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Systemic cyclosporine A administra-

tion can induce gingival overgrowth

(1–4). This effect may be related to

cyclosporine A-induced epithelial

hyperplasia (5–7). Studies have found

that cyclosporine A up-regulates epi-

thelial growth factor and keratinocyte

growth factor (8–10), both of which are

produced by epithelial cells. The

detailed mechanisms of drug-elicited

gingival epithelial hyperplasia, in par-

ticular drug effects on cell cycle

regulation, are still unknown.

It was proposed that transactivation

of p21 might halt the cell cycle through

the cyclosporine A-induced accumula-

tion of p53, because cell cycle arrest

induced by cyclosporine A was coinci-

dent with elevated levels of p53 in renal

tubular epithelial cells (11). When

neutralizing antibody to transforming

growth factor-b was used to affect

transforming growth factor-b produc-

tion, the induction of p21 by cyclos-

porine A was inhibited (12). In

addition, p53-independent and p53-

dependent induction of p21 mRNA

occurred simultaneously in murine

kidney cells (13). Whether p21 has any

involvement in cyclosporine A-induced

gingival epithelial hyperplasia (via

either the p53-dependent or the p53-

independent pathway) has never been
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Background and Objective: Expression of p21 and p53 were examined, at gene and

protein levels, in edentulous gingival epithelial cells from rats and from a human

oral epidermoid carcinoma cell line, OECM1, after cyclosporine A therapy.

Material and Methods: In vivo: 20 partially edentulous SD rats were assigned into

cyclosporine A feeding and control groups. After the rats were killed, p21 and p53

in gingiva were evaluated by reverse transcription-polymerase chain reaction and

immunohistochemistry. In vitro: after cyclosporine A treatment, p21 and p53 of

OECM1 cells were evaluated by western blot and the luciferase assay. The dis-

tribution of OECM1 cells in each phase of the cell cycle was evaluated by flow

cytometry.

Results: The mRNA expression of p21 was significantly higher in the cyclosporine

A group than in the control group. A greater number of positive anti-p21-stained

cells were observed in the gingival epithelium of the cyclosporine A group than in

the control group. Significantly higher levels of p21 protein and activity were

observed in OECM1 cells after cyclosporine A treatment than in cells without

treatment. A relative increase of cells in G0/G1 phases, and a decrease of cells in

G2/M phases, were observed in OECM1 cells after cyclosporine A treatment.

Conclusion: In the present study, higher p21 mRNA and protein expressions were

observed after cyclosporine A treatment. Thus, an up-regulation of p21 expres-

sion, via a p53-independent pathway, by cyclosporine A in gingival and oral

epithelial cells was suggested.
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evaluated. In this study, the gene and

protein expression of p21 after cyclo-

sporine A therapy was examined in the

overgrown edentulous gingivae of rats

(7) and in an oral epithelial cell

line (OECM1) (10), derived from a

human oral epidermoid carcinoma, to

elucidate the roles of p21 and p53 in

cyclosporine A-induced gingival epi-

thelial alterations.

Material and methods

In vivo experiment

Twenty male 5-wk-old Sprague–Daw-

ley rats, weighing 120–150 g, were used

in the study. The rats were randomly

assigned into a cyclosporine A group

and a control group after a 3-wk

wound-healing period following

extraction of all the maxillary right

molars, as in our previous study (7).

Animals in the cyclosporine A group

received cyclosporine A (Sandimmun;

Sandoz, Basel, Switzerland) (30 mg/kg

body weight in mineral oil), daily by

gastric feeding, for 4 wk, whereas rats

in the control group received mineral

oil alone. At the end of the study, all

animals were killed by carbon dioxide

inhalation. Half of the edentulous

gingival specimens (five from each

group) were immediately frozen in

liquid nitrogen and stored at )70�C for

later evaluation by reverse transcrip-

tion–polymerase chain reaction (RT–

PCR). The other specimens were

immediately fixed in 4% (v/v) para-

formaldehyde. After paraffin embed-

ding, serial tissue sections, 4 lm thick,

were sliced buccopalatally and exam-

ined by immunohistochemistry to

evaluate the expression of p21 and p53

proteins.

