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The inflammatory response involves

humoral and cellular responses to a

given challenge. There has been

increasing demand to assess the effects

of aging on immune cell functions. It

has been well documented that the

numbers and function of T cells and B

cells decrease progressively during

aging (1), although the impact of aging

on innate immunity remains to be

clarified. Numerous studies in rodent

models have documented a decline in

immune responsiveness with age (2–5).

In particular, these studies have indi-

cated that advancing age produces a

general depression in the adaptive

immune response (5), which is accom-

panied by an increase in the production

and release of reactive oxygen species,

reactive nitrogen species and the

activity of cyclooxygenase enzymes,

with an accompanying increase in

prostaglandin production (1,3,4). In

addition, there appears to be an

up-regulation of inflammatory cyto-

kine gene expression with aging,

including the cytokines tumor necrosis

factor-a, interleukin-1, interleukin-6,

interferon-c and transforming growth

factor-b (5–7). However, assessing the
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Background and Objective: Dietary manipulation, including caloric restriction, has

been shown to impact host response capabilities significantly, particularly in

association with aging. This investigation compared systemic inflammatory and

immune-response molecules in rhesus monkeys (Macaca mulatta).

Material and Methods: Monkeys on continuous long-term calorie-restricted diets

and a matched group of animals on a control ad libitum diet, were examined for

systemic response profiles including the effects of both gender and aging.

Results: The results demonstrated that haptoglobin and a1-antiglycoprotein levels

were elevated in the serum of male monkeys. Serum IgG responses to Campylo-

bacter rectus, Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis

were significantly elevated in female monkeys. While only the antibody to Fuso-

bacterium nucleatum was significantly affected by the calorie-restricted diet

in female monkeys, antibody levels to Prevotella intermedia, C. rectus and

Treponema denticola demonstrated a similar trend.

Conclusion: In this investigation, only certain serum antibody levels were influ-

enced by the age of male animals, which was seemingly related to increasing

clinical disease in this gender. More generally, analytes were modulated by gender

and/or diet in this oral model system of mucosal microbial challenge.
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impact of aging on cellular functions in

humans is complicated by the effects of

chronic diseases frequently observed in

elderly persons. Thus, in human sys-

tems it continues to be a challenge to

delineate the effects of aging vs. the

effects of systemic or environmental

conditions (8).

Caloric restriction of dietary intake

has been shown to alter significantly a

wide range of biological processes and,

in particular, to attenuate age-related

disease in rodent models of aging

(4,8–11). This dietary manipulation has

been demonstrated to attenuate the

development of oxygen radical-

induced cell damage, to maintain more

robust host responses protecting

against deleterious extrinsic and

intrinsic challenges to normal cell, tis-

sue and organ function, and to main-

tain general body-wide physiologic

functions (12–25). Recent studies have

interpreted these macro-observations

at the molecular level by identifying

that caloric restriction could stop

aging-associated changes in the

expression of numerous genes (12,13),

including altering insulin-like growth

factor 1, which is associated with age-

related decreases in insulin sensitivity

(20,26,27). Only recently have reports

emerged regarding the potential for this

dietary manipulation to alter physio-

logic parameters also in nonhuman

primates, a species more closely related

to humans than rodents (28–36). As

many of these findings are similar to

those seen in rodent models, the non-

human primates may provide a valu-

able link between rodent studies of

reduced-calorie diets and application of

this approach to a human population.

Periodontal disease is a predominant

chronic inflammatory disease of man-

kind (37–39) that is a consequence of

oral infection, chronic inflammation

and destruction of collagen and bone,

and can be documented to occur nat-

urally with aging in humans and non-

human primates (37,40,41). The extent

and severity of tissue destruction is

affected by the magnitude and charac-

teristics of the host response and may

be modulated by environmental, sys-

temic or genetic factors (38,39,42).

