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Periodontal disease is very common in

the adult population, and the most

common form is chronic marginal

periodontitis (1,2). It is widely recog-

nized that periodontitis is caused by a

mixed bacterial infection and that

some specific gram-negative bacteria

play crucial roles in the etiology of

adult periodontitis (3–5). Although

many virulence factors of perio-

dontopathogenic bacteria have been

identified in the last two decades, the

main clinical means for infection con-

trol still depend on conventional

mechanical debridement (i.e. scaling

and root planing) and/or antibacterial

agents. Sbordone et al. have reported

the limitations of conventional

mechanical debridement to restructure

the subgingival microflora (3).

Photodynamic therapy using a pho-

tosensitizer was originally developed to

target tumor cells (6). A large number

of microorganisms have also been tar-

geted by photodynamic therapy in a

number of studies (7–9). Among them,

Propionibacterium acnes has been

reported to be susceptible to photo-

sensitization through targeting of its

endogenously produced porphyrins

(10). Porphyromonas gingivalis is one

of the black-pigmented anaerobes

implicated as a pathogen associated
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Background and Objective: The effects of laser irradiation on Porphyromonas

gingivalis have been reported, but the results are still controversial regarding the

efficiency because of the differences of the light sources and irradiation conditions.

The aim of this study was to determine the wavelength and irradiation conditions

under which the most effective inhibitory effect on P. gingivalis growth was seen

without any photosensitizers.

Material and Methods: Using an Okazaki large spectrograph, monochromatic

light spectra ranging from 400 to 700 nm were evaluated to determine which

spectra effectively inhibited bacterial growth. Moreover, using a monochromatic

405-nm irradiating device, the effects of various irradiating conditions on P. gin-

givalis growth were examined.

Results: Growth of bacteria irradiated at 400 nm and 410 nm was significantly

suppressed compared with a nonirradiated control, whereas wavelengths of

430 nm and longer produced no significant inhibition. A constant energy density

of 15 J/cm2 was found to be enough to show an inhibitory effect. Significant

inhibition of bacterial growth was found after only 1 min at 50 mW/cm2

irradiation.

Conclusion: These results indicate that P. gingivalis growth is specifically sup-

pressed by 405-nm light irradiation, suggesting that visible blue light irradiation is

a promising means for eradicating periodontopathogenic bacteria from perio-

dontal lesions.
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with the initiation and progression of

periodontitis. P. gingivalis is also

known to produce protoporphyrin

by degrading haemoglobin for its

growth (11), which could make this

bacterium photosensitive by acting

as an endogenous photosensitizer. In

fact, some studies have reported the

effects of laser irradiation towards

periodontopathogenic bacteria, includ-

ing P. gingivalis, but these reports are

still controversial as to the efficiency

of the laser irradiation because of the

differences of the light sources and

irradiation conditions (12).

In this study, we attempted to

determine the most effective wave-

length for inhibiting P. gingivalis

growth, even in the absence of an

exogenous photosensitizer, using an

Okazaki large spectrograph, which can

produce monochromatic light over a

broad range of wavelengths. Using a

monochromatic 405-nm light-emitting

device, we also attempted to clarify

irradiation conditions under which the

most effective inhibition of bacterial

growth was found. Besides, we tried to

clarify that the bacterial growth inhi-

bition was attributed to bacteriostatic

and/or bactericidal activities of irradi-

ation.

Material and methods

Microorganisms and culture

The bacterial strain used in this study

was P. gingivalis ATCC 33277. The

bacterium was maintained by weekly

subculture in anaerobic basal medium

containing 5% sheep blood. Bacteria

were grown for � 24 h to early sta-

tionary phase in anaerobic brain–heart

infusion broth (Difco Laboratories,

Detroit, MI, USA) supplemented with

0.5% yeast extract, 0.05% L-cysteine,

0.0005% hemin, 0.0001% vitamin K1

and 0.025% resazulin at 37�C in an

anaerobic cabinet with an atmosphere

of 80% N2, 10% CO2 and 10% H2. To

prepare bacterial colony samples for

the light-exposure experiment using the

large spectrogragh, 1 lL of 24-h bac-

terial culture was applied to trypticase

soy agar (Becton Dickinson, Sparks,

MD, USA) supplemented with 0.1%

yeast extract, 0.0005% hemin,

0.0001% vitamin K1 and 20% hemo-

lyzed sheep blood, and cultured at

37�C for 30 h anaerobically until small

colonies became visible.

