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Periodontis is an inflammatory disease

that affects tooth-supporting structures

and can lead to loss of periodontal

ligament and alveolar bone, with

increased tooth mobility and eventually

tooth loss. Its pathogenesis is multi-

factorial and involves the periodontal

microbiota, the host�s immune res-

ponses and behavioral or concomitant

medical conditions. There appears to

be an epidemiological association

between periodontitis and metabolic

diseases, including diabetes, and an

association between periodontitis and

aging has long been suggested,

although not conclusively proved (1–13).

Importantly, the main factor that

seems to be linking all these medical

conditions is increased oxidative stress

(3,14–16). Humans live in an oxygen-

rich environment, and their survival

depends on a subtle mitochondrial

electric current that generates ATP, the

common energy source for all cells.

Electrons, however, can escape from

the mitochondrial transport chain and

generate reactive oxygen species
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Background and Objective: Chronic periodontitis is a widespread disease affecting

tooth-supporting structures that can lead to extensive loss of periodontal ligament

and bone, ultimately resulting in tooth loss. Extensive evidence has demonstrated

a strong association between age, metabolic disorders such as type II diabetes,

oxidative stress and alveolar bone loss. The molecular players controlling bone

maintenance and underlying age-related bone loss and its links to the general

metabolism are currently the object of intense research.

Material and Methods: Recent findings are summarized to elucidate the molecular

mechanisms linking oxidative stress, bone loss and metabolic factors.

Results: It is well known that reactive oxygen species are an inevitable conse-

quence of cellular respiration and that organisms have developed an efficient array

of defenses against them. The core of this complex defense line is a family of

transcription factors, known as FoxOs, which can bind to b-catenin and initiate a

transcriptional programme regulating cell apoptosis, DNA repair and degradation

of reactive oxygen species. An increase in reactive oxygen species due, for example,

to age or insulin resistance, generates a situation in which bone formation is

impaired by activation of FoxO, and a decrease in Wnt signaling and bone

resorption are promoted.

Conclusion: The balance between FoxO and the Wnt pathway is finely tuned by

systemic and local factors, creating a far-reaching mechanism that dictates the fate

of mesenchymal progenitors and regulates the homeostasis of bone, providing a

rationale for the impairment of systemic and alveolar bone maintenance clinically

observed with age and metabolic diseases.
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(ROS), such as hydrogen peroxide

(H2O2), oxygen superoxide (O2
)) or the

hydroxyl radical (OH); Fig. 1; 17–19).

These are highly reactive oxygen radi-

cals that are responsible for most oxi-

dative stress in cells (20–22). Although

low levels of ROS are, in fact, neces-

sary for several cellular signaling

pathways, such as ERKs, p38 MAPK

and tyrosine phosphatases (23,24),

their continuous production within

cellular organelles causes cellular

microdamage that accumulates over

time (25–28). Broadly speaking, oxi-

dative stress can cause cellular damage

and death in many tissues, and it has

been inversely correlated with lifespan

in nematodes, flies and mammals (29),

to the point of being considered the

primary force driving aging. Increased

oxidative stress is a hallmark of

inflammation, because it can be pro-

duced by neutrophils as a defense

against invading microorganisms or by

the microorganisms themselves, and

this is well known to contribute to

tissue damage (30–34). Importantly,

several pathologic conditions, such as

wound healing, ischemia, or diabetes-

related changes in the microvascula-

ture, are associated with hypoxia,

a shortage of oxygen supply (35,36).

Although apparently in contrast, hypoxia

and generation of ROS are coupled

processes. During hypoxia, ROS can

be released into the cytoplasm as a

consequence of mitochondrial failure.

Reactive oxygen species have also been

demonstrated to impair the immune

responses to microorganisms, and sev-

eral reports directly suggest that oxi-

dative stress is an important factor in

the pathogenesis of periodontitis

(30,37–39). Moreover, recent clinical

studies have demonstrated a higher

concentration of oxygen metabolites in

the serum of periodontal patients

(40,41), a reduction in the serum levels

of oxidized low-density lipoproteins

(42) or an increase in total antioxidant

capacity after periodontal treatment

(43–45). Some studies showed a rela-

tion between serum (46,47) or salivary

antioxidants (48,49) as predictors of

the insurgence of periodontitis or peri-

implantitis.

