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Background and Objective: Nitrogen-containing bisphosphonates (NBPs) are

widely used as anti-bone-resorptive drugs. However, use of NBPs results in

inflammatory side-effects, including jaw osteomyelitis. In the present study, we

examined the effects of alendronate, a typical NBP, on cytokine production by

human peripheral blood mononuclear cells (PBMCs) and gingival fibroblasts

incubated with lipid A.

Methods: The PBMCs and gingival fibroblasts were pretreated with or without

alendronate for 24 h. Cells were then incubated in the presence or absence of

lipid A for a further 24 h. Levels of secreted human interleukin (IL)-1b, IL-6, IL-8
and monocyte chemoattractant protein-1 (MCP-1) in culture supernatants were

measured by ELISA. We also examined nuclear factor-jB (NF-jB) activation in

both types of cells by ELISA. Activation of Smad3 in the cells was assessed by flow

cytometry. In addition, we performed an inhibition assay using SIS3, a specific

inhibitor for Smad3.

Results: Pretreatment of PBMCs with alendronate promoted lipid A-induced

production of IL-1b and IL-6, but decreased lipid A-induced IL-8 and MCP-1

production. In human gingival fibroblasts, alendronate pretreatment increased

lipid A-induced production of IL-6 and IL-8, and increased NF-jB activation in

gingival fibroblasts but not PBMCs stimulated with lipid A. In contrast,

alendronate activated Smad3 in both types of cells. Finally, SIS3 inhibited

alendronate-augmented IL-6 and IL-8 production by human gingival fibroblasts

but up-regulated alendronate-decreased IL-8 production by PBMCs.

Conclusion: These results suggest that alendronate-mediated changes in cytokine

production by gingival fibroblasts occur via regulation of NF-jB and Smad3

activity.
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Nitrogen-containing bisphosphonates

(NBPs) are widely used as anti-bone-

resorptive drugs for treatment of

osteoporosis, hypercalcemia of malig-

nancy, Paget�s disease and tumor-in-

duced bone-related diseases (1–3). The

NBPs are taken up by osteoclasts,

resulting in osteoclast deactivation

and apoptosis. However, NBPs have

undesirable side-effects, such as fever,

gastrointestinal disturbances, ophthal-

mic inflammation, jaw osteomyelitis

and osteonecrosis (4–8). Intravenous

administration of NBPs has also been

reported to increase temporarily the

plasma levels of proinflammatory

cytokines, such as interleukin (IL)-1b
and IL-6 (6,7). Proinflammatory

cytokines play an important role in

the initiation or perpetuation of

inflammatory and destructive pro-

cesses in tissues (9–11). Interleukin-1

and IL-6 also promote differentiation

of osteoclast precursors into mature

osteoclasts (12,13). In addition, IL-8

and monocyte chemoattractant pro-

tein-1 (MCP-1) not only accelerate

neutrophil migration but also help to

increase osteoclasts (14,15). In con-

trast, Deng et al. (16) demonstrated

that IL-1b production was induced in

mice injected with lipopolysaccharide

(LPS) and alendronate (a typical

NBP). Alendronate increased LPS-

induced IL-1b production, although

this agent alone was not sufficient for

IL-1b induction (16). Thus, treatment

with NBPs may be a precipitating

factor for infectious and inflamma-

tory diseases, including periodontal

diseases.

Periodontal diseases are reportedly

associated with osteoporosis (17,18).

As both of these diseases are pre-

valent in middle-aged and older peo-

ple, patients who receive NBP

treatment are also likely to have

periodontal diseases. Progression of

periodontal disease changes the spe-

cies of bacteria present in the oral

cavity. The amount of oral anaerobic

gram-negative bacteria, which have

LPS in the outer cell wall, increases

as periodontal diseases progress

(19,20). In fact, endotoxin levels in

gingival crevicular fluid are correlated

with the severity of clinical and

experimental gingival inflammation

(21–24). In previous studies, concen-

trations of endotoxin in gingival

washings and dental plaque were

expressed in micrograms per millilitre

(23,24); however, a study by Fine

et al. (19) expressed endotoxin levels

of the dental pocket in nanograms

per millilitre. Lipid A is the bioactive

center of LPS and increases the pro-

duction of proinflammatory cytokines

and chemokines by peripheral blood

mononuclear cells (PBMCs) and

human gingival fibroblasts (25,26).

