
Cyclosporine A inhibits the
expression of membrane
type-I matrix
metalloproteinase in gingiva

H-C. Chiu1,2, Y-T. Lu2, Y-T. Chin2,3,
H-P. Tu2, C-Y. Chiang2, C-H. Gau4,
S. Nieh5, E. Fu2

1Graduate Institute of Medical Sciences,
National Defense Medical Center, Taipei,
Taiwan, China, 2Department of Periodontology,
School of Dentistry, National Defense Medical
Center and Tri-Service General Hospital, Taipei,
Taiwan, China, 3Graduate Institute of Life
Sciences, National Defense Medical Center,
Taipei, Taiwan, China, 4Department of Nursing,
Kang-Ning Junior College of Medical Care and
Management, Taipei, Taiwan, China and
5Department of Pathology, National Defense
Medical Center and Tri-Service General
Hospital, Taipei, Taiwan, China

Gingival overgrowth induced by

cyclosporine A, an immunosuppres-

sant, is characterized by epithelial

hyperplasia, interstitial fibrosis and

focal inflammatory cell infiltration (1).

Although complex interactions among

mediators of tissue remodeling and

inflammation may be involved in gin-

gival overgrowth, the exact mechanism
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Background and Objective: Membrane type-I matrix metalloproteinase (MMP)

and tissue inhibitor of metalloproteinase-2 (TIMP-2) regulate the activation of

MMP-2; however, their roles in the activation of MMP-2 in gingiva during

treatment with cyclosporine A are still unknown. Therefore, the expressions of

membrane type-I MMP and TIMP-2, as well as MMP-2, in gingivae upon

treatment with cyclosporine A were examined in vivo and in vitro.

Material and Methods: Thirty-four rats were divided into two groups after eden-

tulous ridges were established. The experimental group received 30 mg/kg/d of

cyclosporine A and the control group received vehicle. At the end of the experi-

mental period, the rats were killed, the gingivae were obtained and the expression

of mRNA and protein of membrane type-I MMP, TIMP-2 and MMP-2 in gingiva

were examined using real-time polymerase chain reaction and immunohisto-

chemistry. In human gingival fibroblasts, the activity of MMP-2 and the expres-

sion of MMP-2, membrane type-I MMP and TIMP-2 mRNAs were examined

(using zymography and reverse transcription–polymerase chain reaction, respec-

tively) after treatment with cyclosporine A.

Results: In gingivae of rats, cyclosporine A significantly decreased the expression

of mRNA and protein of membrane type-I MMP, but not of TIMP-2. The

expression of MMP-2 mRNA was unaffected but the expression of MMP-2 pro-

tein showed a significant decrease upon treatment with cyclosporine A. In

fibroblast culture medium, the presence of cyclosporine A induced a decrease in

MMP-2 activity in a dose-dependent manner. The expression of MMP-2, mem-

brane type-I MMP and TIMP-2 mRNAs in fibroblasts was not significantly

affected by cyclosporine A; however, in fibroblasts the ratio of mRNA expression

of membrane type-I MMP to that of TIMP-2 decreased as the cyclosporine A dose

was increased.

Conclusion: Cyclosporine A inhibits the expression of membrane type-I MMP in

gingiva and it may further reduce the activation of MMP-2.
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is not fully understood. Cyclospor-

ine A affects fibroblast proliferation,

promotes abnormal accumulation of

extracellular matrix components in the

gingival lamina propria and appears to

affect the catabolic enzymes of the

extracellular matrix (2–6).

The matrix metalloproteinases

(MMPs) are a family of structurally

related proteins that degrade most, if

not all, components of the extracellular

matrix and basal membranes in a zinc-

dependent manner at physiological pH

(7,8). They have been implicated in

extracellular matrix remodeling in

embryonic development, inflamma-

tion, tumor invasion, metastasis and

fibrosis (9). Matrix metalloproteinase-2

plays a pivotal role in remodeling

basement membranes via pericellular

and cell-attachment proteins (10–12).