As aging and a wealth of metabolic

disorders have been associated with

both systemic and alveolar bone loss,

and the same conditions are also

characterized by a marked increase in

oxidative stress, the idea that oxidative

stress is the culprit for bone loss is

becoming increasingly attractive (3,50).

To support this hypothesis, some recent

studies have shown that bone formation

in young mice is decreased by inhi-

biting the antioxidant glutathione, that

increased lipid oxidation may reduce

pro-osteogenic stimuli in the skeleton

(51) and that administration of the

antioxidant N-acetylcysteine reverses

bone loss in a murine model of estrogen

deficiency (52–55). Interestingly, Toker

et al. (31) showed that the same

antioxidant, N-acetylcysteine, can

reduce alveolar bone loss in a rat

periodontitis model, while Tomofuji

et al. (56) demonstrated that a cocoa-

enriched diet protected rats from peri-

odontitis-induced alteration in serum

antioxidant levels and inhibited alveolar

bone loss.

The molecular mechanisms that link

oxidative stress and bone loss are

complex and still not fully understood.

However, understanding them can

provide a critical key to hamper or

prevent bone loss in clinical conditions

of increased oxidative stress. Recent

exciting discoveries about the signal

pathways controlling the balance

between cell fate and the cellular

defenses against ROS can provide a

rationale for many important clinical

observations and help identify poten-

tial therapeutic targets.

An association between periodontal

disease and metabolic syndrome has

been established. These medical con-

ditions are characterized by increased

oxidative stress. It has been shown that

Reactive oxygen species can induce

bone loss, thus providing a rationale

for tissue destruction in periodontitis.

The FoxO family of
transcription factors

Since oxidative stress is an inevitable

and, within certain limits, not unde-

sired side-effect of cell respiration, cells

have developed several antioxidant

mechanisms to contain ROS-mediated

damage, while allowing them to func-

tion in cell signaling. Some of these

defenses rely on thiol-containing pep-

tides, such as glutathione and thiore-

doxine, which can reduce ROS into

harmless alcohols (57). Cells can,

however, also resort to more sophisti-

cated transcriptional programmes,

such as the ones controlled by FoxOs.

FoxOs are members of the O

(�other�) class of the Forkhead super-

family (58), originally called FKHRs

Fig. 1. Diagram showing generation of reactive oxygen species (ROS) in the mitochondria

and antioxidant cellular defenses. Hypoxia, aging and inflammation can increase the for-

mation of highly reactive oxygen species, such as superoxide radicals (O2
)). These can be

converted to H2O2 by the enzyme superoxide dismutase (SOD). Hydrogen peroxide can then

be converted to H2O by glutathione or the enzyme catalase. Accumulation of ROS in the

cells can lead to cellular damage. GSSG, oxidized glutathione; GSH, reduced glutathione.
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(forkhead in rhabdomyosarcomas).

Four members of this class are known

at present, FoxO1, FoxO3, FoxO4 and

FoxO6, of which FoxO1–3 are broadly

expressed, whereas FoxO6 is restricted

to the developing brain (60). They are

all characterized by a 100 amino-acid

helix–loop–helix DNA binding

domain, called the Forkhead domain

(61,62), which is recognized by a

consensus sequence (G/T)(T/A)AA

(C/T)AA, called the FoxO-recognized

element (FRE; 63–65). FoxOs can

move from the nucleus, where they act

as transcription factors, to the cyto-

plasm, where they are inactive,

depending on their phosphorylation

state (62). In the absence of growth

factors or insulin or in the presence of

stress stimuli, FoxOs reside in the

nucleus and actively transcribe several

target genes. Some of them are

involved in apoptosis signaling, like the

tumor-necrosis-factor-related apopto-

sis-inducing ligand (TRAIL), Fas

ligand and Bim (66,67). Interestingly, it

has been shown that the expression of

a phosphorylation-resistant form of

FoxO3 induces cell apoptosis (61).

