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Histology of high endothelial
venules

High endothelial venules were origi-

nally described in 1898 by Thome (1).

At that time they were already linked

to the migration of lymphocytes. In

1964, in the rat model, Marchesi &

Gowans (2) discovered that the pas-

sage of lymphocytes from the circula-

tion to the lymph nodes took place in

HEVs located in the paracortex of

lymph nodes. These investigators

established that lymphocyte migration

across HEVs is a physiological process

(3).
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Periodontitis is accompanied by the proliferation of small blood vessels in the

gingival lamina propria. Specialized postcapillary venules, termed periodontal high

endothelial-like venules, are also present, and demonstrate morphological and

functional traits similar to those of high endothelial venules (HEVs) in lymphatic

organs. The suggested role of HEVs in the pathogenesis of chronic periodontitis

involves participation in leukocyte transendothelial migration and therefore

proinflammatory effects appear. Recent observations suggest that chronic peri-

odontitis is an independent risk factor for systemic vascular disease and may result

in stimulation of the synthesis of acute phase protein by cytokines released by

periodontal high endothelial cells (HECs). However, tissue expression of HEV-

linked adhesion molecules has not been evaluated in the gingiva of patients with

chronic periodontitis. This is significant in relation to potential therapy targeting

expression of the adhesion molecules. In this review, current knowledge of HEV

structure and the related expression of four surface adhesion molecules of HECs

[CD34, platelet endothelial cell adhesion molecule 1, endoglin and intercellular

adhesion molecule 1 (ICAM-1)], involved in the key steps of the adhesion cascade

in periodontal diseases, are discussed. Most studies on the expression of adhesion

molecules in the development and progression of periodontal diseases pertain to

ICAM-1 (CD54). Studies by the authors demonstrated quantitatively similar

expression of three of four selected surface markers in gingival HEVs of patients

with chronic periodontitis and in HEVs of reactive lymph nodes, confirming

morphological and functional similarity of HEVs in pathologically altered tissues

with those in lymphoid tissues.
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HEVs are composed of high endo-

thelial cells (HECs), of a cuboid or a

cylindrical shape, containing a ground

glass cytoplasm. The structure of HECs

is determined primarily by the presence

of numerous and well-developed sub-

cellular organelles (4–6).

HEVs have the general appearance

of venules, vary from 20 to 100 lm in

diameter and are lined by between

three and 10 cells when viewed in

transverse section (5) (Fig. 1A).

Detailed studies document that the

tall and plump appearance of HECs

reflects constitutive surface expression

of multiple adhesion molecules and

chemokines (7,8). The nuclei in HECs

are large and irregular with scattered

chromatin and a centrally located

nucleolus (9). A well-developed Golgi

apparatus is accompanied by numer-

ous small transport vesicles (7,10,11).

The cytoplasm is rich in microfilaments

and contains numerous mitochondria

of variable shape and size. Further

characteristics include a well-developed

rough endoplasmic reticulum (4,5) and

numerous polyribosomes (6). Signifi-

cant numbers of Weibel–Palade bodies

and other vesicular structures of a high

density point to a high secretory

potential of HECs (6). The cell mem-

brane demonstrates irregularities,

encompassing numerous cellular pro-

cesses, promoting the potential for

lymphocyte trapping (8,11). An addi-

tional feature of the surface is a thick

layer of glycocalyx (4,6). The basement

membrane abbuting the HECs is well

developed but manifests as a loose

irregular multilayer (11). Some authors

have described a very thick basement

membrane of lymph nodes in HEVs

(10). Adjacent pericytes have distin-

guishing cytoplasm containing numer-

ous mitochondria and myofilaments

(4). Tight intercellular junctions in the

endothelium of HEVs are poorly

developed (4). The luminal surface of

HEVs presents a rich expression of li-

gands, components of the peripheral

node addressins group, which play a

fundamental role during the adhesive

cascade, in the activation and passage

of lymphocytes to the extravascular

compartment (12,13). The typical

spongy morphology is induced by

hevin and trombospondin-1, as con-

firmed by in vitro studies (6,14).

A typical trait of HEVs is the associ-

ationwithhighnumbersof small,mature

lymphocytes (5). Some of the lympho-

cytes are also observed to be embedded

within the HECs (8,10). Lymphocytes

form characteristic concentric circles

around HEVs (15). At present it is

known that it is mainly T and B lym-

phocytes thatmigrate through theHEVs

of peripheral lymphatic organs while all

types of leukocyte may pass through the

walls of postcapillary venules in other

organs (6).

HEVs are present in all peripheral

lymphatic organs, such as lymph

nodes, tonsils, Peyer�s patches in small

intestine and the appendix, or in small

accumulations of lymphoid tissue in

the stomach, the small intestine and the

respiratory tract (6,8,9,16), but they

are absent from the spleen (9). Indi-

vidual HEVs were noted in thymic

medulla (9).

HEVs are important for defense

against pathogens (8,15,17). The prin-

cipal physiological function of HEVs is

their participation in the migration and

recirculation of T and B lymphocytes

in lymphoid organs. This allows for the

early recognition of foreign antigens

present on mature dendritic cells and

for the initiation of immune responses

by the production of effector cells and

memory cells (18,19). Recognition of

the vessel wall and slow rolling (step 1)

of lymphocytes along the endothelial

cells (ECs) (8,20) is followed by the

triggering of pertussis toxin-sensitive

G-protein-coupled receptors by chemo-

attractants (step 2) (20). Tight adhesion

(step 3) precedes transmigration (dia-

pedesis) of lymphocytes (step 4).