Periodontal destruction is cumulative

and not naturally reversible and thus it

is unclear as to whether aging impacts

the rate of disease progression or just

reflects the accumulation of disease

over time (41,43). The importance of

periodontal disease as a model of host–

bacterial interactions, inflammation

and inflammatory disease lies in the

ability to isolate and characterize bac-

terial and host factors from the oral

cavity in a noninvasive manner and to

correlate these changes with host tissue

pathology. The nonhuman primate

model has provided the essential bridge

for understanding the interaction of

the subgingival microbiota with the

inflammatory/immune response tar-

geted to selected members of this

microbiota (44–48). Increasing evi-

dence also suggests that these oral

microorganisms can translocate to the

systemic circulation and may routinely

stimulate the reticuloendothelial and

immune systems (49–51). Recent stud-

ies have provided clear evidence that

the oral cavity can function as a nidus

for a variety of potential medical

problems (49,51,52). Several members

of the periodontopathic microbiota

have been found to be involved in

other systemic infections, as well as in

the induction of an acute-phase

response (53). Increased levels of acute-

phase proteins (e.g. C-reactive protein

and haptoglobin) have been identified

in adult patients with periodontitis and

may reflect the infection and manifes-

tations of acute and chronic inflam-

mation that exist in the periodontium

(53–56). Moreover, it was also evident

that patients exhibiting the most severe

disease had the greatest levels of each

of the acute-phase reactants. In addi-

tion, a serum antibody response is

observed in these localized periodontal

infections. It has been suggested that

this serum response may reflect a

local gingival inflammatory/immune

response to the bacteria. Thus, the

systemic antibody response observed in

periodontitis patients appears to result

from specific elicitation of antibody to

an infection with the microorganism

(50,57,58).

This study utilized the accessibility

and natural development of chronic

inflammation and disease in the oral

cavity to examine the effects of long-

term dietary calorie restriction on

inflammatory/immune responses in a

human-like model system, the rhesus

monkey.

Material and methods

Animals and diet

Eighty-three rhesus monkeys (Macaca

mulatta), which are part of an ongoing

study of caloric restriction and aging,

were used in these studies (Table 1).

These animals have been housed at the

National Institutes of Health Animal

Center (Poolesville, MD, USA). The

ages of the monkeys ranged from 13–

23 years for females and 16–33 years

for males. The monkeys live in a con-

trolled environment with a standard

diet and are continually monitored

with regard to health status. The cal-

orie-restricted (CR) monkeys have

been subjected to a 30% reduction in

dietary caloric intake relative to con-

trol (CON) animals which started at

1–3 years or 4–16 years of age for

adolescents and adults, respectively

(33). The CR diet was supplemented

with minerals and vitamins up to 100%

daily allowance for CR animals. The

diet was supplemented once weekly

with fresh fruit for all monkeys. At the

time of the current study, animals had

been assigned to continuous long-term

caloric restriction or control ad libitum

diets for periods of 13–17 years.

Serum analyses

Blood was collected from all monkeys

under ketamine or telazol anesthesia

following an overnight fast, and then

serum was separated and stored at

)80�C until assay, when IgG to six oral

bacteria was evaluated using an

enzyme-linked immunosorbent assay,

as described previously (59,60). Briefly,

Table 1. Age distribution of the nonhuman

primate cohort in the study

Gender Diet group n Mean ± SD

Female CON 19 18.74 ± 1.29

CR 16 16.94 ± 1.22

Male CON 26 22.35 ± 1.21

CR 20 22.70 ± 1.53

CON, control ad libitum; CR, calorie

restricted.
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Campylobacter rectus, Fusobacterium

nucleatum, Actinobacillus actinomyce-

temcomitans, Prevotella intermedia,

Treponema denticola and Porphyro-

monas gingivalis were grown in broth

under anaerobic conditions, harvested

by centrifugation, formalin-killed,

washed and stored at )20�C for use as

antigens (61).

Selected acute-phase reactants

were quantified using enzyme-linked

immunosorbent assay procedures

developed in our laboratory (53,56,62).

Specifically we examined the levels of

C-reactive protein, haptoglobin,

fibrinogen, a1-antiproteinase and

a1-acid glycoprotein in serum samples

from all animals.