In vitro study

The oral epithelial cell line, OECM1,

derived from a human oral epidermoid

carcinoma, was a generous gift from

Dr Ching-Liang Meng at the National

Defense Medical Center. Cells were

grown in RPMI-1640 medium (Gib-

coBRL Life Technologies, Grand

Island, NY, USA) supplemented with

10% (v/v) fetal bovine serum, 50 U/

mL of penicillin G, 50 mg/mL of

streptomycin sulfate and 1.25 mg/mL

of amphotericin B (GibcoBRL Life

Technologies) (10). The cells were cul-

tured in a humidified atmosphere of

95% (v/v) air and 5% (v/v) CO2 at

37�C for 16 h. The cells were rinsed

with sterile phosphate-buffered saline

before cyclosporine A treatment, and

then stimulated using 1% (v/v) fetal

bovine serum culture medium supple-

mented with different concentrations

(0, 102, 103 or 104 ng/mL) of cyclosp-

orine A in dimethylsulfoxide (Sigma

Chemical Co., St Louis, MO, USA)

(14). During the first 2 d of cyclospo-

rine A treatment, cells were harvested

at 0, 6, 12, 18, 24 or 48 h to evaluate

cell cycle arrest by flow cytometry and

to examine p21 expression and activity

by western blotting and with a lucif-

erase assay, respectively.

Immunohistochemistry (in vivo)

After removal of paraffin, and hydra-

tion, tissue sections were boiled in

DAKO buffer (Dako Cytomation, San

Diego, CA, USA) for 15 min for anti-

gen retrieval. Endogenous peroxidase

activity was quenched by incubation

for 5 min with 0.1% (v/v) hydrogen

peroxide in distilled water. Tissue sec-

tions were washed twice, for 5 min

each wash, in phosphate-buffered sal-

ine and incubated for 2 h with non-

conjugated primary polyclonal

antibodies against p21 and p53 (Santa

Cruz Biotechnology, Santa Cruz, CA,

USA) (15,16), followed by further

incubation with biotinylated secondary

antibody, streptavidin-conjugated

horseradish peroxidase complexes and

3-amino-9-ethyl carbazole solution

(Dako Cytomation) for further periods

of 30 min, 30 min and 10 min,

respectively. Between incubations, cells

and sections were washed with sterile

phosphate-buffered saline. Specimens

were then counterstained with hema-

toxylin, dehydrated and mounted. Cells

showing positive staining for p21 and

p53 were examined under a microscope.

RNA extraction and RT–PCR (in vivo
and in vitro)

Gingival tissue and OECM1 cells were

homogenized. Total RNA was extrac-

ted with Trizol and quantified by

spectrophotometry at 260 nm. The

PCR system used was the GeneAmp�-

9700 kit (Applied Biosystems, Foster

City, CA, USA). Initially, 5 lg of total

RNA was reverse-transcribed into

total cDNA at 55�C for 1 h and this

material was used as a template for

PCR reactions and analysis. The PCR

reactions involved an initial denatura-

tion at 94�C for 2.5 min, followed by

30 or 35 cycles at 94�C for 30 s,

annealing at 58–62�C for 30 s, and

polymerization at 72�C for 60 s. The

PCR primer sequences used to amplify

p21 and p53 sequences are shown in

Table 1 (17). The number of RT–PCR

cycles was either 30 or 35 to allow

quantitative comparison of the

cDNAs. Amplified RT–PCR products

were run on 1% (w/v) agarose gels,

stained with ethidium bromide and

photographed (Transilluminator/SPOT

Diagnostic Instruments, Sterling

Heights, MI, USA). Gel images of RT–

PCR products were directly scanned

(ONE-DSCAN 1-D Gel Analysis Soft-

ware; Scanalytic Inc., Fairfax, VA,

USA) and relative densities were

obtained by determining the ratio of

signal intensities to glyceraldehyde-

3-phosphate dehydrogenase bands (18).

Table 1. The primers used to amplify p53, p21 and glyceraldehyde-3-phosphate dehydrog-

enase (a housekeeping gene), and the expected polymerase chain reaction product sizes

Gene Primer sequence

Product

size (bp) Reference

Rat p53 Sense CACAGTCGGATATGAGCATC 600 (17)

Antisense GTCGTCCAGATACTCAGCAT

Rat p21 Sense GTGAGACACCAGAGTGCAAGA 400 (17)

Antisense ACAGCGATATCGAGACACTCA

Rat GAPDH Sense TGCTGGTGCTGAGTATGTCG 646 (18)

Antisense ATTGAGAGCAATGCCAGCC

GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Gene expression in test (i.e. cyclospo-

rine A treated) and control groups was

compared.