Matrix metalloproteinase-2 is secreted

from cells as an inactive zymogen, pro-

MMP-2. Activation occurs via a

membrane-linked process that involves

membrane type-1 MMP (MMP-14

metalloproteinase) (13) and tissue

inhibitor of metalloproteinase-2

(TIMP-2) (14,15). Membrane type-I

MMP, like the other five membrane

type MMPs, differs from other MMPs

in that it has a transmembrane domain

that localizes the enzyme to the plasma

membrane in addition to the three

basic domains that characterize all

other MMPs (13). A complex consist-

ing of membrane type-I MMP and

TIMP-2 serves as a cell-surface recep-

tor for pro-MMP-2. The cleavage of

pro-MMP-2 (68 kDa) to activate

MMP-2 (62 kDa) is accomplished by a

TIMP-2-free neighboring membrane

type-I MMP molecule. Free TIMP-2,

on the other hand, inhibits this cleavage

reaction/activation. Thus, the ratio of

membrane type-I MMP to TIMP-2 is

critical for MMP-2 activation (15–18).

Cyclosporine A has been demon-

strated to decrease MMP-2 activity

(19–21) and increases deposition of

type-IV collagens (22,23). Some studies

have also shown that periodontal

pathogens activate MMP-2 by affect-

ing the activities of membrane type-I

MMP and TIMP-2 (24,25). Whether

such regulation occurs in cyclospor-

ine A-induced gingival overgrowth is

unknown. We therefore studied the

in vivo and in vitro expression of gingi-

val membrane type-I MMP, TIMP-2

and MMP-2 after treatment with

cyclosporine A to elucidate their roles

in the induction of gingival overgrowth.

Material and methods

Animal study

Maxillary edentulous ridges were

established in 34male 3-wk-old Sprague

Dawley rats (120–150 g), as described

previously. In brief, all right maxillary

molars were extracted from rats under

ketamine anesthesia. After a 2-wk

healing period, the rats were randomly

assigned to cyclosporine A and control

groups by simple random sampling.

Animals in the cyclosporine A group

received 30 mg/kg/d of cyclosporine A

(Sandimmun; Sandoz, Basel, Switzer-

land) by gastric feeding for 4 wk and the

rats in the control group received min-

eral oil alone. At the end of the fourth

week, all rats were killed by carbon

dioxide inhalation. The gingival and

surrounding mucosae of the edentulous

ridge were immediately frozen in liquid

nitrogen and stored at )80�C. Three

specimens from each group were pre-

pared for real-time polymerase chain

reaction (PCR) and 14 specimens (seven

per group) were fixed in 4% parafor-

maldehyde. After dehydration and

embedding, the gingivae were sectioned

buccopalatally into 4-lm-thick sections

and stained for immunohistochemistry

analyses.

Real-time PCR

Total RNA was extracted from

homogenized gingival tissue and then

reverse transcribed. The PCR primers

used were as follows: membrane type-I

MMP, sense (5¢-GAACTTCGTGTT-

GCCTGATG-3¢) and antisense (5¢-AG-

AGGTGGTTCTGGGTTGAG-3¢), with
an expected product of 123 bp (acces-

sionno.:NM_031056.1); TIMP-2, sense

(5¢-CAGGGAAGGCGGAAGGA-3¢)
and antisense (5¢-CCAGGGCAC-

AATAAAGTCACAGA-3¢), with an

expected product of 85 bp (accession

no.: NM_021989.2); MMP-2, Rat

MMP2 Gene Expression System (Ap-

plied Biosystems, Foster City, CA,

USA); and b-actin, Rat b-actin Gene

Expression System (Applied Bio-

systems). The ABI Real-time PCR

system (ABI 7000� Prism Sequence

Detection System; Applied Biosystems)