Secondary lymphoid-tissue chemo-

kine was the first chemokine discov-

ered with a specific attraction for naı̈ve

T lymphocytes; this promoted homing

of these cells in secondary lymphoid

organs (21,22). The expression of sec-

ondary lymphoid-tissue chemokine by

HEVs in Peyer�s patches and the

presence of a receptor for secondary

lymphoid-tissue chemokine, the CC

chemokine receptor 7, on T lym-

phocytes provide key mechanisms for

discriminating between T and B

lymphocytes (22).

In the transmigration of lympho-

cytes a significant role is fulfilled by

adhesion molecules – both those pres-

ent on the surface of lymphocytes (the

so-called homing receptors) and those

present on HEVs (23). The first group

includes leukocytic (L)-selectins and

the second group contains the complex

of glycoprotein ligands belonging to the

group of vascular addressins (24,25).

The addressins include glycosylation-

A B

Fig. 1. Fragment of reactive lymph node (A) and gingiva of patients with chronic periodontitis (B) with postcapillary high endothelial venules

(HEVs). Note the specialized high (cuboidal) endothelial cells (HECs), containing a ground glass cytoplasm. The HECs are large and bulge

prominently into the vessel lumen. The nuclei are large with prominent nucleoli. Polymorphonuclear leukocytes (PMNs) constitute the

majority of leukocytes in the lumen of periodontal HECs (B). Hematoxylin and eosin staining. Objective magnification, ·100.
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dependent cell adhesion molecule-

1(GlyCAM-1), CD34,mucosal adressin

cell adhesion molecule-1 (MAdCAM-

1), podocalyxin and endomucin (26–

29). The recently discovered sialomuc-

ins of the addressin group include

nepmucin, which is present on the

microvilli of lymph-node HECs but

absent from Peyer�s patch HECs.

Nepmucin is proposed to promote

both the stage of rolling of lympho-

cytes on the HEV wall and the stage of

strict adherence of lymphocytes to the

vascular wall (25). Motility of lym-

phocytes and migration between the

ECs is promoted also by the anti-

adhesive glycoprotein, hevin, discov-

ered in HEVs from human lymphatic

organs (6). The above-mentioned pro-

teins, produced in large quantities by

HECs, are described as immunocyto-

chemical markers of HEV-type blood

vessels. Studies by Liao & Ruddle (30)

confirmed earlier observations that

normal function of HEVs and the

so-called plasticity and remodeling of

blood vessels requires the presence of

functional lymphatic vessels in lymph

nodes. The process of cell passage

through HEV endothelium involves

not just adhesion molecules but also

appropriate enzymes. Most investiga-

tions have focussed on the role of

fucosylotransferases (FucT-IV and

FucT-VII) and a sulfotransferase

(termed HEC-GlcNAc6ST) that also

fulfil a function as ligands for L-selec-

tin (24,31–33). Involvement of metal-

loproteinases was also established in

the transmigration of lymphocytes

through HEV and the HEV basement

membrane (18).

HEVs can appear also in extra-

lymphoid organs, embroiled in a

chronic inflammatory process (34). In

contrast to HEVs of lymphoid organs,

the blood vessels are termed, by some

investigators, as HEV-like venules

(5,34). They are present in particular in

regions of marked accumulation of

lymphocytes (5,9,34,35).

In contrast to the succesful identifi-

cation of adhesion molecules and the

receptors controlling tissue-specific

lymphocyte trafficking to lymphoid

organs and some nonlymphoid tissues

(e.g. skin and gut), relatively little is

known about the expression and the

mechanisms regulating trafficking to

the other nonlymphoid tissues (20,23).

Four molecularly distinct adhesion

and signaling events in leukocyte

recirculation between the blood and

lymphoid/nonlymphoid tissues are

demonstrated schematically in Fig. 2.

Morphogenesis of HEVs

There remains a paucity of data on the

mechanisms of HEV formation in

lymphoid tissues and in sites of chronic

inflammation (20). Probably, mature

blood vessels differentiate from primi-

tive vessels in response to a stable, slow

blood flow at low pressure (6,36).

HECs may prove to be an ontogeneti-

cally separate cell line. Alternatively,

they could be induced by local factors

and therefore represent the reversible

phenotype of a flat endothelium.

While the former hypothesis cannot

be excluded, it remains possible that

microenvironmental activity may

evoke alterations in the HEC pheno-

type (6,9,16,37). Control of a special-

ized phenotype in venous blood vessels

was suggested to include the action of a

nuclear factor, typical for HEVs (NF-

HEV) (38). Moreover, Hendriks &

Eestermans (39) established that in

lymph nodes with no lymph inflow,

HEVs may change to postcapillary

venules lined with a flat endothelium,

which is unable to trap lymphocytes.

Other authors demonstrated a rapid

and striking loss of morphological and

functional traits of human HEVs

following isolation from lymphoid

organs, that is, following removal from

a special microenvironment. These

studies demonstrated complete loss of

at least two HEV markers – Duffy

antigens for chemokines and the HEV-

specific fucosylotransferase (Fuc-TVII)

– as well as decreased expression of

many other genes (37).

HEVs and systemic diseases

Most frequently, HEVs are present in

the mucosa of various organs involved

in chronic inflammatory or neoplastic

processes. The number of HEVs

increases in regions with elevated

numbers of inflammatory cells,

particularly T and B lymphocytes

(5,21,22,34,35). Under the stimulus of

a local immune reaction or persisting

chronic inflammation, postcapillary

venules may transform into HEVs to

facilitate leukocyte migration into the

affected tissues (9,40).

Accordingly, the presence of HEVs

was demonstrated in a variety of

disease states, including arthritis,

ulcerative colitis, Crohn�s disease,

Fig. 2. Multiple stages of leukocyte (mainly lymphocytes) transendothelial migration. The

cascade begins with lymphocyte rolling (step 1). Then, lymphocyte adhesion triggers pertussis

toxin-sensitive G-protein-coupled receptors by chemoattractants (step 2). Chemoattractant

binding, in turn, induces intracellular signals for firm adhesion of lymphocytes (step 3).