FoxOs can also induce cell cycle arrest

(68–70) by up-regulating the expres-

sion of the cyclin-dependent kinase

inhibitor, p27KIP1 (71), of the retino-

blastoma protein p130 (72) and down-

regulating cyclin D1 and D2 (73,74), a

critical function, because an inactiva-

tion of FoxO activity can be found in

60–80% of prostate cancers (75). Fox-

Os antagonize oxidative stress through

the transcription of manganese super-

oxide dismutase (MnSOD), which cat-

alyzes the transformation of O2
) into

H2O2, catalase, which neutralizes

H2O2, and Growth Arrest and DNA

Damage 45, which repairs DNA dam-

age (68,76,77). By promoting cell cycle

arrest and quiescence, FoxOs help cells

to survive and counteract the action of

ROS (67,78). The balance between the

pro-apoptotic and the prosurvival

actions of FoxOs depends on mecha-

nisms not yet completely clear.

However, it is known that the acetyla-

tion state of FoxO plays a role in the

preferential expression of a subset of

genes (79). Sirtuins (SIRTs) have

been shown to deacetylate FoxOs in

response to oxidative stress, facilitating

the expression of genes involved in

defense against ROS and cell cycle

arrest (80–82).

The pivotal importance of FoxOs

for the organism is highlighted by the

dramatic consequences of FoxO dele-

tion in mice. FoxO1 null mice die

during embryonic development because

of defects in angiogenesis (83,84),

whereas FoxO3 null mice present with

impaired fertility and lymphoproliph-

erative disorders (85,86). Most inter-

estingly, conditional FoxO1,2,3 triple

knockout mice show hemopoietic

defects, because of increased ROS

levels in the hemopoietic stem cells.

Reactive oxygen species, in turn, de-

plete the stem cell reservoir in the

bone marrow, by driving hemopoietic

stem cells into the cell cycle and

differentiation, which is reversed by

administration of N-acetylcysteine

(NAC), a potent antioxidant (78).

Two very recent works have greatly

elucidated the importance of FoxO for

bone maintenance. Rached et al. (87)

showed that a1(I) Collagen-Cre-medi-

ated conditional deletion of FoxO1

from osteoblasts decreased bone min-

eral density in the spine and femur.

Reduced osteoblast number, bone

formation rate and bone volume were

observed at histology. Moreover,

FoxO1)/) bone phenotype did not pro-

gress with age, so these mice lacked age-

related bone changes. At the cellular

level, the authors showed a decrease in

osteoblast proliferation and in antioxi-

dant defense responses and, noticeably,

FoxO1 overexpression or NAC admin-

istration reversed the bone phenotype.

Ambrogini et al. (88) conditionally

deleted FoxO1,3,4 using the interferon-

inducible transgene Mx-Cre, and dem-

onstrated a reduction in bone mineral

density, osteoblast number, bone

formation rate and an increase in

osteoblast apoptosis 5 wk after dele-

tion. Conversely, FoxO3 overexpres-

sion increased bone mass and reduced

oxidative-stress-induced apoptosis (88).

FoxO transcription factors induce

the expression of genes controlling

defenses against oxidative stress and

cell survival. Genetic ablation of Fox-

Os decreases bone mass and osteoblast

numbers. Treatment with antioxidants

can reverse this phenotype.

FoxO control by Akt: the
metabolic link

FoxOs possess evolutionarily con-

served phosphorylation sites for the

survival kinase Akt near the Forkhead

domain, on threonine 24, serine 256

and serine 319 (62,68). Akt, also

known as protein kinase B, is a serine/

threonine kinase activated by a number

of receptor tyrosine kinases and

G protein-coupled receptors (89,90)

through phosphatidyl inositol 3-kinase

(PI3K) (91) and its product, phospha-

tidylinositol 3,4,5-triphosphate (PIP3).

PIP3 recruits Akt to the cell membrane,

where it phosphorylates FoxO, which

is bound by the 14-3-3 chaperone

proteins and is thus retained in the

cytoplasm. Akt activation is antago-

nized by the protein Klotho and by

phosphatase and tensin homologue

deleted on chromosome 10 (PTEN),

which removes the 3¢ phosphate from

PIP3 and thereby attenuates PI3K sig-

naling (92). In the presence of ROS,

PTEN is activated, and as a conse-

quence Akt is down-regulated, remov-

ing its inhibition on FoxO, which is

then free to initiate the transcription of

defense factors against oxidative stress.