Flow cytometry of OECM1 cells upon
cyclosporine A therapy (in vitro)

One milliliter of cell suspension was

diluted to 10 mL with phosphate-

buffered saline and centrifuged at 300 g

for 5 min at 4�C. The cell pellet was

resuspended in 1 mL of phosphate-

buffered saline, fixed in absolute eth-

anol at )20�C and stored at )20�C for

subsequent flow cytometry analysis.

Before flow cytometry, the cell suspen-

sion was centrifuged and resuspended

in 1 mL of phosphate-buffered saline.

A 100-lL volume of RNase A (Sigma

Chemical Co.) (200 lg/mL), boiled to

eliminate DNase, was added and the

suspension was incubated at 37�C for

30 min. One-hundred microlitres of

1 mg/mL propidium iodide (Sigma

Chemical Co.) was added and the sus-

pension was incubated at room tem-

perature for 5–10 min. The stained cell

suspension was diluted ten-fold in

phosphate-buffered saline immediately

prior to flow cytometry (Ortho Diag-

nostic System Model 50H; Ortho

Diagnostic Systems, Westwood, MA,

USA). Cell cycle analysis was carried

out using the Multicycle data analysis

package (Phoenix Flow Systems, San

Diego, CA, USA) (19).

Luciferase assay for p21 and p53
activities (in vitro)

OECM1 cells were maintained in

RPMI-1640 medium supplemented

with 10% (v/v) fetal bovine serum.

A total of 5 · 104 OECM1 cells were

seeded into 24-well plates and incuba-

ted overnight. Transient transfections

were performed using the FuGene

reagent (Roche Diagnostics, Indi-

anapolis, IN, USA) according to the

manufacturer’s protocol. The p21-

LUC (20) (0.6 lg) and the pG13-LUC

(21) (0.6 lg) reporter plasmids (kindly

provided by Dr S. M. Huang) (22)

were used to transfect the p21 and p53

genes, respectively. To evaluate p53

activities in OECM1 cells (23,24), a

histone deacetylase inhibitor, trichr-

ostatin A (0.25 ng/mL) (Sigma Chem-

ical Co.), was used. Luciferase

activities of wild-type p53-transfected

and trichrostatin A-treated cells were

measured using the Luciferase Assay

System (Promega Corp., Madison, WI,

USA) with a luminometer (Lumat

LB9501; Berthold GmbH & Co. KG,

Bad Wildbad, Germany) as described

in the manufacturer’s manual, and

data are presented as relative light

units, expressed as means and standard

deviations of data from three trans-

fected cultures (25).

Western blotting of p53 and p21
(in vitro)

Homogenates of lysed OECM1 cells

were centrifuged (13,000 g, 4�C,
15 min) and then boiled. Protein con-

centrations were determined by a pro-

tein microassay, using the BCATM

Protein Assay Reagent Kit (Pierce,

Rockford, IL, USA), and proteins

were then separated by sodium dodecyl

sulfate–polyacrylamide gel electro-

phoresis in 18% (w/v) polyacrylamide

gels. Proteins were electroblotted to

poly(vinylidene difluoride) membranes.

Nonspecific binding was blocked by

incubating blots for 1 h in 10% (v/v)

fetal calf serum. After six washes with

phosphate-buffered saline containing

0.005% (v/v) Tween 20, the p21, p53

and actin proteins were detected by

incubation with primary antibodies

(1 : 1000 dilutions of mouse monoclo-

nal anti-p21, rabbit polyclonal anti-p53

and mouse monoclonal anti-actin;

Chemicon International Inc., Temecu-

la, CA, USA) (15,16,26) overnight at

4�C followed by incubation with sec-

ondary antibody (goat antimouse or

goat antirabbit) (Santa Cruz Biotech-

nology), conjugated with IgG-horse-

radish peroxidase at a dilution of 1 :

5000, for 1 h. Antibody-reactive pro-

teins were detected using enhanced

chemiluminescence. Optical densities

were obtained after three determina-

tions for each band in three different

gels. The expressions of p21 and p53 in

cyclosporine A-treated OECM1 cells

are presented as proportional increases

or deceases relative to the levels

observed in control cells. In this study,

cells treated with 10% (v/v) fetal

bovine serum culture medium and

dimethylsulfoxide solvent are controls,

whereas cells treated with 100 and

1000 ng/mL of cyclosporine A are

experimental groups. After 24 h of

treatment, cells of all groups were har-

vested for western blotting of proteins.

Statistical analysis

Student’s t-tests were used to evaluate

differences between the control group

and the cyclosporine A group in the

expression of mRNAs of p21, p53 and

glyceraldehyde-3-phosphate dehydroge-

nase (relative densities byRT–PCR) and

the distribution of OECM1 cells in each

phase of the cell cycle, as measured

withflowcytometry.A p-value of<0.05

was selected as the significance level.