Finally, lymphocytes transmigrate across the high endothelial cells (HECs) (step 4), penetrate

the underlying basement membrane and infiltrate the parenchyma of the tissue. Transmi-

gration of leukocytes occurs through a stepwise interaction with adhesion molecules expressed

on the luminal surface of postcapillary high endothelial venules (HEVs) (see Fig. 3) and their

receptors on leukocytes [according (20), modified].
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Hashimoto-type thyroiditis and

chronic periodontitis (5,34,35,41–43).

In in vitro investigations on material

obtained from patients with peptic

ulcers of the stomach and the duode-

num, rheumatic fever, autoimmune

thyroiditis, polymyositis and pyelone-

phritis, increased adhesion of lympho-

cytes to the HECs was described (34).

HECs were also shown to play si-

milar functions as monocytes and

macrophages. They produce cytokines

such as interleukin (IL)-1 and colony-

stimulating factor (42,44,45).

HEVs also play an important role in

scavenging injured and apoptotic lym-

phocytes (46,47). Expression of Fas

receptor ligand was demonstrated on

HECs in reactive human lymph nodes,

confirming involvement of the cells in

the induction of Fas/Fas ligand-

dependent apoptosis (48).

HEVs and periodontal diseases

In biopsies of inflamed gingival tissues

there was evidence for both angiogen-

esis and deposition of perivascular

hyaline material (basal lamina compo-

nents), which can impair the emigra-

tion of polymorphonuclear leukocytes

(PMNs) into the gingival sulcus (49).

In inflamed gingiva and advanced

chronic periodontitis, several authors

observed periodontal HEV-type

blood vessels (PHELVs) (50,51). In

periodontitis the connective tissues

manifest an inflammatory infiltrate

consisting mainly of T and B lympho-

cytes (52–54), frequently surrounding

HEVs (Fig. 1B). These specialized

vessels were not detected in healthy

gingiva (15,51). Proliferation of blood

vessels under the junctional epithelium

has also been described in periodontal

diseases in chimpanzees: this involved

capillary loops containing high num-

bers of neutrophils and extending to

approach the attenuated pocket epi-

thelium (46). Many intact PMNs were

observed intracellularly within the

connective tissue and the epithelium

also by other authors. Several layers of

PMNs surrounded the plaque mass

(55). Pinchback et al. demonstrated

that substances released from dental

plaque have easy access to connective

tissue and the vascular system. Accu-

mulation of lymphoid cells was

accompanied by atrophy of collagen

fibers, hyperplasia of loose connective

tissue and proliferation of capillaries

(56).

In patients with chronic periodonti-

tis a disturbed immune response can be

noted, as a result of altered functions

of neutrophils, monocytes, lympho-

cytes and fibroblasts (57). Vascular

expansion encompassing augmented

luminal diameters, increased tortuosity

and appearance of HEVs is distinctive.

Changes in vascular structure, the

involvement of vasculature overpro-

duction of cytokines and phagocytic

properties of HECs indicate that the

vasculature contributes to the pro-

gressive lesion (41,58,59). These char-

acteristics support the inclusion of

chronic periodontitis in the category of

vasoproliferative diseases (60).

The appearance of HEVs in tissues

of the oral cavity may reflect the action

of several factors, including the

up-regulation of vascular endothelial

growth factor which exerts pro-angio-

genic activity and augments the

permeability of blood vessels. Vascular

endothelial growth factor is consid-

ered to be responsible for bleeding and

swelling of gingiva (61). ECs produce

cytokines and adhesion factors for

lymphocytes and for other inflamma-

tion-promoting substances, thus assisting

in the appearance of new lymphocyte

populations in the inflammatory focus.

Monocytes and macrophages also take

part in the process of angiogenesis

because they are able to produce

factors responsible for the process

(44,61). The production by endothe-

lium of growth factors, including vas-

cular endothelial growth factor, basic

fibroblast growth factor, cytokines and

chemoattractants, amplifies angiogen-

esis and increases the migration of

proinflammatory cells (41,42,51).

Expression of selected surface
markers of HEV necessary for
leukocyte transendothelial
migration

Work in the authors� laboratory

focused on the characterization of

HEC-linked adhesive molecules indis-

pensable for each stage of leukocyte

migration into lymphoid/nonlymphoid

tissues (e.g. gingiva in chronic peri-

odontitis) (described in Fig. 3).

The adhesive cascade is known to

include, on the one hand, adhesive

molecules belonging to selectin, inte-

grin and sialomucin families and, on

the other hand, molecules belonging to

the superfamily of immunoglobulins,

expressed by both lymphocytes and

HEVs (6,8,16,25).

CD34

The CD34 molecule is a single-chain,

transmembrane glycoprotein. Together

with podocalyxin and endoglycan,

CD34 is grouped in the CD34 family

and the subfamily of sialomucins (62).

Molecules of this family are specifically

expressed by HEVs and react with

L-selectin present on most leukocytes

(8,63) (Fig. 3). When related to HEV

function, CD34 family proteins are

classified as members of the peripheral

node addressins family (8).

In humans, CD34 has a molecular

mass of 105–120 kDa (64–66), while

the molecular mass of the murine form

of CD34 ranges from �90 to

�100 kDa (67). The gene encoding

human CD34 contains eight exons and

is located on chromosome 1 (64,68).