Peripheral blood mononuclear cells

play an essential role in some dis-

eases, owing to their ability to secrete

proinflammatory cytokines and chemo-

kines in response to stimulation by

bacteria and their cell wall components

(27,28). Human gingival fibroblasts

are the major constituents of peri-

odontal tissue and produce various

inflammatory cytokines, such as IL-6

and IL-8, upon stimulation with bac-

teria and their components (26,29).

To elucidate the relationship between

oral gram-negative bacteria and NBP-

related adverse events, we investigated

the effects of alendronate on produc-

tion of proinflammatory cytokines

and chemokines by PBMCs and gin-

gival fibroblasts in response to lipi-

d A at various concentrations.

Nuclear factor-jB (NF-jB) is an

important transcription factor impli-

cated in the production of proin-

flammatory cytokines and chemokines

by Toll-like receptor (TLR) ligands,

such as LPS and bacterial lipo-

protein (30,31). Thus, it is possible

that alendronate influences NF-jB
activation in human cells. Smad3,

another transcription factor, usually

helps to inhibit IL-6 expression and

IL-8 promoter activity (32,33).

However, Smad3 disruption has been

reported to accelerate wound heal-

ing and improve atopic dermatitis

through down-regulation of proin-

flammatory cytokines, including IL-6

(34,35). Since alendronate can inter-

nalize and increase Smad3 levels

in mouse cells (36–39), we hereby

demonstrate the effects of alendro-

nate on activation of NF-jB and

Smad3 in human gingival fibro-

blasts and PBMCs incubated with

lipid A.

Material and methods

Reagents

Alendronate was purchased from LKT

Laboratories (St Paul, MN, USA).

Synthetic Escherichia coli lipid A

(compound 506), a typical TLR4 ago-

nist, was purchased from Peptide

Institute (Osaka, Japan). Anti-Smad3

antibody and anti-phospho-Smad3

antibody were obtained from Cell

Signaling Technology, Inc. (Danvers,

MA, USA). Pam3Cys-Ser-(Lys)4 (Pam3

CSK4), a TLR2 agonist, was obtained

from InvivoGen (San Diego, CA,

USA). SIS3, a specific inhibitor of

Smad3 (40), was purchased from Cal-

biochem (Merck KGaA, Darmstadt,

Germany) and dissolved in dimethyl

sulfoxide (DMSO). All reagents were

diluted in medium before use.

Cell culture

Human PBMCs were isolated from

heparinized blood of healthy donors by

Histopaque-1077 (Sigma, St Louis,

MO, USA) density gradient purifica-

tion. The donors provided written in-

formed consent under a protocol

approved by the Institutional Review

Board of Ohu University. Cells from

the interface were harvested and

washed three times in RPMI-1640

medium (Sigma). Collected cells were

cultured in RPMI-1640 medium con-

taining 10% heat-inactivated fetal

bovine serum (FBS; GIBCO, Carlsbad,

CA, USA), 100 units/mL penicillin

(GIBCO) and 100 lg/mL streptomycin

(GIBCO) in an incubator at 37�C and

5% CO2.

Human gingival fibroblasts were

prepared from clinically inflamed gin-

gival tissue according to a method sim-

ilar to that described previously (26).

Tissue samples were collected from

subjects who provided written informed

consent under a protocol approved by

the Institutional Review Board of Ohu

University. Explants were cut into

pieces and cultured in six-well flat-

bottomed plates (Falcon�; BD,

Franklin Lakes, NJ,USA) in a-minimal

essential medium (a-MEM; Sigma)

supplemented with 10% FBS, L-gluta-

mine (Sigma), penicillin (100 units/mL),
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and streptomycin (100 lg/mL). Med-

ium was changed every 3 d for 14–20 d

until confluent cell monolayers were

formed. After three to four subcultures

by trypsinization, homogeneous, slim,

spindle-shaped cells growing in char-

acteristic swirls were obtained. Cells

were used as confluent monolayers

at subculture levels five through

eight.

