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Background and Objective: Mechanical stress by an orthodontic appliance induces

biologically active substances. Fibroblast growth factor is a multifunctional

cytokine that has various effects on fibroblast cells, and fibroblast growth factor-2

plays an important role in remodeling of the periodontal ligament. The receptor

activator of nuclear factor kappa B ligand (RANKL) is an important protein

involved in osteoclastogenesis and we recently reported that RANKL levels were

increased by compression force in vitro. In the present study, we investigated the

effects of compression force on fibroblast growth factor-2 and RANKL produc-

tion by human periodontal ligament cells.

Material and Methods: Compression force (0.5–4.0 g/cm2) was applied to human

periodontal ligament cells for 0–24 h. The amounts of soluble RANKL

(sRANKL) and fibroblast growth factor-2 were measured using an enzyme-linked

immunosorbent assay, whereas mRNA levels were determined by the reverse

transcription-polymerase chain reaction. Furthermore, anti-fibroblast growth

factor-2 was added to the cell culture media and we measured the release of

sRANKL and fibroblast growth factor-2 by enzyme-linked immunosorbent assay.

Results: Compression force induced higher levels of sRANKL and fibroblast

growth factor-2 in both a time- and magnitude-dependent manner. Treatment with

anti-fibroblast growth factor-2 inhibited the release of sRANKL.

Conclusion: Fibroblast growth factor-2 may be partly involved in osteoclasto-

genesis during orthodontic tooth movement.
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Periodontal tissue has a unique struc-

ture, as the periodontal ligament, a

typical soft connective tissue, lies

between the tooth cementum and

alveolar bone, both of which are hard

tissue, where it serves to anchor the

tooth to the alveolus and functions as a

cushion to disperse occlusal and ortho-

dontic forces. Furthermore, perio-

dontal ligament fibers are continually

being remodeled to adapt to the chan-

ging stresses placed on them (1).

During the movement of teeth in the

course of orthodontic treatment, it is

generally agreed that bone resorption

on the compression side, and bone

formation on the tension side, change

the position of the tooth within the

alveolar bone (2). In addition, the

reconstruction of bone associated with

periodontal tissues takes place through

interactions among osteoclasts, osteo-

blasts and fibroblasts. Mechanical

stress from orthodontic appliances is

considered to induce cells in the perio-

dontal ligament to form biologically

active substances, such as cytokines

and enzymes, which are responsible for

connective tissue remodeling (3,4).

Previously, our laboratory reported

that human periodontal ligament cells

produced prostaglandin E2, interleu-

kin-1, interleukin-6 and cathepsins B

and L under mechanical stress in vitro

(5–8).

Basic fibroblast growth factor

(fibroblast growth factor-2) is a com-

ponent of the bone matrix and plays a

role in regulating bone remodeling

(9–11), and both osteoblasts and oste-

oclasts express the receptor for fibro-

blast growth factor-2 (12). Fibroblast

growth factor-2 is produced by cells of

the osteoblastic lineage that accumu-

late in the bone matrix and acts as an

autocrine/paracrine factor for various

types of bone cells (13–16), whereas it

has been shown to have variable

regulation of the proliferation and

differentiation of osteoblastic cells,

thereby modulating bone formation

(17–19). In addition, fibroblast growth

factor-2 has been reported to stimulate

bone resorption in bone organ cultures

and osteoclastogenesis in a mouse bone

marrow culture (20–22).

The receptor activator of nuclear

factor kappa B ligand (RANKL) was

recently identified as a member of the

membrane-associated tumor necrosis

factor ligand family and an important

regulatory molecule of osteoclastogen-

esis (23). RANKL is a ligand of osteo-

protegerin/osteoclastogenesis-inhibitory

factor and is expressed in the plasma

membranes of osteoblasts/stromal cells

(24). Most importantly, RANKL

induces osteoclast differentiation from

hemopoietic precursors and stimulates

the bone-resorptive activity of osteo-

clasts (25), and it was also revealed that

tumor necrosis factor-a convertase

converts membrane-bound RANKL to

soluble RANKL (sRANKL) and its

osteoclastogenesis activity is attenu-

ated (26–28). Recently, we reported

that RANKL levels were increased in

human periodontal ligament cells by

compression force in vitro (29). Fur-

thermore, fibroblast growth factor-2

was shown to stimulate RANKL in a

mouse macrophage-like cell line, C7

(30). However, little information is

available concerning the production of

fibroblast growth factor-2 and

RANKL in human periodontal liga-

ment cells in response to mechanical

stress. In the present study, we inves-

tigated the effects of compression force

on fibroblast growth factor-2 and

RANKL production by human perio-

dontal ligament cells.