Akt, in contrast, can also increase ROS

generation by controlling cell metabo-

lism and oxygen consumption. Akt1

and 2 double knockout mouse embry-

onic fibroblasts (MEFs) had signifi-

cantly lower intracellular ROS levels

than wild-type MEFs, whereas cells

expressing activated Akt or MEFs

from PTEN)/) mice showed increased

ROS (93). Moreover, activation of Akt

provides protection from apoptosis,

leads to uncontrolled cell replication

and hyperplastic lesions in SCID mice

(94). Not unexpectedly then, it also

sensitizes cells to oxidative damage

(93,95).

The Akt–FoxO axis is of critical

importance in the regulation of cell

metabolism. Insulin, glucagon-like

peptide 1 or insulin-like growth factor

induce Akt activation, which in turns

retains FoxOs outside the nucleus. The

removal of FoxO-mediated inhibition

of cyclins allows b-cells in the pancreas

to proliferate actively, to supply more

insulin when needed, but at the same

time weakens cellular defenses against
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ROS. Reactive oxygen species,

however, can also activate FoxO

through c-Jun Kinase (JNK)-mediated

phosphorylation, regardless of Akt-

mediated insulin signaling, thus

decreasing the cell responses to insulin,

and therefore insulin sensitivity (Fig. 2).

Notably, JNK deletion, FoxO1 (96) or

PTEN haploinsufficiency (97), as well

as NAC administration (98,99) or

overexpression of ROS scavengers

(100,101) improved insulin sensitivity in

mice. Conversely, FoxO1 overexpres-

sion or the expression of a constitu-

tively active FoxO1 impaired glucose

metabolism and induced diabetes (102).

To make things worse, hyperglycemia

and insulin resistance create a situation

in which the increased metabolism, due

to increased presence of glucose, and

proinflammatory cytokines generate

more ROS. This requires higher levels

of FoxO transcriptional activity to

oppose cellular damage, at the expense

of the response to insulin.

Metabolic stimuli, such as insulin or

insulin-like growth factor, can activate

Akt, an inhibitor of FoxOs, thus

allowing pancreatic b-cells to prolifer-

ate and supply the required amount of

insulin, but at the same time reducing

defenses against oxidative stress.

Reactive oxygen species, however, can

activate FoxOs via JNK, indepen-

dently of Akt, thus reducing insulin

sensitivity. This might help explain

why periodontal disease worsens dia-

betes control and vice versa.

FoxO and T-cell factor (TCF)
signaling: b-catenin at the helm

To better understand the consequences

of FoxO activation for bone, it must be

remembered that FoxO transcriptional

activity requires b-catenin, a protein of

the Armadillo family and a normal

constituent of cell-to-cell junctions.

b-Catenin is an essential mediator of

several pathways that control the cell

fate. One of the best known is the Wnt

canonical pathway (103–105). The

canonical or Wnt/b-catenin pathway is

activated upon binding of some

secreted glycoproteins, called Wnt

proteins, to Frizzled (Fz) and LRP5/6

receptor (106,107). This induces the

activation of dishevelled (Dvl; 108),

which releases b-catenin from a multi-

molecular complex it forms with gly-

cogen synthase kinase 3 and casein

kinase 1a, and two scaffold proteins,

axin and adenomatous polyposis coli

(109), which target b-catenin for pro-

teosomal degradation (110,111). Once

released, b-catenin can shuttle to the

nucleus, where it binds to a member of

the T-cell factor/lymphoid enhancer

factor (TCF/Lef1) transcription factor

family (112), thus promoting the

expression of several target genes (113).

The b-catenin-mediated Wnt signal-

ing is a pivotal pathway in the devel-

opment of the embryo (114,115) and

has been shown to control stem cell

proliferation and differentiation (116).

The canonical Wnt signaling is also

required for osteoblast differentiation

(117) and bone formation (118).