Results

In vivo study

The expression of p21 mRNA, as

measured by RT–PCR, was signifi-

cantly higher in gingival tissues of

cyclosporine A-treated animals than in

gingival tissues of the control group,

whereas p53 expression was similar in

the two groups (Fig. 1). Immunohist-
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Fig. 1. Comparison of p21 and p53 mRNA

expression levels (relative to that of glyceral-

dehyde-3-phosphate dehydrogenase mRNA)

in rat edentulous gingival tissue. A test group

(exposed to cyclosporine A) (hatched bars)

and a control group (white bars) are com-

pared. Means and standard deviations are

given, and significant differences at p < 0.05

are marked with asterisks. The insert is a gel

image showing mRNA encoding p21, p53

and glyceraldehyde-3-phosphate dehydro-

genase extracted from gingival tissue of a

control and a cyclosporine A-treated rat.

CsA, cyclosporine A; GAPDH, glycer-

aldehyde-3-phosphate dehydrogenase.
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ochemistry showed that many cells of

gingival tissues from the control and

cyclosporine A-treated animals stained

positive for p21 and p53. Such cells

included both epithelial and connect-

ive tissue stromal cells. A greater

number of positively staining p21-

expressing cells were observed on

the gingival epithelial layer in the

cyclosporine A group than in the

control group, but the numbers of

cells with p53 staining were similar in

the two groups (Fig. 2).

In vitro study

Western blotting results showed more

p21protein inOECM1cells treatedwith

cyclosporine A (100 and 1000 ng/mL)

than in cells without cyclosporine A

treatment (including cells receiving no

treatment or dimethylsulfoxide solvent

treatment only) (Fig. 3). Activities of

the p21 and p53 promoters were evalu-

ated by luciferase assays (Fig. 4).

Detectable levels of activity of the p21

promoter (from the p21-LUC plasmid)

were recorded for up to 48 h after

treatment of the cells with 103 ng/mL of

cyclosporine A (Fig. 4A). Higher p21

promoter activities were observed in

cells after cyclosporineAtreatment than

in cells without cyclosporineA exposure

(Fig. 4B). The highest activities were

recorded when cyclosporine A was used

at 10 ng/mLand102 ng/mL.Detectable

p53 promoter activities were recorded in

OECM1 cells after p53 transfection and

trichrostatin A treatment (Fig. 4C)

but p53 promoter activities were quite

low in OECM1 cells after cyclosporine

A treatment. Flow cytometry showed

that the cell cycle distributions of

OECM1 cells changed when cells

received cyclosporine A treatment

(Fig. 5). An increase in the proportion

of cells in the G0/G1 phases, and a cor-

responding decrease in cells in theG2/M

phases, was observed in cells exposed to

cyclosporine A when compared to cells

without cyclosporine A (Table 2).

Discussion

In this study, the gene and protein

expressions of p21 and p53 upon

cyclosporine A therapy were examined

in edentulous gingivae of rats and in

the human epithelial cell line, OECM1.

Protein p21, also called WAF1,

CAP20, Cip1, or Sdi1 (21,27–29), is the

founding member of the Cip/Kip

family of cyclin-dependent kinase

inhibitors, which also includes p27

(30,31) and p57 (32,33). The cyclin-

dependent kinase inhibitors bind to,

and inhibit, a broad range of cyclin/

cyclin-dependent kinase complexes

(34,35). In normal cells, cyclin-

dependent kinases exist predominantly

in multiple quaternary complexes, each

containing a cyclin-dependent kinase,

cyclin, the proliferating cell nuclear

antigen and the p21 protein, whereas

proliferating cell nuclear antigen and

p21 are lost in some transformed cells

(28). Protein p21 plays an essential role

in growth arrest after DNA damage

(36–38), and overexpression of p21

leads to G1 and G2 (39) or S-phase

arrest (40). In addition to regulating

normal cell cycle progression, p21

integrates genotoxic signal insults into

apoptotic signaling pathways that

ultimately determine cell fate (41).

The tumor suppressor gene, p53,

plays a fundamental role in controlling

cell cycle checkpoints, apoptosis and

genetic stability. Wild-type p53 con-

trols these processes by regulating the

transcription of target genes through

binding to consensus DNA sites in

promoter regions (42). Transcriptional

targets of p53 have been identified and

regulate DNA repair, cell growth, or

cell death processes (43–50). Strong
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C D

Fig. 2. Micrographs showing immunohistochemical staining of p21 and p53 in gingival

tissue from control and cyclosporine A-treated rats. (A) p21 control; (B) p21 cyclosporine

A-treated; (C) p53 control; and (D) p53 cyclosporine A-treated. CsA, cyclosporine A.