Material and methods

Cell culture

Human periodontal ligament fibro-

blasts were prepared according to a

modification of the method of Somer-

man et al. (31), as described previously

(32). Briefly, periodontal ligament tis-

sues were taken from the roots of pre-

molars extracted from six healthy

young volunteers (three males, three

females; 14–16 years old), during the

course of orthodontic treatment, after

obtaining informed consent from the

donors, and were used according to a

protocol reviewed by the Ethics Com-

mittee of Nihon University School of

Dentistry at Matsudo (#04–021). The

periodontal ligament tissues were

placed in 35-mm tissue culture dishes

and covered with a sterilized glass

coverslip. The medium used was

a-minimal essential medium (Gibco,

Grand Island, NY, USA), which was

supplemented with 100 lg/mL of

penicillin-G (Sigma Chemical Co.,

St Louis, MO, USA), 50 lg/mL of

gentamicin sulphate (Sigma), 0.3 lg/
mL of amphotericin B (Flow Labor-

atories, McLean, VA, USA), and 10%

fetal calf serum (Cell Culture Labor-

atories, Cleveland, OH, USA). The

cultures were kept at 37�C in a

humidified incubator (Forma CO2

incubator MIP-3326; Sanyo Electric

Medica System Co., Tokyo, Japan) in

the presence of 95% air and 5% CO2.

When the cells growing from each

explant had reached confluence, they

were detached with 0.05% trypsin

(Gibco) in phosphate-buffered saline

for 10 min and subcultured in culture

flasks. Those cells still attached to the

bottom of the flask were discarded to

avoid contamination by epithelial cells.

Application of compression force

In order to reproduce the conditions of

pressure during orthodontic tooth

movement, we performed the following

in vitro experiments, in accordance

with the method reported by Kanai

et al. (33). Human periodontal liga-

ment cells were continuously com-

pressed using a uniform compression

method as a model of pressure at the

site of orthodontic movement (Fig. 1).

WEIGHT

hPDL cells

Fig. 1. Method used to apply compression

force. Pre-cultured periodontal ligament

cells were compressed continuously using a

glass cylinder at different weights. The glass

cylinder was placed over confluent cell lay-

ers in each well of a six-well plate. The

number of lead granules placed in the cyl-

inder determined the amount of compres-

sion force. hPDL, human periodontal

ligament cells.
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Static compression force is thought to

mimic that found in vivo during

orthodontic treatment. In the present

experiments, the cells were stimulated

once. Briefly, a cell disk, 30 mm in

diameter, was placed over nearly con-

fluent cell layers in the wells of a six-

well plate, on top of which was placed

a glass cylinder. Compression force

was then controlled by placing lead

granules in the cylinder. Before the

application of compression force, the

cells were pre-incubated for 1 h in

culture medium containing 2% fetal

calf serum, after which they were sub-

jected to 0.5, 1.0, 2.0, 3.0 or 4.0 g/cm2

of compression force for 24 h. Previous

studies have shown that compressive

mechanical stress can be applied by the

system utilized in the present experi-

ment (8,29).

Fibroblast growth factor-2, sRANKL
and osteoprotegerin levels

Fibroblast growth factor-2 levels were

measured using commercially available

enzyme-linked immunosorbent assay

(ELISA) kits (R & D Systems, Min-

neapolis, MN, USA). To clarify the

relationship among fibroblast growth

factor-2, RANKL and osteoprotegerin

production by human periodontal

ligament cells under compression force,

we examined the effect of incubation

with anti-fibroblast growth factor-2.

Compression force (4.0 g/cm2) was

applied to human periodontal ligament

cells for 24 h in the presence or absence

of anti-fibroblast growth factor-2 (R &

D Systems). sRANKL production was

measured by the sRANKL ELISA kit

(BIOMEDICA, Wien, Austria). Oste-

oprotegerin production was measured

by the Human Osteoprotegerin ELISA

kit (RayBio, Norcross, GA, USA).

Anti-fibroblast growth factor-2 cul-

tures were pretreated with 100 lg/mL

of anti-fibroblast growth factor-2 for

1 h before adding compression force.

Reverse transcription-polymerase
chain reaction (RT-PCR)

We extracted RNA from human

periodontal ligament cells using an

RNeasy mini kit (Qiagen Co., Tokyo,

Japan), following the manufacturer’s

protocol. RNA was amplified using an

RT-PCR kit and we obtained 40 lL of

purified total RNA. Total RNA was

converted to cDNA using ReverTra

Ace (Toyobo, Co., Osaka, Japan).