was used, according to the manufac-

turer�s instructions, to confirm the gene

expression of membrane type-I MMP,

TIMP-2 and MMP-2. In brief, the

desired probes and primers for rat

membrane type-I MMP, TIMP-2,

MMP-2 and b-actin were selected from

the TaqMan Assay-on-Demand gene

expressions available from Applied

Biosystems. TaqMan PCR was con-

ducted in triplicate with 50-lL reaction

volumes of 1 · PCR buffer A, 2.5 mM

MgCl2, 0.4 lM each primer, 200 lM

each dNTP, 100 nMprobe and 0.025 U/

lL of TaqGold. For each experiment, a

large master mix of the above compo-

nents was made and aliquoted into each

optical reaction tube. Each primer/

probe set (5–10 lL) was then added and
PCRwas conducted using the following

cycle parameters: 1 cycle at 95�C for

12 min, followed by 40 cycles at 95�C
for 20 s and 60�C for 1 min. Data

analyses were carried out using

sequence detection software that calcu-

lates the threshold cycle (Ct) for each

reaction. The reaction was used to

quantify the amount of starting tem-

plate in the reaction. A difference in Ct

values (DCt) was calculated for the

expression of membrane type-I MMP,

TIMP-2 and MMP-2 by taking tripli-

cate Ct values from three reactions and

subtracting the mean Ct of the tripli-

cates for the control gene, b-actin, for
each cDNA sample at the same con-

centration. Relative gene expression for

membrane type-I MMP, TIMP-2 and

MMP-2 in cyclosporine A-treated or

untreated individuals was calculated

as = 2)DCt (DCt = CT vegf)CT
b-actin) (26).

Immunohistochemistry

Immunohistochemistry was used to

evaluate the expression of MMP-2,

membrane type-I MMP and TIMP-2

protein in gingival tissue. After fixation

in acetone, tissue sections were incu-

bated in distilled water containing 0.1%

hydrogen peroxide to quench endo-

genous peroxidase activity. The tissue
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sections were then incubated for 2 h

with unconjugated primary polyclonal

antibodies againstMMP-2 (mouse IgG)

(Chemicon International Inc., Temecu-

la, CA, USA), membrane type-I MMP

(rabbit IgG) (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA) and

TIMP-2 (rabbit IgG) (Santa Cruz Bio-

technology), and then incubated with

biotinylated secondary antibody,

streptavidin-conjugated horseradish

peroxidase complexes and 3-amino-9-

ethyl carbazole solution for 4, 20 and

20 min, respectively. Between incuba-

tions, the sections or fibroblasts were

washed with sterile phosphate-buffered

saline. The specimens were then washed

in distilled water and counterstained

with hematoxylin. The tissue sections

were dehydrated and mounted for

microscopic observation. Positively

stained MMP-2, membrane type-I

MMP and TIMP-2 cells were detected

using a microscope. The percentage of

cells staining positive were recorded

after counting the total cells in

0.0324 mm2 of gingival connective

tissue, as described in our previous

study (27).

Culture of human gingival fibroblasts

Human gingival fibroblasts were

obtained as described previously (28).

In brief, the gingival specimens were

immersed for 2 d at 4�C in Leibovitz L-

15 medium (Sigma-Aldrich Inc.,

St Louis, MO, USA) containing 2 mg/

mL of dispase II (Roche Diagnostics,

Indianapolis, IN, USA) and 10% fetal

bovine serum.After separation from the

outer epithelial layer, the connective

tissue was minced and digested for 24 h

in medium containing 10% fetal bovine

serum and 2 mg/mL of collagenase

(Sigma-Aldrich Inc.). The tissue was

then placed in flasks containing 10%

fetal bovine serum in Dulbecco�s mini-

mal essential medium/F-12 media to

enable the cells to migrate from the

explants. Fibroblasts were used for

experiments after they had undergone

four or more passages. Confluent

fibroblasts were starved in serum-free

medium for 2 d before being used in the

experiments. The gelatinolytic activity

of MMP-2 in supernatants of fibroblast

cultures treated with or without cyclo-

sporine A for 3 d was determined using

zymography. The expression ofMMP-2,

membrane type-I MMP, TIMP-2 and

glyceraldehyde-3-phosphate dehydro-

genase mRNAs in fibroblasts was

determined using reverse transcription–

polymerase chain reactions (RT-PCR).

