration of apop-

tosis and TRAP-activity, some sections

were submitted to the TUNEL method

followed by the TRAP reaction (21).

The hematoxylin and eosin-stained

sections and the sections submitted to
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the TRAP reaction, TUNEL method

and TUNEL/TRAP combined meth-

ods were examined and photographed

in a light microscope (Olympus BX-50;

Olympus America Inc., Miami, FL,

USA).

Number of osteoclasts on the
alveolar bone surface

Quantitative analysis of the number of

TRAP-positive osteoclasts per mm of

linear surface of the alveolar bone

around the first molar was carried out

in the estrogen, sham and control

groups. Four sections of the first molar

from each animal were used. The

shortest distance between the sections

was 60 lm.

The surface of the alveolar bone was

measured using an image analysis sys-

tem (Leica Qwin Professional, Leica

Microsystems, Wetzlar, Hesse, Ger-

many). Subsequently, the multinucle-

ated TRAP-positive osteoclasts on the

alveolar bone surface were counted on

a light microscope (Carl Zeiss, Inc.,

Jena, Germany), at ·500 magnification.

Statistical analysis

Statistical analysis was performed

using SIGMA STAT 2.0 (Jandel Scientific,

Sausalito, CA, USA). The data were

submitted to multiple comparisons

using the nonparametric Kruskal–

Wallis test. The significance level

accepted was p £ 0.05.

Transmission electron microscopy

Specimens containing alveolar bone of

the first molar were fixed in a mixture

of 4% of glutaraldehyde and form-

aldehyde (freshly derived from para-

formaldehyde) buffered at pH 7.2 with

0.1 M sodium cacodylate, at room

temperature. After decalcification in a

7% solution of EDTA containing

0.5% formaldehyde in 0.1 M sodium

cacodylate buffer, at pH 7.2, the spec-

imens were washed in 0.1 M sodium

cacodylate, pH 7.2. They were then

transferred to 0.1 M sodium cacody-

late-buffered 1% osmium tetroxide

solution for 1 h, at room temperature.

Subsequently, the specimens were

washed in distilled water and treated

with aqueous 2% uranyl acetate for

2 h. The specimens were dehydrated in

graded concentrations of ethanol,

treated with propylene oxide and then

embedded in Araldite.

Semithin sections were stained with

1% toluidine blue and examined in a

light microscope. Suitable regions were

carefully selected for trimming of the

blocks. Ultrathin sections from selec-

ted regions were collected on grids and

stained in alcoholic 1% uranyl acetate

and in lead citrate solution before

examination in a Philips CM 200

transmission electron microscope.

Results

The alveolar bone from the upper

first molar of 29-d-old control rats

exhibited several TRAP-positive oste-

oclasts, typical of bone undergoing

rapid remodeling/turnover (Fig. 1).

Numerous multinucleated osteoclasts,

exhibiting conspicuous TRAP-positive

activity in their cytoplasm (red stain-

ing), were often observed apposed to

resorption bone surfaces in the con-

trol and sham groups (Fig. 2A). On

the other hand, only a few TRAP-

positive osteoclasts were found on the

alveolar bone surfaces of estrogen-

treated rats (Fig. 2B). Quantitative

analysis revealed a significant reduc-

tion (p £ 0.05) in the number of

TRAP-positive osteoclasts per mm of

linear surface of the alveolar bone in

the estrogen group compared with

the control and sham groups. No

difference was found between the

control group and the sham group

(Table 1).

Hematoxylin and eosin-stained sec-

tions of alveolar bone from the estro-

gen group revealed large giant cells

exhibiting round/ovoid bodies in their

interior. Frequently, dense round/

ovoid bodies containing basophilic

masses were in close juxtaposition to

these giant cells. Several smaller struc-

tures were observed surrounding the

giant cell (Fig. 3A). When the TRAP

method was applied, osteoclasts with

conspicuous cytoplasmic activity (red

staining) exhibited nuclei strongly

stained by hematoxylin, typical of

condensed chromatin (Fig. 3B). The

TUNEL method showed that osteo-

clasts apposed to resorption surfaces of

alveolar bone of the estrogen group

Fig. 1. Light micrograph of a sagittal section of the first upper molar of a 29-d-old control

rat. The alveolar bone (B) surrounding the molar roots (R) exhibits numerous tartrate-

resistant acid phosphatase (TRAP)-positive osteoclasts (Oc) – red color. BM, bone marrow;