Pioneering studies on CD34 were

directed towards analysis of expression

as a marker to assist in the identifica-

tion and isolation of HSCs and pro-

genitors in preparation for bone

marrow transplantation (62). CD34

was present as a 110-kDa product on

hematopoietic progenitor cells/hema-

topoietic stem cells and also on the

vascular endothelium (69). CD34 is

expressed on small blood vessels in the

majority of tissues in normal organs

and on several stem cell and neoplastic

cell lines (67,69). CD34 mRNA was

demonstrated in cultured umbilical

vein endothelial cells (HUVECs) as

well as in other tissues rich in vascular

endothelium (breast and placenta) (69)

and in freshly cultured vascular ECs

(70). CD34 is not expressed in the

endothelia of large blood vessels or

placental sinusoids (69). Expression of

CD34 on ECs was shown to be

maintained at a high level on the luminal

surface while basolateral aspects
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showed weaker expression (66,71).

Interestingly, in hematopoietic progen-

itor cells, CD34 manifests in both

membranous and cytoplasmic forms.

Cultured HUVECs demonstrate a dif-

fuse membranous expression of CD34

(partially also on the surface of micro-

villi) (70). Endothelial cell expression of

CD34 is thought to accompany devel-

opmentofbloodvessels at every stage, in

physiological conditions and on reca-

pitulation of angiogenesis in neoplastic

lesions (72).

The characteristics of CD34 are

shown in Table 1.

CD34-positive cells were found to

include a large number of different cell

types (62,70,73–75) (Tables 1 and 2).

In addition, overlapping expression

was detected for CD34 and the CD34-

related proteins, podocalyxin and

endoglycan (reviewed in 62).

In HEVs in peripheral lymphoid

tissues (lymph nodes and tonsils),

CD34 was expressed also on the free

surface of HECs (63,76). Subcellular

localization of CD34 is summarized in

Table 3.

The exact function of CD34 remains

unknown but several relevant hypoth-

eses have been presented. A decrease in

expression of CD34 protein and CD34

mRNA was noted following adminis-

tration of IL-1b, interferon-c and

tumor necrosis factor-a (TNF-a), un-
der conditions in which the ligands up-

regulated the expression of endothelial

leukocyte adhesion molecule 1 (selectin

E) and intercellular adhesion molecule

1 (ICAM-1) (70). Recent in vitro stud-

ies have confirmed that expression of

ICAM-1, vascular cell adhesion mole-

cule 1 (VCAM-1), MAdCAM-1 and

selectin E increases in mouse lymphatic

endothelium as a result of stimulation

with the proinflammatory cytokines

IL-1b, TNF-a and interferon-c. In

human ECs of lymphatic vessels the

cytokines induced increased expression

of EC adhesion molecule, but not of

MAdCAM-1 (90). CD34 proved to be

a ligand for L-selectin (CD62L),

which is expressed constitutively on

the cell membrane of leukocytes

(Fig. 3). The lectin domain of L-selec-

tin recognizes carbohydrate residues

(sulfated, fucosylated and sialated

types) of the CD34 extracellular frag-

ment (76). Using MECA-79 monoclo-

nal antibody, intense cytoplasmic

staining as well as luminal and ablu-

minal reactivities were demonstrated

for HEVs (91).

Involvement of CD34 in leukocyte tran-

sendothelial migration and inflamma-

tion— The best-documented function

of CD34 involves its engagement in the

promotion of lymphocyte adhesion to

HEVs in lymphatic organs and, more

precisely, at stages 1 and 2 of leukocyte

passage through HEVs (rolling and

activation of lymphocytes) (71,76).

CD34 was found to bind L-selectin,

representing the first step of the

movement of naive lymphocytes into

secondary lymphoid organs (63)

(Fig. 2).

CD34 plays an important role at

various stages of inflammation, and its

expression is maintained at the sites of

a developing inflammatory process.

The role of CD34 on the surface of

other cells involves stimulation of cell

motility and more effective migration

into the affected tissues (73,74).

Involvement of CD34 antigen is also

speculated to affect the dynamic prop-

erties of mature human fibroblasts

(75).

Platelet endothelial cell adhesion
molecule 1

Platelet endothelial cell adhesion mole-

cule 1 (PECAM1) (EndoCAM) is a gly-

coprotein of 130 kDa molecular mass,

and a member of type I transmembrane

adhesionmolecules and the superfamily

of immunoglobulins (92,93). The pri-

marycellulartargetforhumanPECAM-

1 isPECAM-1,andthe immunoglobulin

homology domains 1 and 2 mediate

PECAM-1 homophilic adhesion (94)

(Fig. 2).

PECAM-1 consists of a cytoplasmic

domain (in the form of a long tail), a

short hydrophobic transmembrane do-

main and six extracellular domains,

resembling in structure immunoglobu-

lin chains (95). At least two of the

domains manifest an adhesive potential

(96,97). They are responsible for con-

tact with other molecules, and are

mediators of adhesion, participating in

establishing contact between ECs and

stabilizing the endothelial structure (96–

98). The cytoplasmic domains contain

two special immunoreceptor tyrosine-

based inhibitory motifs responsible for

transfer of an inhibitory signal in a cell,

as well as a motif with an activating se-

quence, the immunoreceptor tyrosine-

based activation motif (99,100).

Cellular expression of PECAM-1 is

manifested on different lineages of cells

(101–104) (Table 2). In ECs, the

expression of PECAM-1 is particularly

high in lateral cell membranes, at the

site of intercellular junctions. In such

sites their concentration reaches 106

molecules, fulfilling a binding role in

inflammatory and immune processes as

Fig. 3. The adhesion molecules [endoglin,

platelet endothelial cell adhesion molecule 1

(PECAM-1), CD34 and intercellular adhe-

sion molecule 1 (ICAM-1)] expressed by

high endothelial cells (HECs) and their

counterpart receptors on leukocytes [lym-

phocytes, monocytes and polymorpho-

nuclear leukocytes (PMNs)] involved in the

multiple adhesion cascades are shown. The

leukocytes initiate rolling via interactions

between L-selectin and peripheral node

addressins (including CD34). Subsequently,

leukocytes adhere firmly to the luminal

surface of high endothelial venules (HEVs),

mainly via interactions between leukocyte

function-associated antigen-1 (LFA-1) and

intercellular adhesion molecule (ICAM)-1

and -2. PECAM-1 mediates PECAM-1

homophilic adhesion and participates in

firm adhesion and transmigration. Endoglin

probably takes part in lymphocyte adhesion

to the luminal surface of HEVs, but its

precise role in transendothelial migration

remains unclear.