PCR amplification was performed

using KOD Dash (Toyobo, Co.) in a

thermal cycler (PTC-0200 DNA

Engine; MJ Research, Inc., Waltham,

MA, USA). After a hot start, the

samples were denatured at 98�C for

20 s and then the primer was annealed

at 55–60�C for 2 s and extended at

74�C for 30 s for 25–30 cycles. PCR

primers for fibroblast growth factor-2

and a-actin were purchased from Sig-

ma Genosys Co. (Hokkaido, Japan),

and designed with reference to the

cDNA sequences reported for fibro-

blast growth factor-2 and a-actin. The
primers were designed as follows:

fibroblast growth factor-2, 5¢-GGTG

AAACCCCGTCTCTACA-3¢ and 5¢-T
CTGTTGCCTAGGCTGGACT-3¢; a-
actin, 5¢-GGACTTCGAGCAAGAG

ATGG-3¢ and 5¢-AGCACTGTGTTG

GCGTACAG-3¢. The PCR products

were separated by electrophoresis on a

1.5% agarose gel and visualized with

ethidium bromide staining under ultra-

violet light illumination. The differences

between the PCR products were

quantified according to the lumines-

cence values. The relative intensities

were measured by using NIH IMAGE

software (NIH, Bethesda, MD, USA).

Statistical methods

Values are shown as the mean ±

standard deviation. Data were ana-

lysed by a Mann–Whitney U-test and

by two-way analysis of variance.

Results

Evaluation of compression force

The effects of compression force and

time on human periodontal ligament

cells were examined. When human

periodontal ligament cells were treated

with continuous compression force, the

secretion of fibroblast growth factor-2

was increased in both a time- and

magnitude-dependent manner, in con-

trast to the control group, and the level

at 4.0 g/cm2 of force for 24 h was

significantly higher (p < 0.001, Mann–

Whitney U-test).

When compression force ranging

from 0.5 to 4.0 g/cm2 was applied to

human periodontal ligament cells for

24 h, the levels of fibroblast growth

factor-2 and sRANKL were signifi-

cantly increased as compared with

the control (p < 0.001), in a magni-

tude-dependent manner (p < 0.001,

two-way analysis of variance).

A comparison between each data set

revealed that the levels were signifi-

cantly changed in human periodontal

ligament cells subjected to compression

force at all five magnitudes, as com-

pared with the control cells

(p < 0.001, Mann–Whitney U-test)

(Fig. 2). Osteoprotegerin release was
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Fig. 2. Effects of duration of compression

force on fibroblast growth factor-2 (A),

soluble receptor activator of nuclear factor

kappa B ligand (sRANKL) (B) and

osteoprotegerin (C) production by human

periodontal ligament cells. Compression

force increased the production of fibroblast

growth factor-2 and sRANKL, but

decreased the production of osteoprotegerin

from human periodontal ligament cells in

both a time- and magnitude-dependent

manner (p < 0.001; two-way analysis of

variance). *p < 0.001, significantly different

from the corresponding control at each

incubation time. �p < 0.001, significantly

different from other conditions. Control:

0.5–3.0 g/cm2. FGF-2, fibroblast growth

factor-2; OPG, osteoprotegerin.
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also increased in a time-dependent

manner, but the secretion was higher at

low magnitude than at high magnitude

(p < 0.001, two-way analysis of vari-

ance) (Fig. 2).

As shown in Fig. 3, the levels of PCR

products corresponding to a-actin were

the same in the six experimental groups,

and thus it was considered that the

amount of PCR products reflected the

level of mRNA. Those of the compres-

sion force-stimulated human perio-

dontal ligament cells at each magnitude

of force (0.5–4.0 g/cm2) were more

intense than those for the correspond-

ing controls (Fig. 3).

As shown in Fig. 4, when human

periodontal ligament cells were sub-

jected to 4.0 g/cm2 of compression

force in the presence of 100 lg/mL of

anti-fibroblast growth factor-2, fibro-

blast growth factor-2 production was

suppressed almost completely, whereas

sRANKL production was inhibited by

� 49% and osteoprotegerin secretion

was inhibited by � 66%.

Discussion

In order to investigate the mechanism

of alteration of fibroblast growth fac-

tor-2 in human periodontal ligament

cells on the compression side during

orthodontic tooth movement, the

levels of fibroblast growth factor-2

secreted from human periodontal

ligament cells stimulated by various

amounts of compression force were

measured. We found that compression

force significantly increased the secre-

tion of fibroblast growth factor-2 in

a time- and magnitude-dependent

manner (Fig. 2). Furthermore, fibro-

blast growth factor-2 mRNA of the

compression force-stimulated human

periodontal ligament cells at each

magnitude (0.5–4.0 g/cm2) was more

intense compared with the corres-

ponding control (Fig. 3).