Cytokine measurements

Human PBMCs (1 · 106 cells per well)

were pretreated with or without

100 lM alendronate for 24 h. Adherent

and nonadherent cells were washed

twice with serum-free RPMI-1640 in

24-well flat-bottomed plates (Fal-

con�). Cells were then incubated

in the presence or absence of lipid A

(1–100 ng/mL) in RPMI-1640 con-

taining 10% FBS for 24 h. Levels of

secreted human IL-1b, IL-6, IL-8 and

MCP-1 in culture supernatants were

measured by ELISA (IL-1b, IL-6 and

MCP-1, eBioscience, San Diego, CA,

USA; and IL-8, R&D Systems, Inc.,

Minneapolis, MN, USA).

Human gingival fibroblasts (2 ·
104 cells per well) were pretreated with

or without alendronate (1–100 lM) for

24 h and washed twice with serum-free

a-MEM in 96-well flat-bottomed plates

(Falcon�). Cells were then incubated

in the presence or absence of lipid A

(100–10,000 ng/mL) in a-MEM con-

taining 10% FBS for 24 h. Levels of

secreted human IL-6 and IL-8 in cul-

ture supernatants were measured by

ELISA. For Smad3 inhibition assays,

cells were pretreated with 3 lM SIS3

for 1 h, prior to the addition of

alendronate.

Nuclear protein extraction and NF-jB
transactivation assay

Cells were incubated in medium with

or without 100 lM of alendronate for

24 h, washed twice with medium, and

incubated with or without lipid A

(1 lg/mL) for 5 h. Nuclear protein

extracts of the cells were then prepared

with the TransAM� nuclear extract

kit according to the manufacturer�s
protocol (Active Motif Japan, Tokyo,

Japan). Briefly, human gingival fibro-

blasts were scraped into phosphate-

buffered saline (PBS) with phosphatase

and protease inhibitors, centrifuged,

resuspended in 1 · hypotonic buffer

and kept on ice for 15 min. After

addition of detergent, lysates were

centrifuged at 14,000g for 30 s. Pellets

were resuspended in complete lysis

buffer (20 mM Hepes, pH 7.5, 350 mM

NaCl, 20% glycerol, 1% Igepal

CA630, 1 mM MgCl2, 0.5 mM EDTA,

0.1 mM EGTA, 1 mM dithiothrietol,

and phosphatase and protease inhibi-

tors) and vortexed. After incubation on

ice and centrifugation, supernatants

were collected and protein concentra-

tion was determined using the BCA�
protein assay kit (Pierce, Rockford, IL,

USA). Nuclear factor-jB activation

was determined by the TransAM

ELISA kit (Active Motif Japan). This

assay is based on a colorimetric

reaction, and is an alternative to

electrophoretic mobility-shift assay.

Oligonucleotides containing NF-jB
consensus binding sites were immobi-

lized in each well of a 96-well plate. To

each well was added 14 lg of nuclear

extract, followed by incubation of the

plate for 1 h with moderate agitation.

Wells were then washed three times

with washing buffer (100 mM phosphate

buffer, pH 7.5, 500 mM NaCl and 1%

Tween 20) and incubated with p50

antibody (1:1000 dilution in washing

buffer) for 1 h at room temperature.

Wells were finally incubated for 1 h

with diluted horseradish peroxidase-

conjugated antibody (1:1000 dilution

in washing buffer) before addition of

100 lL of developing solution (3,3¢,5,5¢
tetramethylbenzidine substrate solu-

tion diluted in 1% of DMSO) and a

5 min incubation. The reaction was

stopped by addition of 0.5 M H2SO4

solution. Absorbance was read on a

spectrophotometer at 450 nm with a

reference wavelength of 655 nm.
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Fig. 1. Effects of pretreatment with alendronate on proinflammatory cytokine and chemokine

production by PBMCs incubated with lipid A. The PBMCs were incubated in mediumwith or

without 100 lM alendronate (ALD) for 24 h, washed twice with medium, and incubated with

or without the indicated concentrations of lipid A for 24 h. Culture supernatants were col-

lected, and levels of interleukin (IL)-1b (A), IL-6 (B), IL-8 (C) and monocyte chemoattractant

protein-1 (MCP-1; D) were measured by ELISA. Results are presented as the means + SEM

of triplicate cultures obtained from three independent experiments. **p < 0.01 compared

with medium alone; #p < 0.05, ##p < 0.01 compared with lipid A alone.
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Flow cytometry