Cell viability analysis

Human gingival fibroblasts were

placed in the wells of 96-well multi-

plates containing Dulbecco�s minimal

essential medium/F12 medium and

10% fetal bovine serum, and cultured

until confluent. Then, the cells were

washed once with phosphate-buffered

saline and the medium was replaced

with Dulbecco�s minimal essential

medium/F12 medium containing 1%

fetal bovine serum to starvation for

48 h. Before and after cyclosporine A

treatment (0, 50, 100, 500, 1000 or

5000 ng/mL in 50% dimethylsulfoxide)

for 72 h, we tested cell viability using

the MTS [3-(4,5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulf-

ophenyl)-2H-tetrazolium, inner salt]

assay (CellTiter 96_AQueous One

Solution; Promega, Madison, WI,

USA) according to the manufacturer�s
protocol. The effect of cyclosporine A

on the viability of gingival fibroblasts

was compared before and after cyclo-

sporine A treatment, as modified from

a previous study (29).

Gelatin zymography

The release of MMP-2 from human

gingival fibroblasts was evaluated using

gelatin zymography. The proteins in the

medium in which the fibroblasts were

incubated were separated under nonre-

ducing conditions using a 10% sodium

dodecyl sulfate–polyacrylamide gel

containing 0.1% gelatin. Equal

amounts of protein, measured using the

BCATM protein assay (Pierce, Rock-

ford, IL, USA), were loaded into each

lane of the gel. After electrophoresis, the

gel was shaken gently in renaturing

buffer (2.5% Triton X-100) at room

temperature (23 to 25�C) for 30 min to

remove sodiumdodecyl sulfate and then

incubated in developing buffer con-

taining 1 mM ZnCl, 5 mM CaCl2.H2O

and 2 M Tris–HCl (pH 8.8) at 37�C for

2 d. The gel was stained with 2.5%

Coomassie Brilliant Blue in 30% meth-

anol and10%acetic acid.The latent and

active forms ofMMP-2were detected as

72- and 62-kDa bands, respectively. The

gel images were scanned directly

(Transilluminator/SPOT; Diagnostic

Instruments, Sterling Heights, MI,

USA).

RT-PCR

Total RNA was extracted from

homogenized gingival fibroblasts and

then reverse transcribed. The PCR

conditions were as follows: an initial

denaturation at 94�C for 2 min 30 s

followed by 30 or 40 cycles at 94�C for

30 s, an appropriate annealing tem-

perature (58–60�C) for 30 s and then

72�C for 55 s. The PCR primers were:

membrane type-I MMP, sense (5¢-
CATCGCTGCCATGCAGAAGT-3¢)
and antisense (5¢-GTCATCATCGG-

GCAGCAC-3¢), with an expected

product of 633 bp (24); TIMP-2, sense

(5¢-GCGCTCGGCCTCCTGCTG-3¢)
and antisense (5¢-CTTGATGCAGG-

CGAAGAACTTG-3¢), with an

expected product of 506 bp (30);

MMP-2, sense (5¢-CCACGTGACAA-

GCCCATGGGGCCCC-3¢) and anti-

sense (5¢-GCAGCCTAGCCAGTCG-

GATTTGATG-3¢), with an expected

product of 480 bp (31); and glyceral-

dehyde-3-phosphate dehydrogenase,

sense (5¢-AGCCGCATCTTCTTTTG-

CGTC-3¢) and antisense (5¢-TCATA-

TTTGGCAGGTTTTTCT-3¢), with an

expected product of 816 bp (32).

Amplified RT-PCR products were

analyzed using 1% agarose gels and

visualized using ethidium bromide

staining and a camera system (Trans-

illuminator/SPOT; Diagnostic Instru-

ments). The gel images were scanned

directly (ONE-Dscan 1-D Gel Analysis

Software; Scanalytic Inc., Fairfax, VA,

USA) and the relative densities were

determined as the ratio of sample sig-

nal intensity to the intensity of the

glyceraldehyde-3-phosphate dehydro-

genase band.