High endothelial venules in periodontitis 5



well as in processes associated with

thrombocyte aggregation (96). In the

case of HEV endothelium, expression

of PECAM-1 is localized to both

luminal and lateral aspects of the cell

membrane (8) (Table 3).

From the clinical point of view, the

link between PECAM-1 and the func-

tion of endothelium in veins seems to

be particularly important (105,106).

Data on the molecular structure and

the role of PECAM-1 in inflammatory

and immune processes are summarized

in Table 1.

Involvement of PECAM-1 in leukocyte

transendothelial migration and inflamma-

tion— In the relatively rich literature

describing the function of PECAM-1,

participation in transendothelial migra-

tion was stressed (94,95,106–110).

PECAM-1 takes part in the third and

fourth steps of transendothelial migra-

tion, as demonstrated by functional

studies (107). The first reports on

adhesive properties of the molecule

originate in 1991, from studies by

Albelda et al. (106), and the data on

involvement of PECAM-1 in transen-

dothelial migration of leukocytes were

supplied in 1993 by Muller et al. (107)

and in 1994 by Bogen et al. (108). In

the same year these observations were

confirmed by Vaporciyan et al. (109) in

studies on traffic of neutrophils in an

animal model. An involvement of PE-

CAM-1 was suggested in the passage

of monocytes through the endothelial

basement membrane as a result of

interactions of the molecule with

components of the extracellular

matrix. On the other hand, the mole-

cule seems to play a less important role

Table 1. Characteristics of selected adhesion molecules necessary for leukocyte transendothelial migration in postcapillary high endothelial

venules

CD34 PECAM-1

Endoglin

(CD105)

ICAM-1

(CD54)

Gene/chromo-

some localization

1q32 17q23 9q33-34 19p13.3-p13.2

Transcript size 26 kb 1kb 3.3 kb

Protein size 105–120 kDa (385 amino

acids)

130–140 kDa (738 amino

acids)

180 kDa (633 amino

acids)

70–120 kDa (532 amino

acids)

Cell types with

major expression

Human hematopoietic

progenitor/stem cells,

endothelial cells of small

blood vessels (including

high endothelial cells)

Venous endothelial cells

(including high endothe-

lial cells), platelets

Endothelial cells (includ-

ing high endothelial cells)

Endothelial cells (includ-

ing high endothelial cells)

Other cells with

expression

Multipotent precursor

cells, mouse mast cells,

human fibroblasts and fi-

brocytes, hematopoietic

cancer cells

Leukocytes (granulocytes,

monocytes, neutrophils),

smooth muscle cells, un-

ique T-cell subset and B-

cell subpopulation, cancer

cells

Syncytiotrophoblasts,

stromal cells, certain

hematopoietic cells, mus-

cle cells, fibroblasts, acti-

vated macrophages,

cancer cells

Leukocytes, epithelial

cells, fibroblasts, cancer

cells

Role in adhesive

cascade

First and second steps of

transendothelial migra-

tion (rolling and leukocyte

activation)

Third and fourth steps of

transendothelial migra-

tion (leukocyte adhesion

and diapedesis)

Third step of transendo-

thelial migration (leuko-

cyte adhesion to high

endothelial cells)?

Fourth step of transendo-

thelial migration?

Third and fourth steps of

transendothelial migra-

tion (leukocyte adhesion

and diapedesis)

Other functions Inhibition of mast cell

adhesion and aiding

appropriate homing of

mast-lineage cells in mice

Angiogenesis, integrin

activation, thrombocyte

aggregation

Angiogenesis, maintaining

the homeostasis of vessels,

endothelial cell differenti-

ation, vascular repair,

bone marrow mesenchy-

mal stem cell regulation

T-cell activation (immu-

nological synapse), pre-

senting the antigen to

cytotoxic T cells, receptor

for human rhinoviruses,

induction of many proin-

flammatory paths and

regulation of cytokines
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Simmons et al. (64),

Benedetti (65), Kikuta &

Rosen (66), Krause et al.

(67), Satterthwaite et al.
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et al. (74), Barth & West-
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Gumina et al. (92), New-

man (93), Xie & Muller

(95), DeLisser et al. (98),

Sheibani & Frazier (101),

Tang et al. (103), Tanaka

et al. (104), Muller et al.

(107), Cao et al. (111),

Tachezy et al. (112)

Chaifetz et al. (116),

Fernàndez-Ruiz et al.

(118), Kumar et al. (124),

Bodey et al. (125), Fons-

atti et al. (126), Torsney

et al. (129), Burrows et al.

(130), Dallas et al. (131),

van Laake et al. (132),

Bühring et al. (131), Con-

ley et al. (142), Meunzner

et al. (145)
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ICAM-1, intercellular adhesion molecule-1; PECAM-1, platelet endothelial cell adhesion molecule 1.
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in a similar passage of lymphocytes as

inactivation of the PECAM-1-coding

gene failed to disturb the passage of

leukocytes in lymph nodes (110).

Another role of PECAM-1, stressed by

reports, is its involvement in angio-

genesis (111,112).