Statistical analyses

In the primary analysis, the effects of

age and caloric restriction were ana-

lyzed separately by gender because of

different age distributions (Table 1).

Age was modeled as a linear variable.

In secondary analyses, data were sub-

mitted to a linear regression analysis in

which gender was included in the

model. The purpose of the secondary

analysis was to verify the robustness of

the results. Statistical analysis was

performed using JMP (SAS, Inc., Cary,

NC). Statistical significance was set at

an alpha level of 0.05.

Results

Systemic acute-phase reactants

The levels of various acute-phase

reactants were determined in serum

obtained from each monkey and com-

pared based upon gender and diet.

Figure 1 demonstrates that the levels

of haptoglobin and a1-acidglycopro-
tein were significantly higher in male

than in female monkeys and were not

affected by a caloric-restriction diet.

Systemic antibody responses to oral
bacteria

Figures 2–5 show the levels of serum

IgG in a group of oral bacteria com-

monly associated with periodontal

disease (63,64). In Fig. 2 antibody

levels to A. actinomycetemcomitans

and P. gingivalis were significantly

higher in the female monkeys com-

pared with the male monkeys, with no

effect of diet or age. In Fig. 3 the level

of antibody to P. intermedia is shown

to be significantly related to age in

male animals, although the females did

exhibit a trend toward higher levels of

antibody, irrespective of diet. Figure 4

illustrates that serum IgG to F. nucle-

atum was significantly elevated by a

caloric-restriction diet in the female

monkeys only, and the levels increased

significantly with age in the males and
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Fig. 1. Acute-phase reactants in serum from nonhuman primates, categorized based upon

gender (F, female; M, male) and diet (CR, calorie restricted; CON, control ad libitum). The

bars denote the mean levels of each mediator (HG, haptoglobin; FIB, fibrinogen; CRP,

C-reactive protein; a1-AT, a1-antiproteinase; a1-AG, a1-acid glycoprotein) and the vertical
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was unrelated to diet. Figure 5 shows

that the serum antibody levels to

C. rectus were significantly elevated in

female monkeys compared with male

monkeys, and these levels increased

significantly in male monkeys with age,

unrelated to diet.

Discussion

This investigation described the char-

acteristics of systemic inflammatory

and immune responses of a nonhuman

primate cohort related to a calorie-

restricted diet. This dietary manipula-

tion has been demonstrated to

contribute towards potential thera-

peutic outcomes related to biologic

processes adversely affected by aging

(10,11,15,16). Caloric restriction has

been shown to minimize the decline in

specific immune functions (1,5), as well

as to attenuate destructive inflamma-

tory responses (4). Various physiologic

parameters (4,8,14,25,35,65) and hor-

monal changes (thyroid hormones,

melatonin and dehydroepiandroster-

one sulfate) (19,35,66,67) that are

related to improved aging have been

reported in nonhuman primates on a

long-term caloric-restriction diet.

In the current study, the nonhuman

primate model was used to examine the

effect of a calorie-restricted diet on

systemic inflammatory and antibody

responses to oral commensal and

opportunistic bacterial pathogens.

Periodontal disease is a complex

microbial infection in which similari-

ties have been observed between

humans and nonhman primates (48,54).

This oral infection elicits a chronic

immunoinflammatory lesion that

destroys soft and hard tissues, resulting

in destruction of the periodontium

(37,68–70). While the extent and

severity of periodontal disease is

related to aging (41,71), it is unclear

whether this finding represents a

cumulative expression of years/decades

of challenge to the tissues or an exac-

erbated disease process reflecting

altered aging processes measured at a

molecular level. Periodontal disease

provides a model of host–bacterial

interactions, inflammation and adap-

tive immune responses that can be used

to examine nutritional and aging
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changes in the oral cavity. In addition,

ample evidence has demonstrated that

these local oral infections also stimu-

late a systemic inflammatory and

humoral immune response (50,53,58,

72–77).