Statistical analysis

The Student�s t-test was used to eval-

uate group differences in the gingival
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expression of membrane type-I MMP,

TIMP-2 and MMP-2 mRNAs (relative

density) and the number and distri-

bution of gingival stoma cells that

were positively stained by immuno-

histochemistry. A one-way analysis of

variance and Duncan�s test for post

hoc analysis were used to evaluate the

effect of cyclosporine A dose on the

in vitro expression of mRNA and

the gelatinolytic activity of MMP-2 in

gingival fibroblast cultures. Stepwise

regression analysis was also used to

determine the effect of cyclosporine A

dose on in vitro gelatinolytic activity.

A p-value of < 0.05 was considered

significant.

Results

The mRNA expression of membrane

type-I MMP in edentulous gingivae

was significantly lower in cyclospor-

ine A-treated rats than in control rats,

but expression of TIMP-2 and MMP-2

did not differ significantly between

groups, according to the real-time PCR

results (Fig. 1). Cyclosporine A-trea-

ted rats had fewer positively stained

membrane type-I MMP and MMP-2

gingival cells than control rats, irre-

spective of the number or distribution

of cells (Fig. 2). However, the number

of positively stained TIMP-2 gingival

cells in the two groups was similar.

The viability test showed that the

proportion of viable human gingival

fibroblasts was similar after culture in

plates with or without cyclosporine A

for 0 and 72 h (Fig. 3). The results of

zymography showed that cyclospor-

ine A treatment induced a dose-

dependent decrease in MMP-2 activity

in the culture medium of fibroblast

cultures (p = 0.017 and R = 0.673)

(Fig. 4). The results of RT-PCR anal-

ysis showed that cyclosporine A did

not significantly affect the expression

of membrane type-I MMP, TIMP-2

and MMP-2 mRNAs in fibroblasts

(Fig. 5A–C), However, the mRNA

expression ratio of membrane type-I

MMP to TIMP-2 decreased dose-

dependently (R = 0.654, p = 0.025)

with increasing dose (from 500 to

5000 ng/mL) of cyclosporine A (the

ratio differed significantly between the

500 and 5000 ng/mL treatments)

(Fig. 5D).

Discussion

Cyclosporine A induces gingival over-

growth, as observed in humans and

animals (1,4,33); however, the under-

lying mechanism of this is still unclear.

Recent studies have investigated the

roles of various factors in cyclospor-

ine A-induced gingival overgrowth,

including those of growth factors, such

as transforming growth factor, plate-

let-derived growth factor and vascular

endothelial growth factor (27,34,35),

and those of pro-inflammatory cyto-

kines, such as interleukin 1b, tumor

necrosis factor-a and interleukin-6 (36–

38). Cyclosporine A also has catabolic

effects in that it decreases collagenase

activity in cultured fibroblasts and

immune cells (39,40). Matrix metallo-

proteinases that have collagenase and

gelatinase activities are secreted into

the extracellular space as zymogens

and are activated by proteolytic cleav-

age within the matrix environment.

Their activity is closely regulated, but

under pathological conditions an

imbalance between the active and

inactive forms of MMPs may result in

excessive extracellular matrix accumu-

lation or degradation (41). It is usually

accepted that the balance between

activated MMPs and TIMPs controls

the extent of extracellular matrix

remodeling and that tissue degradation

is caused by disruption of this balance

in favor of proteinases (42).

Because cyclosporine A significantly

inhibits the production of MMP-1 and

MMP-3 in overgrown gingivae of rats

and in human gingival fibroblast cul-

tures, it has been suggested that the

inhibitory effects of cyclosporine A

may contribute to the accumulation of

extracellular matrix components in

induced gingival overgrowth (19).