Patients suffering with van Buchem

disease present with dramatic osteo-

petrosis due to unopposed Wnt canon-

ical signaling in bone owing to the lack

of an osteocyte-derived b-catenin
inhibitor, sclerostin (119–121). Further-

more, b-catenin is a co-mediator of the

action of parathyroid hormone on bone

formation (122), and it regulates bone

remodeling by increasing the expression

of osteoprotegerin (123), which acts as

an antagonist of RANKL, the main

inducer of osteoclastogenesis, and thus

bone resorption. Akt can promote Wnt

canonical signaling by phosphorylating

glycogen synthase kinase 3 (124) and

thus releasing b-catenin, and it has been

demonstrated that Akt can exert a

broad function in controlling skeletal

development in the embryo by tuning

the activation of the Akt–glycogen

synthase kinase 3 or theAkt–FoxO axis

(125).

b-Catenin is then at the crossroad

between two alternative pathways with

juxtaposed effects, the former, mediated

by TCF, which promotes cells prolifer-

ation and commitment, and the latter,

mediated by FoxOs, that induces qui-

escence, preservation of stemness and

defenses against ROS (53,126).

To activate cellular defenses against

ROS, therefore, FoxOs must compete

with TCF/Lef1 to bind b-catenin, and
it has been shown that induction of

oxidative stress by ROS antagonizes

Wnt canonical signaling, by diverting

the pool of free cytosolic b-catenin
away from TCF (52,127) to bind FoxO

Fig. 2. Insulin binding to membrane receptors in the pancreatic islets leads to Akt activation

through PIP3. This in turn phosphorylates FoxO transcription factors, excluding them from

the nucleus and promoting the activation of alternative pathways that induce cell prolifer-

ation, to produce more insulin. The presence of ROS, as a consequence of periodontitis,

however, can activate FoxOs independently of Akt, leading to insulin resistance. PIP3,

Phosphatidylinositol (3,4,5)-trisphosphate; JNK, c-Jun N-terminal Kinase; TCF, T-cell

factor.
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(Fig. 3). The balance between the two

pathways is regulated by the presence

of stress factors; ROS activate JNK

both independently of and via Dvl, and

JNK in turn also phosphorylates

FoxO, increasing its activity at the

expense of b-catenin/TCF (128). JNK

could also directly inactivate TCF by

phosphorylating it, much like a similar

kinase, Nemo-like kinase (129).

This may provide a rationale for

the impaired bone formation and

increased osteoblast apoptosis in dia-

betic rodents and for alveolar bone loss

in diabetic rodents (1,130–132).

FoxOs and TCF compete for bind-

ing b-catenin. This co-transcription

can thus participate in the activation of

transcription programmes for defenses

against oxidative stress or alternatively

for osteoblast differentiation. Contin-

uous stimulation of FoxO/b-catenin by

ROS results, therefore, in reduced

bone formation.

Reactive oxygen species, lipid
oxidation and bone resorption

An increase in ROS can oppose

osteoblastogenesis and bone formation

by another mechanism. Reactive oxygen

species have been proved to enhance

the activity of the lipoxygenase Alox-

15 (51), converting polyunsaturated

fatty acids, such as linoleic acid,

to oxidized fatty acids, including

9-hydroxy-10,12-octadecadienoic acid.,

a high affinity ligand of the adipogenic

transcription factor Peroxisome pro-

liferator-activated receptor gamma

(PPAR-c) (133). A vicious cycle may

ensue, because these oxidized com-

pounds can also break into unsaturated

aldehydes, such as 4-hydroxynonenal,

which can deplete glutathione and thus

further increase ROS (134). Sheikhi

et al. (33) hypothesized that lipid per-

oxidation by activated neutrophils

could be responsible for tissue damage

in periodontal disease. As a matter of

fact, pharmacologic inhibition of

Alox15 has been shown to improve

bone mass in mice (135). Adipogenesis

and osteoblastogenesis are balanced

and almost antagonistic processes in

the skeleton. It has been demonstrated

that PPAR-c haploinsufficiency in

adipocytes increases bone mass and

osteoblastogenesis (136), whereas

PPAR-c stimulation by rosiglitazone or

oxidized fatty acids induces bone loss

in humans and rodents (137–139).