D, dentine; E, enamel space; G, gingiva; P, dental pulp; PL, periodontal ligament. Count-

erstained with hematoxylin. Bar, 150 lm.
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occasionally exhibited brown–yellow

nuclei, characteristic of TUNEL-posi-

tivity (Fig. 3C). The TUNEL method

combined with the TRAP reaction, in

the same section, revealed that red-

stained osteoclasts exhibited brown–

yellow TUNEL-positive nuclei

(Fig. 3D,E). Portions of TRAP-posit-

ive osteoclasts apposed to bone surfa-

ces exhibited strongly TUNEL-positive

nuclei (Fig. 3D). TRAP-positive oste-

oclasts with apparent intact nuclei were

also observed on the alveolar bone of

the estrogen group. Sometimes, these

osteoclasts showed round/ovoid bodies

with irregular masses of condensed

chromatin inside large vacuoles in their

TRAP-positive cytoplasm (Fig. 3F).

The osteoclasts exhibiting condensed

chromatin and/or TUNEL-positive

nuclei were not present in all sections

examined in the alveolar bone of the

estrogen group. Moreover, TRAP-

positive osteoclasts exhibiting

TUNEL-positive nuclei and/or con-

densed chromatin were not observed

on the alveolar bone surface of the

sham group or the control group.

Controls for the TUNEL method,

using involuting mammary gland sec-

tions, revealed positive structures.

Sections incubated in medium lacking

the TdT enzyme were negative. No

reaction product for TRAP activity

was observed when the sections were

incubated in substrate-free medium

(data not shown).

Ultrastructural examination of

alveolar bone from the estrogen group

revealed osteoclasts with a grossly

changed ultrastructure intermingled

with normal osteoclasts (Fig. 4A,B).

The altered osteoclasts showed irregu-

larly shaped nuclei with conspicuous

and tortuous masses of condensed

chromatin. In addition, they exhibited

shrunken and convoluted cytoplasm

containing numerous vesicles and vac-

uoles, which occupied most of the

cytoplasm. Images of organelles, such

as mitochondria, endoplasmic reti-

culum and Golgi elements, were rarely

observed between vesicles and vacu-

oles. Moreover, the ruffled border and

clear zone were not observed in these

osteoclasts (Fig. 4A). The normal

multinucleated osteoclasts exhibiting

Fig. 2. Lightmicrographsofportionsof thealveolarboneof sham(A)andestrogen-treated rats

(B) submitted to the tartrate-resistant acid phosphatase (TRAP) reaction and counterstained

withhematoxylin. (A)NumerousTRAP-positive (red color) osteoclasts (Oc) are apposed on the

alveolar bone surface. (B) Alveolar bone exhibiting only two red-stained osteoclasts (Oc).

B, alveolar bone; Oc, osteoclasts; Ot, osteocytes; PL, periodontal ligament. Bar, 30 lm.

Table 1. Number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts per mm

of alveolar bone surface in animals from the control, sham-treated and estrogen-treated

groups

Animal no.

Groups

CG SG EG*

1 1.72 1.76 0.81

2 1.89 1.80 0.88

3 1.91 1.85 1.03

4 1.99 2.20 1.24

5 2.62 2.33 1.27

Mean ± SD 2.05 ± 0.34 1.99 ± 0.25 1.04 ± 0.88

CG, control group; EG, estrogen-treated group; SG, sham-treated group; SD, standard

deviation.

*statistically significant (p £ 0.05) from CG and SG.
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Fig. 3. Light micrographs of portions of the alveolar bone of estrogen-treated rats. (A) A large giant cell (C), adjacent to the bone surface (B),

exhibits several round-ovoid dense bodies (arrowheads) in its interior. A round-ovoid body (Bo) containing basophilic masses is in close

juxtaposition to the giant cell (C). Several smaller structures (arrows) are observed surrounding the giant cell (C). Hematoxylin and eosin

staining. Bar, 5 lm. (B) A portion of alveolar bone submitted to the tartrate-resistant acid phosphatase (TRAP) reaction and counterstained

with hematoxylin. A TRAP-positive osteoclast (Oc) exhibits several nuclei (N) strongly stained by hematoxylin, typical of condensed

chromatin. Arrowheads, bone-lining cells; B, bone matrix; Ca, capillary; PL, periodontal ligament. Bar, 6 lm. (C) A portion of alveolar bone

submitted to the TUNEL method (brown–yellow) and counterstained with hematoxylin. The osteoclast (Oc) located in an excavation of the

bone surface (B) exhibits TUNEL-positivity in all nuclei (N) observed. Arrowheads, bone-lining cells. Bar, 6 lm. (D,E) The TUNEL method