Light exposure using an Okazaki
large spectrograph

To determine the most effective wave-

length for bacterial growth inhibition,

bacterial colonies were exposed to

monochromatic light using an Okazaki

large spectrograph at the National

Institute for Basic Biology of Japan

(13). The wavelengths examined were

every 10–20 nm from 400 to 700 nm.

The fluence rate of the light was mea-

sured by a power meter at the position

of each sample to fix the actinic effect

of the different wavelengths. Total

energy density was fixed to 18 J/cm2

by adjusting the exposure time.

Irradiation at a wavelength of 405 nm

The light-emitting device equipped

with monochromatic wavelength of

405 nm was developed by Ushio Inc.

(Tokyo, Japan). A 24-h bacterial cul-

ture grown in the supplemented brain–

heart infusion broth was diluted

1 : 100, and 200 lL of suspension was

applied to each well of 96-well culture

plates. After light exposure, the plates

were incubated in an anaerobic cabi-

net, and the optical density at 655 nm

of each well, which reflects bacterial

growth, was measured at intervals of

12 or 24 h. The percentage inhibition

reported was calculated from the 36-h

bacterial growth data. Irradiation

conditions (i.e. energy density, expo-

sure time and output power density),

were evaluated using combinations of

these factors as follows. A total of

15 J/cm2 of constant-energy-density

irradiation (50 mW/cm2 for 300 s,

200 mW/cm2 for 75 s or 400 mW/cm2

for 38 s) was performed to investigate

the effects of output power density

and/or exposure time. Under constant-

output power (50 mW/cm2), 1–5 min

of irradiation was performed to exam-

ine the effect of exposure time. Under

the constant exposure time (5 min), 30,

50 or 100 mW/cm2 of irradiation was

performed to examine the effect of

output power density. The average

output power density was confirmed

using a power meter (Ophir, Jerusalem,

Israel) in each experiment.

Viable colony count

Following exposure of the bacterial

suspension to light, as described above,

samples were diluted 1 : 10 four or five

consecutive times in sterile broth.

Then, 50-lL suspensions were applied

to the agar plates. Survival of these

bacteria was determined by counting

colony-forming units following incu-

bation in an anaerobic cabinet.

Statistical analysis

One-way analysis of variance was per-

formed to determine significant differ-

ences between the test sample and the

control. The significance of individual

differences was evaluated by the Sche-

ffe’s F-test in cases where a significant

difference was detected by analysis of

variance.

Results

Significant inhibition of P. gingivalis

growth was observed upon exposure to

400 and 410 nm blue light (Fig. 1),

whereas no significant growth inhibi-

tion was observed when exposed to

light at wavelengths longer than

500 nm (data not shown). This result

clearly indicated that selective mono-

chromatic visible blue light (400–

410 nm) can inhibit P. gingivalis

growth without any exogenous photo-

sensitizer. Monochromatic light expo-

sure at 405 nm with 15 J/cm2 of

constant energy density produced sig-

nificant inhibition (more than 75%

inhibition compared with the nonirra-

diated control) under all irradiation

conditions of 50 mW/cm2 for 300 s,

200 mW/cm2 for 75 s or 400 mW/cm2

for 38 s (Fig. 2).

The effect of exposure time was

examined under constant-output pow-

er (50 mW/cm2). As shown in Fig. 3,

1 min of irradiation inhibited bacterial

growth to some extent (45% inhibi-

tion). When exposure time was increa-

sed under constant-output power,

the inhibitory effect seemed to be

stronger.
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The effect of output power density

was examined with a constant expo-

sure time (5 min). Whereas 30 mW/cm2

of irradiation showed a significant

inhibitory effect (� 70% inhibition), 50

and 100 mW/cm2 showed a much

stronger effect (� 90% inhibition)

(Fig. 4).