PPAR-c can bind to b-catenin and

degrade it, while at the same time the

increase in oxidative stress promotes

FoxO/b-catenin transcriptional activ-

ity, diverting b-catenin from binding

TCF.

Moreover, ROS play an important

role in the formation, survival and

resorbing activity of osteoclasts by

up-regulating RANKL and tumor

necrosis factor-a expression through

ERK and nuclear factor-jB activation

(140–142). Inhibition of ROS by the

antioxidant NAC prevents osteoclas-

togenesis (143). Furthermore, recent

reports have shown that RANKL

induces osteoclast formation by gen-

erating ROS in osteoclast precursors,

and mice lacking the antioxidant gene

peroxiredoxin II have reduced bone

mass (143,144). Likewise, it has been

reported that overexpression of chlor-

oplastic glutathione peroxidase, an

enzyme responsible for H2O2 degra-

dation in osteoclast precursors, impairs

osteoclast formation and RANKL

signaling (142). Consistent with these

results, Srinivasan et al. (145) demon-

strated that hypoxia promoted osteo-

clast formation by increasing ROS and

that homocysteine enhanced bone

resorption through induction of ROS

(146). Notably, there is important evi-

dence that the effects on bone mass of

estrogens and androgens, hormones

that have been long associated with

maintenance of bone homeostasis, are

mediated by antioxidant effects, and

that their effect in preventing ovariec-

tomy-induced bone loss can be reca-

pitulated by NAC (50,147,148). A

recent report by Jilka et al. (149) also

showed that the effects of intermittent

parathyroid hormone on bone anabo-

lism are more marked in aged bone

compared with the young skeleton

because of its antioxidant activity.

It is therefore possible to envisage a

scenario where, in the presence of

periodontitis, a localized and systemic

state of oxidative stress is created

(39,40), which activates a cascade of

oxidation products and stimulates

bone resorption while inhibiting bone

formation. The cellular mechanisms

that antagonize ROS in the presence of

Fig. 3. FoxOs and TCF compete for the co-transcription factor b-catenin. b-Catenin can

thus initiate two alternative pathways with opposite effects, leading to cell quiescence,

defenses against ROS and apoptosis or cell proliferation and differentiation. External stimuli,

such as the presence of ROS, hormones and growth factors, can affect the balance between

these two pathways.
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sustained oxidative stress are detri-

mental to bone formation and facilitate

progressive damage to alveolar and

periodontal structures.

Oxidative stress can exert a detri-

mental effect on bone by generating

oxidized fatty acids, which stimulate

adipogenesis and inhibit osteoblasto-

genesis, and by directly stimulating

osteoclast formation and activity.

Taken together, these mechanisms

provide a framework in which peri-

odontal and bone damage ensues as a

consequence of a periodontitis-related

highly oxidative state.

What next?

Attempts to counteract oxidative stress

to improve the outcome of treatment

of periodontitis with local or systemic

factors have been reported (31,43,56,

150–154), and most of them appeared

successfully to hamper periodontal

destruction, at least in rodent models

(Table 1). The available antioxidants

have some limitations, however.

N-Acetylcysteine, though effective in

rodents, has been shown to inhibit

Wnt canonical signaling, which might

decrease its overall benefits (149).

Improved antioxidants should be

developed to avoid undesired effects,

and novel therapeutic approaches

should take advantage of known

molecular pathways underlying cell

defenses against ROS.

Conclusions

Oxidative stress is a central event for

the fate of cells. Its ubiquitous presence

has led to the development of a com-

plex genetic network, co-ordinated by

FoxOs and b-catenin, aiming to pro-

tect cells and balance cell activities to

best oppose ROS. An increase in ROS,

which may result from age or insulin

resistance, generates a situation in

which bone formation is impaired and

bone resorption is strongly promoted.

Understanding the mechanisms under-

lying ROS-mediated bone loss is the

key to developing new therapeutic

approaches to systemic and localized

bone disorders, but also to periodon-

titis and possibly peri-implantitis.
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