(brown–yellow) was combined with the TRAP reaction (red). (D) A portion of a TRAP-positive osteoclast (Oc) apposed to the bone surface

(B) exhibits a TUNEL-positive nucleus (N). PL, periodontal ligament. Bar, 5 lm. (E) An elongated TRAP-positive osteoclast (Oc) shows

some TUNEL-positive nuclei (N). Arrowheads, bone-lining cells; B, bone matrix; Ca, capillary. Bar, 6 lm. (F) A portion of alveolar bone

submitted to the TRAP reaction and counterstained with hematoxylin. A TRAP-positive osteoclast (Oc) containing normal nuclei (N) is

located in an excavation of the bone surface (B). The osteoclast (Oc) exhibits a round/ovoid body (arrow) with irregular masses of condensed

chromatin inside a large vacuole (Va). Bar, 5 lm.
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a ruffled border, numerous mito-

chondria, vesicles and vacuoles of

varied sizes, were located on excava-

tions of the bone surface (Fig. 4B).

Discussion

Our quantitative results showed a

marked decrease in the number of

alveolar bone osteoclasts (TRAP-pos-

itive) in estrogen-treated rats, when

compared with the control group and

sham-treated rats. The mechanisms

involved in the reduction of osteoclast

number is not yet understood. How-

ever, this reduction may be caused

either by estrogen-induced cell death

(13,31) or by interference of estrogen

on the receptor activator of NF-jB
(RANK)/RANK ligand/osteoproteg-

erin system, a pathway involved in

the mechanism of osteoclast formation

(9–12,32).

Our morphological results, i.e. those

obtained by the hematoxylin and eosin

staining, the TRAP reaction, the

TUNEL method and the TUNEL/

TRAP combined methods, suggest that

alveolar bone osteoclasts undergo cell

death in the estrogen group, and hence

the decrease in numbers observed.

Hematoxylin and eosin- and TRAP-

stained sections of estrogen-treated rats

revealed shrunken osteoclasts exhibit-

ing condensed chromatin. These osteo-

clasts were occasionally surrounded by

small round/ovoid structures contain-

ing dense material, similar to apoptotic

bodies, as also previously described

(20,33–35). Furthermore, TRAP-posit-

ive osteoclasts also exhibited TUNEL-

positivity. The TUNEL and TRAP

methods in the same section (21)

allowed simultaneous demonstration of

DNA breaks (28) and tartrate-resistant

acid phosphatase, a characteristic mar-

ker of osteoclasts (30). DNA breaks

constitute part of the cascade of

molecular events observed during

apoptosis (36,37).However, it should be

noted that the TUNEL method alone is

not specific for apoptosis (38).Although

several markers for apoptosis are

available, it is generally accepted that

ultrastructural images are most relevant

for the identification of classical apop-

tosis of mononucleated cells (35,39). It

must also be taken into account that

osteocytes (40) and apoptotic bone cells

(20,21,41) are engulfed by osteoclasts

during bone resorption. So, it is

important to note that some bodies

found in osteoclasts may be apoptotic

osteoblasts/osteocytes internalized by

osteoclasts. These internalized bodies

can be distinguished from apoptotic

osteoclast nuclei because they are usu-

ally surrounded by a clear halo.

Our ultrastructural images revealed

that some osteoclasts apposed to bone

Fig. 4. Electron micrographs of portions of the alveolar bone of estrogen-treated rats. (A) A

multinucleated osteoclast (Oc) located next to the bone surface (B) shows several irregularly

shaped nuclei (N) exhibiting conspicuous and tortuous masses of condensed chromatin

(arrows); the shrunken and convoluted cytoplasm contains numerous vesicles (Ve) and

vacuoles (Va), which occupy most of the cytoplasm. Bar, 1.5 lm. (B) A typical osteoclast

(Oc), exhibiting a ruffled border (RB), numerous mitochondria (M), vesicles (Ve) and

vacuoles (Va) of varied sizes, is located on an excavation of the bone surface (B). N, nuclei.

Bar, 2.5 lm.
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surface of the estrogen group exhibited

conspicuous and tortuous masses of

condensed chromatin within their

nuclei. These nuclei are typical of dying

cells that may be undergoing apoptosis

(20,29,33,35). However, the cytoplasm

of osteoclasts, unlike that observed in

mononuclear apoptotic cells (22,33),

was packed with vesicles and vacuoles

and was poor in mitochondria, endo-

plasmic reticulum and Golgi elements.