Bacterial viability following expo-

sure to 405-nm monochromatic light

was expressed as percentage survival

of bacteria in suspension (Table 1).

Irradiation at 50 mW/cm2 for 300 s

showed significant bactericidal activ-

ity. The bactericidal effect of exposure

time under constant-output power

(50 mW/cm2) was consistent with

bacterial growth inhibition. As shown

in Table 1, 1 min of irradiation

showed bactericidal activity to some

extent (71.3% survival). When expo-

sure time was increased under con-

stant-output power, the bactericidal

activity seemed to be stronger. The

output power density (30, 50 and

100 mW/cm2) with a constant expo-

sure time (5 min) showed a significant

effect on bacterial survival (� 60%

survival) (Table 1).

Discussion

Periodontal disease is a mixed bacterial

infection and its management still

depends on conventional mechanical

debridement, such as scaling and root

planing, which often fails to yield a

satisfactory outcome. Consequently,

an alternative management of perio-

dontitis, which would be easy to per-

form, less burdensome for patients and

repeatable, has been sought for a long

time. Photodynamic therapy can be

defined as eradication of target cells by

reactive oxygen species produced by

means of a photosensitizing compound

and light of an appropriate wavelength

(14). Some studies have demonstrated

that photodynamic therapy using an

exogenous photosensitizer has the

potential to kill P. gingivalis, which is

considered to be a major pathogenic

bacterium of periodontitis (9,15,16).

However, some complications and

problems of using exogenous photo-

sensitizers have also been elucidated

(17). From this point of view, photo-

dynamic therapy without any photo-

sensitizers must be developed as an

alternative management of perio-

dontitis. In the present study, we con-

firmed that photodynamic therapy by

irradiation at 400–410 nm inhibited

growth of P. gingivalis, even without
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Fig. 1. Effect of monochromatic irradiation on the growth of Porphyromonas gingivalis.

Significant inhibition of P. gingivalis growth was observed when exposed to 400- and 410-nm

blue light. This result clearly indicates that selective monochromatic visible blue light (400–

410 nm) can inhibit P. gingivalis growth without any exogenous photosensitizer.
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Fig. 2. Effect of monochromatic light exposure at 405 nm with 15 J/cm2 of constant energy

density. Significant inhibition (more than 75% inhibition after 36 h compared with the

nonirradiated control) was observed under all the irradiation conditions (50 mW/cm2 for

300 s, 200 mW/cm2 for 75 s or 400 mW/cm2 for 38 s).
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Fig. 3. Effect of exposure time under constant-output power (50 mW/cm2). With constant-

output density, irradiation for 1 min inhibited bacterial growth to some extent (45% inhi-

bition) at the 36-h time point. A longer exposure time produced a stronger inhibitory effect.
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any photosensitizers, which strongly

suggested the possibility that photo-

dynamic therapy could be a promising

new management of periodontitis.

The mechanisms underlying the

inhibitory effect of irradiation by light

of specific wavelengths are still unclear

in the present study. A study using a

photosensitizer showed that irradiation

inactivated the proteolytic activity of

P. gingivalis, suggesting that the

inactivation of proteolytic enzymes

occurs through the oxidation of

active-site thiol groups (9). Other

studies, using black-pigmented bacte-

ria, suggested that endogenously

produced porphyrins might act as

photosensitizers under light irradia-

tion, leading to a reduction of bacterial

growth and viability (18,19). The pro-

teolytic enzymes, Arg-gingipain and

Lys-gingipain, produced by P. gingi-

valis, are known to contribute to a

variety of virulence factors of period-

ontopathogenic bacteria, such as effi-

cient growth in human serum,

hemagglutination activity, biofilm for-

mation and cytotoxic activity (20). Arg-

gingipain and Lys-gingipain are known

to be necessary for bacteria to obtain

iron by degrading host hemoglobin

(21), in the process of which protopor-

phyrin is generated from heme (11). It is

therefore probable that most patho-

genic bacterial strains possess high

levels of porphyrins that could function

as endogenous photosensitizers. This

fact also strongly suggests that photo-

dynamic therapy without any exoge-

nous photosensitizer would be a

beneficial strategy for the continuing

management of periodontitis. Although

the effective spectra confirmed in this

study were consistent with the stron-

gest porphyrin photoexcitation band at

405–415 nm (19), further investigation

will be necessary to clarify how light

irradiation at this specific wavelength

suppresses bacterial growth with no

exogenous photosensitizer.