A recent study revealed that cyclo-

sporine A suppresses expression of

MMP-1 and TIMP-1 mRNAs in hu-

man gingival fibroblast cultures in a

time-dependent manner (43). Another

study showed that cyclosporine A

inhibits MMP-1 expression in gingival

fibroblast cultures at both mRNA and

protein levels in a dose-dependent and

time-dependent manner (44). However,

in the aforementioned study, cyclo-

sporine A inhibited TIMP-1 mRNA,

but not protein, expression. Long-term

exposure to cyclosporine A (five to

eight passages) did not impair the

accumulation of TIMP-1 mRNA in

human gingival fibroblasts (45).

Another author proposed that low

TIMP-1 levels are an important factor

in the pathogenesis of cyclosporine

A-induced gingival overgrowth

because cyclosporine A did not have a
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Fig. 1. Analysis, using real-time polymerase chain reaction, of the expression of matrix

metalloproteinase-2 (MMP-2), membrane type-I MMP and tissue inhibitor of metallopro-

teinase-2 (TIMP-2) mRNAs in the gingivae of rats. The expression levels, relative to that of

b-actin, were compared between gingival tissues of control and cyclosporine A-treated rats

(n = 3 per group). Data are expressed as means and standard deviations. *Significant

difference when p < 0.05. CsA, cyclosporine A; MT1-MMP, membrane type-I matrix

metalloproteinase.
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significant effect on MMP-1 protein

levels (46).

The roles of membrane type-1 MMP

and TIMP-2 in cyclosporine A-in-

duced gingival overgrowth have not

been studied extensively. However, it

was reported that the gelatinolytic

activity of MMP-2 was reduced both in

cultured fibroblasts treated with

cyclosporine A and in gingival tissue of

rats that received cyclosporine A (19).

In contrast, increased expression of

myocardial MMP-2 and vascular

endothelial growth factor and myocar-

dial fibrosis have been observed in

cyclosporine A-treated rats (47).

Another recent study on hereditary

gingival fibromatosis revealed that

TIMP-1 and TIMP-2 expression from

the fibroblasts of patients with heredi-

tary gingival fibromatosis were equiva-

lent to those of normal gingival

fibroblasts, although the hereditary

gingival fibromatosis cells expressed

significantly less MMP-1 and MMP-2

transcripts than normal gingival cells

(48). In the present study, we observed
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reduced expression of mRNA and pro-

tein formembrane type-IMMP, but not

of TIMP-2, in the gingivae of cyclo-

sporine A-treated rats (Figs 1, 2). In

our in vitro experiment, the effect of

cyclosporine A on the viability of hu-

man gingival fibroblasts was examined;

our preliminarily results suggested that

the viability seemed not to be affected by

cyclosporine A, even at a concentration

of 5000 ng/mL (Fig. 3). However, the

results from zymography analyses

showed a decrease of MMP-2 activity

that was inversely related to the dose of

CsA (Fig. 4). Although the expression

ofMMP-2,membrane type-IMMPand

TIMP-2 mRNAs was unaffected by

cyclosporine A, the ratio of membrane

type-I MMP to TIMP-2 decreased

dose-dependently in fibroblasts treated

with cyclosporine Adoses ranging from

500 to 5000 ng/mL (Fig. 5). These in

vivo and in vitro results suggest that

membrane type-I MMP might indi-

rectly regulate MMP-2 activation

(Fig. 6). It has been shown that at high

concentrations of TIMP-2, TIMP-2

prevents MMP-2 processing by inhib-

iting all free membrane type-I MMP. A

threshold level of TIMP-2 is necessary

for construction of the ternary complex

(i.e. membrane type-I MMP, TIMP-2

and pro-MMP-2), but the amount of

uninhibited membrane type-I MMP

present at this threshold level is still

sufficient to cleave pro-MMP-2 (49–51).

Our finding that the expression of

TIMP-2 in human gingival fibroblasts

was not affected by cyclosporine A is

consistent with the results of another

recent study (31); however, the ratio of

TIMP-2 to membrane type-I MMPwas

not determined in that study.