The molecular mechanisms that

result in the synthesis of PECAM-1 by

cells continue to pose a dilemma. The

adhesive properties of the extracellular

domains may be regulated by the

cytoplasmic domain. HECs devoid of

PECAM-1 formed no tight junctions

and did not manifest a typical cubic

structure (98). Modifications in the

cytoplasmic domain of the molecule

affect its adhesive properties and the

binding of appropriate ligands

(105,113). PECAM-1 participates in

apoptosis and signal transduction (99),

including signals that inhibit pro-

grammed cell death (100). The mecha-

nism of the cytoprotective activity of

PECAM-1 remains unknown; it

probably involves binding to various

enzymes, such as kinases and phos-

phatases. Involvement of the protein is

assumed in the control of transcription

of apoptotic proteins (99). It was

demonstrated that tumor cell PECAM-

1 is involved in mediating tumor cell

adhesion to endothelium (103). In turn,

studies of the mechanisms through

which the molecule acts in the trans-

port of leukocytes across ECs provide

evidence for its involvement in the

control of the signaling pathway with

involvement of Ca2+ ions. Activation

of calcium channels is believed to play

a role in the transmigration of neu-

trophils (114). Despite the broadly

implemented studies, the function of

PECAM-1 has not been fully clarified.

Further investigations on the molecule

may result in a therapy that eliminates

unwanted inflammatory reactions and

other pathological conditions (115).

Endoglin (CD105)

Endoglin represents a homodimeric

integral membrane type 1 glycoprotein,

composed of two disulfide-linked

subunits of 90–95 kDa (116). It is

described as a marker protein of active,

proliferating ECs in capillaries, arteri-

oles and veins. Expression of endoglin

was demonstrated on the membrane of

ECs in all tissues except for bone

marrow (117).

Endoglin consists of a 561-amino-

acid extracellular domain, a 25-amino-

acid hydrophobic transmembrane

domain and a 47-amino-acid intracel-

lular tail, representing the cytoplasmic

domain (117). The endoglin-coding

gene is situated on chromosome 9

(9q33-34) (118).

The presence of an Arg-Gly-Asp

(RGD) motif, located in the zona pel-

lucida domain of the extracellular

region of endoglin, suggests its role in the

process of reciprocal binding between

ECs and integrins on the one hand and

other receptors for the RGD on the

other. The RGD motif is responsible

for adhesion and cell aggregation. It

also participates in cell interactions

with the extracellular matrix (117). The

47-residue cytosolic domain of the

predominant L-isoform of CD105

constitutes a region of the protein with

the highest degree of conservation

among endoglins from different mam-

malian species, as well as with the

homologous protein, betaglycan (119).

Data on the molecular structure and

on the main role of endoglin in the

context of leukocyte migration are

summarized in Table 1.

In a functional respect, endoglin rep-

resents an accessory protein of the mul-

tiple kinase receptor of the transforming

growth factor b (TGF-b) superfamily

and modulates TFG-b-dependent cel-

lular responses (116,120,121) (Fig. 3).

Overexpressed endoglin is able to

modulate cellular responses to TGF-b
in several cell types, including ECs

(122,123). CD105 is markedly up-regu-

lated in the proliferating endothelium of

tissues undergoing angiogenesis (124–

126). CD105 binds TGF-b1 and

Table 2. Cell-type distribution of surface adhesion molecules in human and animal tissues

Type of cell CD34 PECAM-1 Endoglin ICAM-1

Endothelial cells + + + +

High endothelial cells + + + +

Multipotent precursors + ) + )
Hematopoietic precursors/stem cells + ) ) )
Progenitor and adult mast cells +

Bone marrow stromal cells +

Megakariocytes/platelets ) + ) )
Monocytes/macrophages/osteoclasts ) + + +

Dendritic cells +

Neutrophils +

Eosinophils +

Erythrocytes ) ) ) )
Fibroblasts/fibrocytes + ) + +

Plasma cells +

Subsets of T and B cells + +

Epithelial cells ) ) +

Smooth muscle cells + +

Cardiac muscle cells +

Adult and/or fetal fibroblasts + ) + +

Tumor cells and/or tumor cell lines + + + +

ICAM-1, intercellular adhesion molecule-1; PECAM-1, platelet endothelial cell adhesion

molecule 1.

CD34: Nielsen & McNagny (62), Krause et al. (67), Satterthwaite et al. (68), Fina et al. (69),

Delia et al. (70), Drew et al. (73), Drew et al. (74), Barth & Westhoff (75).

PECAM-1: Tohya et al. (8), Sun et al. (94), Sheibani & Frazier (101), Golberger et al. (102),

Tang et al. (103), Tanaka et al. (104), Muller et al. (107).

Endoglin (CD105): Izawa et al. (12), Balza et al. (77), Jen et al. (78), Ozbey et al. (79),

Kestendjiewa et al. (80), Gougos & Letarte (117), Barnabeu et al. (121), Kumar et al. (124),

Bodey et al. (125), Fonsatti et al. (126), Burrows et al. (130), Dallas et al. (131), Postiglione

et al. (133), Gougos & Letarte (134), Bühring et al. (136), Robledo et al. (137), Cook-Mills

et al. (146).

ICAM-1 (CD54): Perry et al. (81), Cook-Mills & Deem (152), Simmons et al. (153), Marlin

& Springer (154), Dustin & Springer (175), Sasaki et al. (179), Millan et al. (180).
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TGF-b3 by associating with the TGF-b
type II receptor and interacts with

activin-A and bone morphogenetic

protein-7 (BMP-7) via activin type II

receptors, ActRII and ActRIIB,

regardless of which type I receptor

partner is co-expressed (120). Endoglin

has also been shown to interact with the

TGF-b type I receptor (120,127,128).