The determination of bacterial

survival revealed that the growth

inhibition caused by exposure to 405-

nm light, in part was caused by bac-

teriostatic activity of the blue light.

The bactericidal activity was not

attributed to the side-effects of irra-

diated contents, including hemin-

derived porphyrin, in the assay

medium because the bacterial growth

of P. gingivalis was not affected in

irradiated assay medium and the

bacterial growth of other bacteria,

such as Fusobacterium nucleatum was

not affected by the same irradiation

(data not shown).

Periodontopathogenic bacteria

cause not only periodontitis, but also

halitosis, by producing volatile sulfate

components after degrading proteins

of host oral epithelial cells (22).

Recently it has been reported that

400–500-nm blue light irradiation

suppressed volatile sulfate component

production in saliva samples and redu-

ced the population of gram-negative

bacteria (23). These studies revealed

growth inhibition of periodontopatho-

genic bacteria, including P. gingivalis,

by 405-nm light irradiation, suggest-

ing that irradiation might affect bac-

terial metabolism as well as growth.

P. gingivalis possesses strong proteo-

lytic activity and degrades host pro-

teins to small peptides, which are

used as an energy source by other

subgingival bacteria that have no, or

weak, proteolytic activity (24). This

means that inhibition of P. gingivalis

growth subsequently leads to the sup-

pression of other periodontopatho-

ganic bacteria, such as F. nucleatum

and Peptostreptococcus micros, and

suggests that suppression of the

growth and/or metabolism of P. gin-

givalis by 400–410-nm irradiation

would be a great advantage in the

management of periodontitis.

Recently, the existence of oral

chronic inflammatory lesions caused

by periodontopathogenic bacteria has

been widely recognized as being

associated with crucial systemic dis-

eases, such as coronary heart disease

(25,26). Additionally, P. gingivalis has

been detected within atherosclerotic

plaques by the polymerase chain

reaction (27). Therefore, eradication

of periodontopathogenic bacteria may

lead to prevention of these systemic

diseases. The elimination of perio-

dontopathogenic bacteria by conven-

tional mechanical debridement and/or

antibacterial agents is limited because
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Fig. 4. Effect of output power under constant exposure time (5 min). While 30 mW/cm2

showed a significant inhibitory effect (� 70% inhibition at 36 h), 50 and 100 mW/cm2

showed a much stronger inhibitory effect (� 90% inhibition at 36 h).

Table 1. Effect of the monochromatic light exposure at 405 nm on the viability of bacteria in

a suspension of Porphyromonas gingivalis

Exposure condition

Energy density (output power, time)

Viability (% of control)

mean ± SD

15 J/cm2 (50 mW/cm2, 300 s) 57.2 ± 9.0

3 J/cm2 (50 mW/cm2, 60 s) 71.3 ± 5.5

6 J/cm2 (50 mW/cm2, 120 s) 65.3 ± 9.9

12 J/cm2 (50 mW/cm2, 240 s) 56.5 ± 9.2

9 J/cm2 (30 mW/cm2, 300 s) 60.0 ± 9.4

30 J/cm2 (100 mW/cm2, 300 s) 56.9 ± 7.2
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of technical limitations and side-ef-

fects. We have already confirmed that

irradiation with 15 J/cm2 of blue light

did not affect cell viability (data not

shown). Even though the effect on host

tissues must be carefully investigated in

future studies, the present study clearly

demonstrated that photodynamic ther-

apy against periodontopathogenic bac-

teria by monochromatic irradiation is a

promising and hopeful strategy for the

alternative management of not only

periodontal disease, but also systemic

diseases.
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