Our study is the first to report

reduced expression of membrane

type-I MMP in the gingivae of rats that

were treated with cyclosporine A for

4 wk. A similar finding, that

membrane type-I MMP expression is

suppressed by cyclosporine A, has

been reported in renal glomerular

mesangial cells (52). Other studies have

shown that membrane type-I MMP

exerts proteolytic activity against

extracellular matrix components,

including gelatins, by activating pro-

MMP-2 on the cell surface (53–55). In

the present in vitro study, the expres-
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sion of membrane type-I MMP and

TIMP-2 seemed not to be affected by

cyclosporine A, but the increase in the

ratio of mRNA expression of TIMP-2

to membrane type-I MMP in fibro-

blasts after treatment with cyclospor-

ine A may indicate that expression of

membrane type-I MMP decreased rel-

ative to that of TIMP-2. This may also

indicate that the ratio of membrane

type-I MMP to TIMP-2 is critical for

activation of pro-MMP-2 (15–18).

Recently, extracellular matrix

metalloproteinase inducer, a highly

glycosylated, plasma-membrane-bound

glycoprotein, has been identified and its

expression is considered responsible for

inducing fibroblasts to produce or

secrete MMPs (56). Extracellular

matrix metalloproteinase inducer, or

CD147, contains a 185-amino acid

extracellular domain consisting of

two regions characteristic of the

immunoglobin superfamily, followed

by 24-amino acid residues comprising

the transmembrane domain and a

39-amino acid cytoplasmic domain
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(57), and was originally identified on

the surfaces of tumor cells. Its expres-

sion on tumor cells may induce tumor

progression and invasion by triggering

the production or release of MMPs

by fibroblasts and endothelial cells

(58–60). Extracellular matrix metallo-

proteinase inducer also plays a role in

cell attachment, cell migration and

cell-to-cell interactions. Extracellular

matrix metalloproteinase inducer stim-

ulates production of MMP-1, MMP-2

and MMP-3, but has no effect on the

TIMPs (60–62). Therefore, extracellu-

lar matrix metalloproteinase inducer

may change the collagenolytic balance

to favor MMP production and activa-

tion. The ability of extracellular matrix

metalloproteinase inducer to stimulate

MMP production suggests that this

molecule may be associated with

several normal and pathological tissue-

modulatory processes and with tissue

remodeling (61,63). Therefore, extra-

cellular matrix metalloproteinase

inducer may affect MMP-2 and mem-

brane type-I MMP, but not TIMP-2.

We recently observed decreased

expression of extracellular matrix

metalloproteinase inducer after cyclo-

sporine A treatment (unpublished data,

Y-T. Lu). Whether the cyclosporine

A-induced decrease in gingival mem-

brane type-I MMP and MMP-2

expression is a direct effect of the drug

or an indirect response mediated by

extracellular matrix metalloproteinase

inducer is still unknown and requires

further detailed investigations.

In conclusion, the expressions of

membrane type-I MMP and TIMP-2,

as well as ofMMP-2, in gingivae during

treatment with cyclosporine A were

examined in vivo and in vitro. In the

gingivae of rats, cyclosporine A signif-

icantly decreased the mRNA and pro-

tein expression of membrane type-I

MMP, but not of TIMP-2. After

treatment with cyclosporine A, the

expression of MMP-2 mRNA was

unaffected, but the expression ofMMP-

2 protein was decreased. In fibroblast

cultures, treatment with cyclosporine A

decreased MMP-2 activity in a dose-

dependent manner. Although the

expression of MMP-2, membrane type-

I MMP and TIMP-2 mRNAs in fibro-

blasts was unaffected after treatment

with cyclosporine A, the ratio of

mRNA expression of membrane type-I

MMP to that of TIMP-2 in fibroblasts

decreased as the cyclosporine A dose

decreased. Therefore, we suggest that

cyclosporine A inhibits the expression

of membrane type-I MMP in gingiva

and it may further reduce the activation

of MMP-2.
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