In physiological conditions, expres-

sion of CD105 is insignificant, whereas

in pathology it is detected in proliferat-

ing ECs within inflammatory sites, in

tumors and in regenerating tissues (129–

132). CD105 is considered to provide an

importantmarker of neoangiogenesis in

neoplastic cells (112,133). Endoglin

was originally identified in human

vascular ECs and was shown to be

highly expressed onHUVECs in culture

(134). Other cells producing endoglin

(121,134–137) are cited inTables 1 and2.

Endoglin plays a role in bone mar-

row mesenchymal stem cell regulation

(138), in formation of haemangioblasts

(139) and in blood mononuclear

cell-mediated vascular repair (132).

Mutations of the endoglin gene were

demonstrated in certain diseases linked

to disturbed vasculogenesis (e.g. in

hereditary hemorrhagic telangiectasia)

(140). Lack of CD105 expression was

documented also in diseases linked to

lung developmental disturbances or in

fetuses with cardiac malformations

(132,141).

The functions of endoglin are most

frequently associated with angiogene-

sis, adhesion and cell migration, as well

as with maintenance of vascular

homeostasis (reviewed in 121). Endog-

lin affects the differentiation of the EC

phenotype in many tissues, including

HEV-type blood vessels (12,132). The

most important functional fragment of

the molecule involves the cytoplasmic

domain (121). Endoglin expression

results in the inhibition of cell migra-

tion in in vitro and in vivomodels (121).

The process is controlled by endoglin–

zyxin interactions (142) and with the

cytosolic protein, zyxin-related protein

1 (143). Interactions with these

proteins result in the redistribution of

zyxin-related protein 1 from sites of

focal contacts to F-actin stress fibers in

ECs and in a dynamic rearrangement

of F-actin fibers (143). The interactions

between endoglin and betaglycan are

also significant (121). Endoglin inter-

acts with protein Tctex2b (from the

Tctex1/2 family of cytosolic dynein

light chains), linking endoglin to

microtubule-based transport (144).

The cytosolic domain of endoglin also

plays a role in amplifying cellular

adhesion with involvement of integrin

b1 (145).

Positive expression of endoglin, in

line with the other HEC markers, was

demonstrated in cultured ECs estab-

lished from BALB/c mouse axillary

and cervical lymph node and in HECs

of lymph node tissue sections (146).

Actively expressed genes in HECs of

mouse lymph node, including the gene

encoding endoglin, were catalogued by

Izawa et al. (12). Expression of

endoglin in HECs was more pro-

nounced than expression of PECAM-1

or CD34 and it was detected with a

markedly higher frequency than on

PECAM-1-positive cells of the flat

vascular endothelium (12).

Involvement of endoglin in leukocyte

transendothelial migration and inflamma-

tion The precise mechanism of action

of endoglin in the leukocyte adhesive

cascade has not been described (8,20).

As noted, the literature implicates

endoglin in the regulation of integrin-

mediated cell adhesion and detachment

(145). The molecule may directly

mediate important cell-adhesive, pro-

liferative and migration processes in

the developing and adult vasculature

(121) (Table 1).

Intercellular adhesion molecule-1

ICAM-1 (CD54) is an inducible surface

glycoprotein of 70–120 kDa molecular

mass (147,148). The primary structure

of ICAM-1 demonstrates interaction

between members of the immunoglob-

ulin and integrin supergene families

(134). The gene encoding human

ICAM-1 is positioned on chromosome

19 (149,150) (Table 1). The mature

molecule of ICAM-1 consists of five

immunoglobulin-like extracellular

domains (D1–D5) (of 453 amino acids),

a short transmembrane region and a

Table 3. Cellular and subcellular localization of surface adhesion molecules in high endo-

thelial cells

Adhesion molecule Cellular and subcellular localization

CD34 Luminal and abluminal surfaces of high endothelial cells

Microvillous processes near the endothelial cell junctions

Golgi apparatus and some vesicular structures of high endothelial

venules

Subset of electron-dense granular structures

PECAM-1 Luminal surfaces of high endothelial cells

Apical surface of the endothelial cells over the intercellular junction

Lateral membrane of high endothelial cells

Microvillous processes of high endothelial cells at the lateral

membrane

Intraendothelial contacts and vesicle-like structures along the cell

border

Endoglin

(CD105)

Luminal surfaces and cytoplasm of high endothelial cells

ICAM-1

(CD54)

Luminal and lateral surfaces of high endothelial cells

Over the luminal surfaces, which undulated to form microfolds and

shallow microfurrows

Icrovillous processes of high endothelial cells

ICAM-1, intercellular adhesion molecule-1; PECAM-1, platelet endothelial cell adhesion

molecule 1.

CD34: Tohya et al. (8), Kikuta & Rosen (66), Baumhueter et al. (71), Streeter et al. (78) &

Girard et al. (82).

PECAM-1: Tohya et al. (8), Muller et al. (107), Pfeiffer et al. (83), Ayalon et al. (84), Jin

et al. (85), Mamdouth et al. (86,87).

Endoglin (CD105): Kasprzak et al. (229), Tomczak (230).

ICAM-1 (CD54): Tohya et al. (8), Perry et al. (81), Brown et al. (88), Tanaka et al. (89),

Sasaki et al. (179).
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small carboxyterminal cytoplasmic

domain (of 28 amino acids), the final

fragment of which links the molecule to

the cytoskeleton through a-actinin and

b-tubulin (147,148,151). The extracel-

lular domains of ICAM-1 are responsi-

ble for binding ligands and contain

potential sites for glycosylation (152).

The second, third and fourth

immunoglobulin domains are heavily

N-glycosylated, with four potential sites

in D2, two in D3 and two in D4

(151,153).