Fibroblast growth factors are

involved in diverse cellular processes,

including chemotaxis, cell migration,

differentiation, cell survival and apop-

tosis (20,34). Fibroblast growth factor-

2 is incorporated into the protein

matrix of bone (35–37), and was shown

to stimulate MC3T3-E1 cell prolifer-

ation and differentiation in vitro (38).

Furthermore, application of fibroblast

growth factor-2 increased the rate of

bone formation in humans and animals

that had bone fractures (39–44).

Fibroblast growth factor-2 also has a

catabolic effect on bone, as Kawaguchi

et al. (45) reported that at low con-

centrations ( £ 10)11
M) the cytokine

acted directly on mature osteoclasts to

resorb bone moderately, whereas at

high concentrations (‡ 10)9
M) fibro-

blast growth factor-2 acted on osteo-

clastic cells to induce cyclooxygenase-2

and potently stimulate bone resorp-

tion. In the present study, the concen-

tration of fibroblast growth factor-2 in

response to compression force was

found to be � 10)14
M (500 pg/mL)

and thus it may contribute to bone

resorption. It is generally agreed that

bone resorption occurs on the com-

pression side during orthodontic tooth

movement (2) and therefore we con-

sidered that this phenomenon may be

related to the activity of fibroblast

growth factor-2.

As for the relationship between

fibroblast growth factor-2 and

mechanical stress, cyclic mechanical

stretch is known to induce fibroblast

growth factor-2 expression in human

tendon fibroblasts and pulmonary

vascular smooth muscle cells. The

increased concentrations of fibroblast

growth factor-2 after cyclical mechan-

ical stretching may have a positive

influence on tendon tissues, by

promoting ligament and pulmonary

artery healing through stimulation of

cell proliferation and differentiation,

and matrix formation (46,47). Down-

regulation of fibroblast growth factor-

2 production from cartilage under

compression force has been reported

(48). However, in the present study,

compression force increased the

secretion of fibroblast growth factor-2

from human periodontal ligament cells

(Figs 2 and 3). These contrasting

findings are not surprising, as

compression force produces bone

resorption factors, such as prostaglan-

din E2 and interleukin-1, from human

periodontal ligament cells (4). As a

result, alveolar bone is resorbed on the

compression side during orthodontic

tooth movement (2). Taken together,

these findings and our present results

suggest that compression force

accelerates the secretion of fibroblast
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growth factor-2 from human perio-

dontal ligament cells, which may sti-

mulate bone resorption.

Recently, Nakano et al. (49) repor-

ted that fibroblast growth factor-2 in-

duced the expression of RANKL by

rheumatoid arthritis synovial fibro-

blasts, and the up-regulation of

RANKL induced by fibroblast growth

factor-2 was inhibited by anti-fibro-

blast growth factor-2. In addition,

fibroblast growth factor-2 has been

implicated as a potential inducer of

RANKL (30). In the present study, we

examined, using anti-fibroblast growth

factor-2, whether fibroblast growth

factor-2 stimulated by compression

force has any effect on the production

of RANKL. We found that sRANKL

production was inhibited by � 49%

following the addition of anti-fibro-

blast growth factor-2 to the cultures

(Fig. 4). Therefore, fibroblast growth

factor-2 stimulates RANKL produc-

tion by human periodontal ligament

cells, at least in part, in response to

compression force. Nukaga et al. (50)

also reported that the expression of

RANKL mRNA in human perio-

dontal ligament cells was enhanced by

interleukin-1. Therefore, there may be

another pathway of compression force-

stimulated RANKL in human perio-

dontal ligament cells.

Osteoprotegerin is a member of the

tumor necrosis factor receptor family

and is known to inhibit osteoclasto-

genesis and osteoclast function. Yano

et al. (51) found that fibroblast growth

factor-2 inhibited the production of

osteoprotegerin by synovial cells from

rheumatoid arthritis patients in a dose-

dependent manner. In the present study

we examined osteoprotegerin produc-

tion from human periodontal ligament

cells under compression force. Com-

pression force increased the secretion of

osteoprotegerin in a time-dependent

manner, but the secretion was higher at

low magnitude than at high magnitude.

Fibroblast growth factor-2 inhibition

by anti-fibroblast growth factor-2 de-

creased osteoprotegerin secretion, and

it was inhibited by � 66% (Fig. 4).

Therefore, compression force-stimula-

ted fibroblast growth factor-2 modu-

lates the secretion of both RANKL and

osteoprotegerin.

In summary, compression force

induced higher levels of sRANKL and

fibroblast growth factor-2, whereas the

inhibition of fibroblast growth factor-2

caused a reduction in the production of

sRANKL by human periodontal liga-

ment cells. Our results suggest that

compression force-stimulated fibro-

blast growth factor-2 may be involved

in bone resorption in the periodontal

ligament during orthodontic tooth

movement.
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