Nontreatment

p21

p53

Actin

DMSO
CsA

100 ng/mL
CsA

1000 ng/mL

Fig. 3. Effect of cyclosporine A on the

expression of p21, p53 and actin proteins, as

shown by western blotting, in OECM1 cells

after treatment with dimethylsulfoxide

(solvent) or cyclosporine A at either 100 or

1000 ng/mL. The experiment was repeated

three times. CsA, cyclosporine A; DMSO,

dimethylsulfoxide.
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evidence suggests that one of the most

important downstream target genes of

p53 is p21 (28). p21 is directly induced

by wild-type p53 through consensus

p53-binding sequences in the p21 pro-

moter (21). Some studies have also

shown, however, that p21 may be

induced by p53-independent pathways

(51–53). In the present study, cyclo-

sporine A induced a greater expression

and activity of p21, but not of p53,

both in vivo and in vitro. We therefore

suggest that cyclosporine A may

up-regulate p21 expression via a p53-

independent pathway in gingival epi-

thelial cells. The up-regulated p21 may

act independently of p53 to increase

cell stasis in the G0/G1 phases.

Enhanced expression of transform-

ing growth factor-b and of the trans-

forming growth factor-b receptor in

cyclosporine A-induced gingival over-

growth has recently been observed

(54,55). Possible functions of trans-

forming growth factor-b1 in cyclo-

sporine A-induced overgrown gingivae

have been explored. Such functionsmay

include fibroblast proliferation (56),

angiogenesis (54), tissue fibrosis (57),

inhibition of matrix metalloproteinases
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and matrix protein accumulation (58).

An in vitro study has further indicated

that transforming growth factor-b1
induces p21 expression and apoptosis in

a transforming growth factor-b1-
dependent manner (12). The prominent

expression of p21 shown in the present

study may occur partially because of

transforming growth factor-b1 eleva-

tion.

Enhanced expression of epithelial

growth factor and its receptor after

cyclosporine A treatment were

observed in the edentulous gingivae of

rats and OECM1 cells in our previous

study (10). Epithelial growth factor can

enhance cell proliferation and DNA

synthesis and has been thought to be a

mitogen for fibroblasts and epithelial

cells (59,60). In contrast, long-term

treatment with epithelial growth factor

may suppress cell growth, induce

apoptosis and enhance p21 expression

in the A431 squamous carcinoma cell

line that overexpresses the epithelial

growth factor receptor (61–63). Thus,

long-term elevated levels of epithelial

growth factor and the epithelial growth

factor receptor in gingival tissue during

cyclosporine A therapy may, in part,

contribute to the increased expression

of p21 seen here.

In the present work, the expression

of p53 was not affected by cyclosporine

A therapy, either in vivo or in vitro. In

the in vitro study, OECM1 cells, and

not normal gingival epithelial cells,

were used. To measure p53 activities in

transformed OECM1 cells, activities

were recorded after transfection of

wild-type p53 and trichrostatin A

treatment (Fig. 4C). Studies have

shown that trichrostatin A can stimu-

late wild-type p53 activities in both

normal and transformed cells

(23,24,64). In addition, escaping from

cell cycle arrest and apoptosis may be a

mechanism related to cell immortali-

zation (65,66), as shown by the

OECM1 cell line. The elevated p21

expression during cyclosporine A

therapy in this study may indicate cell

cycle arrest or further apoptosis in the

immortal OECM1 cells.

In conclusion, the present in vitro and

in vivo studies show that cyclosporine A

therapy leads to the overexpression of

p21, but not of p53. Treatment with

cyclosporine A caused an increased

distribution of OECM1 cells in the G0/

G1 phases and a corresponding

decrease of cells in the G2/M phase.

Therefore, we suggest that cyclosporine

A may up-regulate p21 expression by a

p53-independent pathway, leading to

epithelial cell cycle stasis in oral/gingival

cells. Because of the limitations of our

study, the p53-dependent up-regulation

of p21 expression is still not completely

neglected. In addition, the present

discovery of cyclosporine A-induced

cell cycle stasis, combined with the

enhanced cell proliferation reported in

our previous studies, may further indi-

cate a rapid cell turnover in cyclosporine

A-induced gingival overgrowth.
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