In order to detect Smad3 in human

gingival fibroblasts and PBMCs by flow

cytometry, cells were treated with or

without 100 lM alendronate for 24 h,

washed twice with serum-free medium,

and incubated with lipid A (100 ng/mL

or 1 lg/mL) for 24 h. Collected cells

were incubated with BD FACS Lysing

Solution for 10 min washed with PBS

containing 0.5% bovine serum albumin

(BSA), and followed by BD FACS

Permeabilizing Solution 2 for 10 min

according to the manufacturer�s
instructions prior to addition of anti-

Smad3 or anti-phospho-Smad3 anti-

bodies. After washing, collected cells

(5 · 105 per sample) were incubated at

room temperature for 60 min with rab-

bit monoclonal antibodies to human

Smad3 or phospho-Smad3 [Correction

added after online publication 4 August

2010: rabbit monoclonal antibodies to

mouse Smad3 or phospho-Smad3 was

changed to: rabbit monoclonal anti-

bodies to human Smad3 or phospho-

Smad3]. After washing with PBS con-

taining 0.5% bovine serum albumin

(BSA), cells were incubated at room

temperature for 30 min with Alexa

Fluor� 488-conjugated goat anti-rabbit

immunoglobulin G (heavy chain and

light chain; Invitrogen, Carlsbad, CA,

USA). Cells were washed with PBS

containing 0.5% BSA, fixed with 1%

paraformaldehyde, and analysed as de-

scribed above.

Data analysis

Data were analysed using one-way

analysis of variance and either the

Bonferroni or Dunn method. Results

are presented as means ± standard

error (SE) of triplicate wells. A value of

p < 0.05 was considered statistically

significant.

Results

Alendronate up-regulates IL-1b and
IL-6 production but down-regulates
IL-8 and MCP-1 production by
PBMCs incubated with lipid A

We examined the effects of alendronate

on IL-1b and IL-6 production by

PBMCs. Treatment with alendronate

alone did not influence IL-1b and IL-6

production (Fig. 1A,B), whereas pre-

treatment with alendronate signifi-

cantly up-regulated IL-1b and IL-6

production induced by lipid A. In

addition, we investigated the effects of

alendronate on chemokine production

by PBMCs. Alendronate alone did not

change IL-8 and MCP-1 production

(Fig. 1C,D). However, pretreatment

with 100 lM alendronate down-regu-
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Fig. 2. Effects of alendronate pretreatment on IL-6 production by human gingival fibro-

blasts incubated with lipid A. Human gingival fibroblasts were incubated in medium with or

without the indicated concentrations of alendronate (ALD) for 24 h, washed twice with

medium, and incubated with or without the indicated concentrations of lipid A for 24 h.

Culture supernatants were collected, and cytokine levels were measured by ELISA. Results

are presented as means + SEM of triplicate cultures obtained from three independent

experiments. **p < 0.01 compared with medium alone; #p < 0.05, ##p < 0.01 compared

with lipid A alone.

##

##

0 100 1000 10,000
0

5

10

15

20

25

30

35

IL
-8

 (
n

g
/m

L
)

Lipid A (ng/mL)

**

**

****
**

** ****

**

**

**

**
Vehicle

ALD 10 μM

ALD 1 μM

ALD 100 μM

Fig. 3. Effects of alendronate pretreatment on IL-8 production by human gingival fibroblasts

incubated with lipid A. Human gingival fibroblasts were incubated in mediumwith or without

the indicated concentrations of alendronate (ALD) for 24 h, washed twice with medium, and

incubated with or without the indicated concentrations of lipid A for 24 h. Culture super-

natants were collected, and cytokine levels were measured by ELISA. Results are presented as

means + SEM of triplicate cultures obtained from three independent experiments.

**p < 0.01 compared with medium alone; ##p < 0.01 compared with lipid A alone.
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lated IL-8 production induced by

lipid A by up to 70%. Furthermore,

100 lM alendronate completely inhib-

ited lipid A-induced MCP-1 produc-

tion. Similar results were also observed

in PBMCs pretreated with alendronate

and followed by Porphyromonas gingi-

valis (data not shown).