We have previously reported an age-

associated increase in periodontal dis-

ease in nonhuman primates (Reynolds

M, G. Branch-Mays, D. Dawson III,

K.F. Novak, J. Mattison, J. Gunsolley,

D. Ingram,M. Lane, G. Roth, andM.J.

Novak. Effects of dietary calorie

restriction on inflammatory disease in a

nonhuman primate model. Submitted).

Periodontal disease was more prevalent

in the male nonhuman primates, with a

more dramatic effect related to aging.

The current study suggested that char-

acteristics of the systemic host

responses were consistent with these

disease findings. Systemic inflamma-

tory mediators were significantly

greater in male nonhuman primates

compared with female nonhuman pri-

mates. Human studies have shown that

increased severity/extent of perio-

dontitis results in higher serum levels of

these host response molecules

(53,72,78,79). Thus, it was expected

that the males would have elevated

levels of these mediators. Although the

male monkeys on a long-term caloric-

restriction diet had generally lower

levels across the profile of acute-phase

reactants, this difference was not sta-

tistically significant. These outcomes

are consistent with cross-sectional and

longitudinal observations of human

populations demonstrating elevated

levels of acute-phase reactants in

periodontitis and a decrease in these

mediators after mechanical and anti-

inflammatory therapies (53,72,78,79).

Because these systemic inflammatory

responses have been suggested to

reflect and/or contribute to chronic

inflammatory diseases (e.g. cardio-

vascular and diabetes), the contribu-

tion of chronic periodontitis to these

systemic biomolecules has been sug-

gested to be a biologic link between

oral and systemic diseases (80).

In humans, both the specificity and

levels of serum antibody responses to

oral pathogens are clearly related to

periodontal disease (50,58,77,81,82).

Both antibody frequency and level

increase with increasing severity of

periodontal disease, and various stud-

ies have demonstrated that these serum

antibody levels will be elevated fol-

lowing mechanical therapy and will

correlate with response to treatment

(50,83–86). Moreover, changes in ser-

um antibody to selected oral pathogens

appear to occur following emergence

of the microorganisms in oral biofilm

samples and prior to the identification

of progressing disease (50,87). These

findings suggest that the humoral im-

mune response in local tissues, reflected

in the systemic circulation, is probably

an important component of the host�s
responses attempting to re-establish

homeostasis by controlling the chal-

lenge of these extracellular bacterial

pathogens. Interestingly, we observed

significantly elevated antibody to these

oral pathogens in female monkeys who

displayed less periodontal inflamma-

tion and disease than the male mon-

keys (Reynolds M, G. Branch-Mays,

D. Dawson III, K.F. Novak,

J. Mattison, J. Gunsolley, D. Ingram,

M. Lane, G. Roth, and M.J. Novak.

Effects of dietary calorie restriction on

inflammatory disease in a nonhuman

primate model. Submitted). The anti-

body responses also appeared to be

generally elevated with caloric restric-

tion, with the most substantive impact

in females. These results suggest a

gender-specific differentiation of re-

sponses oriented towards a potentially

destructive inflammatory response in

males vs. a protective adaptive immune

response in females. This type of

observation has a basis in existing data

demonstrating inherent gender-based

variations in levels of immunoglobu-

lins (88–90) and other host response

biomarkers (91,92). Subsequent stud-

ies, implementing a longitudinal, pro-

spective design creating a ligature-

induced periodontal challenge in these

animals, should help to clarify the

dynamics of the relationship of perio-

dontal disease with these response

profiles. Lastly, of the analytes mea-

sured, serum antibody levels demon-

strated some positive correlations

with aging, primarily in the males,

which was consistent with increased

clinical parameters of periodontal

disease in this group.

These cross-sectional observations

provide a snapshot of host serum

acute-phase and antibody responses

in nonhuman primates. The response

profiles supported an inherently dif-

ferent response pattern in monkeys

that was gender determined, and

demonstrated differences in the gen-

ders with respect to the impact of

caloric restriction on these systemic

responses. The results of further

analyses will be used to establish in

more detail the interaction of oral

clinical presentation and these

responses, demonstrating the useful-

ness of the oral cavity as a model for

aging studies of host–bacterial

interactions.
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