Moreover, osteoclasts did not exhibit a

ruffled border or a clear zone. The

absence of both structures was also

observed in apoptotic osteoclasts of

rats treated with bisphosphonate

(42,43), possibly as a result of degra-

dation of cytoskeleton proteins, which

occurs during the proteolytic cascade

of apoptosis (37,44).

Although some features observed

were characteristic of cell death by

apoptosis, the presence of numerous

vesicles and vacuoles in the cytoplasm

of osteoclasts in the estrogen group

differs from classical apoptosis. More-

over, dying osteoclasts exhibited few

organelles, thus differing from classical

apoptosis of mononucleated cells in

which organelles remain intact (33,34).

It is important to mention that the

presence of numerous vesicles and

vacuoles in dying osteoclasts may be a

result of the extremely convoluted

surface of the osteoclast. Thus, in ul-

trathin sections, these vesicles and

vacuoles may represent cross and ob-

lique sections of the convoluted surface

and/or the ruffled border membrane

that may have been internalized.

However, it should be noted that

osteoclasts possess numerous vesicles

and vacuoles of a lysosomal nature

(2,41).

Taken together, our results indicate

that osteoclasts undergo a process of

apoptosis that differs, in some aspects,

from classical apoptosis (45). Cell

death of chondrocytes also seems to

differ from classical apoptosis (46).

Although apoptotic bodies adjacent

to the bone surface were observed, we

were unable to discern images of

apoptotic bodies arising from osteo-

clasts or from other dying cells.

Apoptotic bodies located next to bone

and next to dying osteoclasts do not

differ from apoptotic structures

derived from mononucleated cells

(20,29,33,35). In addition, as apoptosis

is an extremely rapid process, it is

possible that neighboring cells, such as

fibroblasts, osteoblasts or other osteo-

clasts may have engulfed apoptotic

bodies deriving from apoptotic osteo-

clasts. In most other tissues, apoptotic

bodies are removed by the combined

action of neighboring, same-type cells

and macrophages (22,47).

As the majority of studies involving

osteoclast death have been carried out

in vitro (31,48) and/or were restricted

to light microscopy (13,49), we believe

that our results show, for the first time,

in vivo ultrastructural images of dying

alveolar bone osteoclasts in estrogen-

treated rats. The absence of images of

dying osteoclasts in the control and

sham groups agrees with the results of

other authors (20,24). In the estrogen

group, it was difficult to find dying

osteoclasts and there was no observ-

able pattern in the distribution of

these dying cells through the alveolar

bone surface. Thus, dying osteoclasts

co-existed with normal osteoclasts.

However, we have no explanation for

the fact that some osteoclasts were

affected by estrogen but others were

not.

Estrogen exerts an inhibitory action

on bone resorption and therefore it is

used to prevent and treat osteoporosis.

However, the cellular and molecular

mechanisms of estrogen action on bone

remain unclear. It has been suggested

that estrogen promotes the down-

regulation of osteoclast formation,

activity and survival (3). The action of

estrogen on osteoclasts may be medi-

ated by T cells (50), monocytes and

osteoblasts (51), as well as occuring

directly on osteoclasts via the estrogen

receptor (52,53). There is evidence that

estrogen stimulates the secretion of

osteoprotegerin, a decoy receptor of

the RANK ligand, and thereby inhibits

osteoclastogenesis (9–12). Moreover, it

has also been suggested that estrogen

inhibits the production of cytokines

such as interleukin-1, tumor necrosis

factor, interleukin-6, macrophage col-

ony-stimulating factor (51) and RANK

ligand (32). Because some of these

cytokines stimulate the formation,

activity and survival of osteoclasts, it

has been suggested that estrogen

decreases bone resorption via the

action of cytokines, by reducing the

number of osteoclasts. Our results

reinforce the idea that estrogen

inhibits bone resorption by promoting

a reduction in the number of osteo-

clasts, indicating therefore that this

reduction may be, at least in part, a

consequence of osteoclast apoptosis.

However, we cannot exclude the pos-

sibility that this reduction may also be

associated with the inhibitory activity

of estrogen on osteoclast formation

(32,50,51).

Our quantitative results, when com-

bined with TUNEL/TRAP methods

and transmission electron microscopy,

support the interpretation that estro-

gen promotes – directly and/or indi-

rectly – the apoptosis of alveolar bone

osteoclasts. However, further studies

are required to clarify the underlying

molecular events involved.
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