Alendronate up-regulates IL-6 and
IL-8 production by gingival
fibroblasts incubated with high
concentrations of lipid A

We investigated the effects of alendro-

nate on IL-6 and IL-8 production by

gingival fibroblasts. Treatment with

alendronate alone did not influence

production of these cytokines by the

cells in the same manner as PBMCs

(Figs 2 and 3). However, pretreatment

with 100 lM alendronate up-regulated

IL-6 and IL-8 production induced by

microgram concentrations of lipid A.

This trend was also observed in IL-6

and IL-8 production induced by

Pam3CSK4, a TLR2 agonist (data not

shown).

Alendronate promotes NF-jB
activation by gingival fibroblasts
incubated with lipid A

We investigated whether alendronate

regulated NF-jB activation by gingi-

valfibroblasts and PBMCs (Fig. 4).

Lipid A treatment alone adequately

induced NF-jB activation in both

types of cells. Pretreatment of gingival

fibroblasts but not PBMCs with

alendronate, followed by incubation

in the presence of 1 lg/mL lipid A,

increased NF-jB activation, although

alendronate alone did not induce

NF-jB activation. Therefore, NF-jB is

involved in alendronate-regulated pro-

duction of IL-6 and IL-8 by human

gingival fibroblasts but not by PBMCs.

Smad3 activation is required for
alendronate-augmented IL-6 and IL-8
production by human gingival
fibroblasts

We next investigated whether alendro-

nate directly activated Smad3. Alendro-

nate enhanced Smad3 activation in

gingival fibroblasts incubated with

1 lg/mL lipid A, although total Smad3

levels were not affected (Fig. 5).

Alendronate also enhanced Smad3

activation in PBMCs (data not shown).

To confirm the role of Smad3 in

alendronate-influenced IL-6 and IL-8
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production, we performed an inhibition

assay using SIS3, which is a specific

inhibitor for Smad3. SIS3 significantly

inhibited alendronate-regulated IL-6

and IL-8 production by human gingi-

val fibroblasts (Fig. 6A). These results

suggest that alendronate augmented

IL-6 and IL-8 production by gingival

fibroblasts incubated with high con-

centrations of lipid A through NF-jB
and Smad3 activation. However, SIS3

up-regulated alendronate-decreased

IL-8 production in PBMCs (Fig. 6B).

These results suggest that Smad3

inhibits IL-8 production in PBMCs.

Discussion

In this study, we found that alendro-

nate pretreatment of PBMCs aug-

mented IL-1b and IL-6 production

induced by lipid A. Similar results were

obtained in mouse macrophage-like

J774.1 cells (41). It was also reported

that alendronate plus IL-1b synergis-

tically increased IL-6 production (42).

Thus, alendronate may promote effi-

cient production of IL-6 by lipid A. In

addition to bacterial components, bone

matrix constituents also stimulate IL-1

release from human PBMCs (43). As

such, long-term use of alendronate

might augment IL-6 production by

PBMCs and gingival fibroblasts in the

vicinity of bones as well as facilitate

osteoclast formation, because IL-6 is

required for the differentiation of

osteoclast precursors into mature

osteoclasts. In fact, long-term alendr-

onate treatment has been reported to

increase the number of osteoclasts and

cause atypical femoral fracture (44,45).

Interleukin-6 also protects neutrophils

from apoptosis and sustains the release

of proteolytic enzymes in osteomyelitis

(46). Thus, alendronate-increased IL-6

production by PBMCs and gingival

fibroblasts may contribute to the delay

of neutrophil apoptosis and the pro-

motion of tissue damage in the jaw.

Our data also demonstrated that

alendronate treatment of PBMCs

resulted in decreased IL-8 and MCP-1

production by lipid A. Li et al. (47)

suggested that osteoclasts and precur-

sor monocytes are recruited to the

remodeling site by MCP-1 to initiate

the process of bone remodeling.

Therefore, alendronate might inhibit

normal activation and migration of

osteoclasts by down-regulating chemo-

kine production by PBMCs. However,

Gazzaniga et al. (48) also demon-

strated that pharmacological inhibition

of MCP-1 with bindarit (2-methyl-

2-((1-(phenylmethyl)-1H-indazol-3yl)

methoxy) propanoic acid) conferred

necrotic tumor masses. Thus, the

inhibitory effect of alendronate on

MCP-1 production could cause osteo-

necrosis of the jaw.

The present study demonstrated that

alendronate increased IL-8 production

by gingival fibroblasts incubated with

high concentrations of lipid A. Since

NF-jB is an important transcription

factor implicated in IL-1, IL-6, IL-8

and MCP-1 production by lipid A (30),

it is possible that alendronate regulates

NF-jB activation in host cells. Our

data demonstrate that alendronate did

not change NF-jB activation in

PBMCs. Thus, NF-jB does not regu-

late alendronate-mediated changes in

cytokine production by PBMCs.

However, as NF-jB activation in

response to a combination of alendro-

nate and lipid A treatment was greater

in human gingival fibroblasts com-

pared with lipid A treatment alone, we

conclude that alendronate can increase

IL-6 and IL-8 production by gingi-

val fibroblasts incubated with high

concentrations of lipid A in vitro.

Alendronate treatment may increase

production of these cytokines with

lower concentrations of lipid A because
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Fig. 6. SIS3 inhibits alendronate-augmented IL-6 and IL-8 production by human gingival

fibroblasts. Human gingival fibroblasts (A) and PBMCs (B) were pretreated with 3 lM SIS3

or the same amount of DMSO for 1 h, incubated with medium with or without 100 lM

alendronate (ALD) for 24 h, washed twice with medium, and incubated with or without

lipid A (A, 1 lg/mL; and B, 100 ng/mL) for another 24 h. Culture supernatants were

collected, and levels of IL-6 (left panels) and IL-8 (right panels) were measured by ELISA.

Results are presented as the means + SEM of triplicate cultures obtained from three

independent experiments. *p < 0.05, **p < 0.01 compared with lipid A alone, ##p < 0.01

compared with the ALD and lipid A without SIS3 treatment.
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contain significantly higher levels of

soluble CD14, which assists the trans-

fer of lipid A to TLR4, than those of

healthy subjects (49–51).

Our data demonstrated that alendr-

onate enhances Smad3 activation.

Previous studies have demonstrated

that Smad3 usually inhibits IL-6, IL-8

and MCP-1 production (32,33,52). We

previously reported that alendronate

down-regulated MCP-1 and MIP-1a
production induced by synthetic bacterial

components via Smad3 activation in

J774.1 cells (39). SIS3 up-regulated

alendronate-decreased MCP-1 and

MIP-1a production by the cells incu-

bated with lipid A. In the present

study, we demonstrated that SIS3 up-

regulated alendronate-decreased IL-8

production by PBMCs stimulated with

lipid A. These results suggest that

Smad3 plays a role in the inhibition of

chemokine production by J774.1 cells

and PBMCs. Our data also demon-

strated that pretreatment with SIS3

inhibited alendronate-augmented IL-6

and IL-8 production by gingival

fibroblasts and alendronate-augmented

IL-6 production by PBMCs. More-

over, Smad3 disruption has been

reported to improve atopic dermatitis

by down-regulation of IL-6 and reduce

incidence of tumor metastasis by inhi-

bition of IL-8 production (35,53).

Therefore, the role of Smad3 in IL-6

and IL-8 production differs by the type

of cell. Smad3 activation in human

gingival fibroblasts has been reported

to increase matrix metalloproteinase-

13, which is important in degradation

of extracellular matrix (54). As such,

matrix metalloproteinase-13 produc-

tion might be augmented by alendro-

nate and thereby accelerate the

breakdown of tissues.

Menezes et al. (55) reported that

alendronate inhibited alveolar bone

loss in experimental periodontitis and

the growth of periodontal pathogenic

bacteria in vitro. However, NBPs are

deposited in bone, and the half-life of

NBPs in bone is very long (56). Thus,

our results suggest that alendronate-

mediated changes in cytokine produc-

tion by cells occur via regulation of

transcriptional activity, and that long-

term use of alendronate may exacer-

bate infectious diseases, including jaw

osteomyelitis, through changes in

cytokine production induced by bac-

terial components.
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