Under normal conditions, ICAM-1

acts as an endothelial receptor for

leukocyte function-associated antigen-

1 (LFA-1, CD11a/CD18, integrin b2),
an ab complex that is a member of the

integrin family of cell–cell and cell–

matrix receptors and is expressed on

leukocytes (147,154,155) (Fig. 3). The

ICAM-1 and LFA-1 interaction is

heterophilic, and adhesion is primarily

between the D1 domain (155) and the

insertion domain (156). Unlike other

integrin ligands, ICAM-1 does not

contain an RGD motif, but has a

larger, more extended, binding sur-

face (153,155,157). Upon ligation,

ICAM-1 activates RhoA family

G-proteins, small guanosine triphos-

phatases (GTPasaes) (158,159) and

induces the polymerization of actin,

preconditioning strict adhesion and

passage of leukocytes through the vas-

cular endothelium (160,161). ICAM-1

occupancy triggers elevation in intra-

cellular free Ca2+ and myosin contrac-

tility (162), and activation of p38 kinase

(163) and the tyrosine kinase p60Src

(164). Activation of these signaling

pathways induces extensive cytoskeletal

remodeling events that alter EC con-

tractility and function, possibly facili-

tating leukocyte diapedesis (163).

ICAM-1 on the surface of HECs

binds also to (apart from LFA-1)

macrophage adhesion ligand-1 (Mac-1,

ITGB2, ITGAM), which is expressed

on leukocytes (8,157) (Fig. 3). Recent

data indicate that ICAM-1 and major

histocompatibility complex molecules

might also contribute to molecular

segregation at the so-called immuno-

logical synapse, thereby facilitating

T-cell activation (165,166).

ICAM-1 is subverted as a receptor

by the major group of common cold

human rhinoviruses. Analyses showed

that rhinoviruses mimic LFA-1 in

binding to the most membrane-distal

site of ICAM-1 (155). This was con-

firmed by subsequent studies, demon-

strating that rhinovirus attachment is

confined to the BC, CD, DE and FG

loops of the amino-terminal immuno-

globulin-like domain (D1) at the end

distal to the cellular membrane (157).

Apart from LFA-1 and human rhino-

viruses, ICAM-1-binding sites for

fibrinogen (148) and malaria-infected

erythrocytes were also demonstrated

(167,168).

The role of ICAM-1 in immune and

inflammatory processes is more com-

plex than was thought in earlier stud-

ies. Apart from the well-documented

role of ICAM-1 as an adhesion mole-

cule, the role of the molecule is stressed

as a costimulator, facilitating antigen

presentation to cytotoxic T cells during

major histocompatibility complex-

I-restricted antigen presentation

(reviewed in 169). ICAM-1 induces

many signaling pathways (mainly pro-

inflammatory) in the cell, including

Abl tyrosine kinase, SCR-family kin-

ases and p38 MAPK, suggesting a role

for ICAM-1 in mediating inflamma-

tion. The physiological role of such

activation (particularly activation of

kinases) involves increased production

of cytokines and cell-surface proteins

such as major histocompatibility

complex-I, IL-1 receptor, VCAM-1

and regulated on activation, normal,

T-cell expressed, and secreted (RAN-

TES) (169,170). ICAM-1 ligation was

found to up-regulate ICAM-1 expression

in a positive-feedback loop. ICAM-1

might also function as cell-surface

receptor, capable of initiating intercel-

lular signaling, which is implicated in

the regulation of cytokine production

(IL-1b, IL-6, IL-8 and IL-12) during

the course of cell proliferation and

differentiation as well as in the regula-

tion of some membrane proteins,

including immune receptors (reviewed

in 169).

A circulating (soluble) form of

ICAM-1 (cICAM-1 or sICAM-1) was

also identified for the first time in

normal human serum and in sera from

patients with leukocyte adhesion defi-

ciency (171). This form of ICAM-1 can

also be detected in cerebrospinal fluid

and in gingival fluid (148,172,173). In

healthy individuals, the serum levels of

cICAM-1 range from 100 to 200 ng/

mL, while markedly elevated levels

(200–700 ng/mL) are detected in

patients with leukocyte adhesion defi-

ciency (171). Serum levels of cICAM-1

may provide indirect proof for an

inflammatory condition or tissue injury.

ICAM-1 is expressed constitutively

on the surface of several cell types,

including leukocytes, fibroblasts, epi-

thelial cells and ECs (153) (Table 2).

Endothelium expresses low levels of

ICAM-1 and inflammatory stimuli can

markedly increase the surface expres-

sion of ICAM-1 (152,174,175).

Involvement of ICAM-1 in leukocyte

transendothelial migration and inflamma-

tion ICAM-1 protein that promotes

adhesion in immunological and inflam-

matory reactions. The normal function

of the molecule is to provide adhesion

betweenECs and leukocytes after injury

or stress (step 3 of transendothelial

migration) and to participate in diape-

desis (step 4 of transendothelial migra-

tion) (23,147,148) (Fig. 2). Involvement

of ICAM-1 in leukocyte transendothe-

lial migration is linked to the activation

of cell signals that control mainly cyto-

skeletal functions inHECs (148,152).Of

note, the studies on the role of

endothelial expression of ICAM-1 in

transendothelial migration, in the

model of TNF-a-stimulated HUVECs,

showed that all three types of leuko-

cytes (granulocytes, monocytes and

lymphocytes) migrate through the wall

of such blood vessels. In these studies it

was demonstrated that 5–10% of

leukocytes pass directly through the

cytoplasm in individual venules (trans-

cellular transport), most traversed

between ECs (paracellular transport)

while the remaining leukocytes showed

no clearly outlined path of migration.

Interesting were the observations

showing that the paracellular and

transcellular diapedesis was correlated

with the presence of cup-like structures,

rich in adhesivemolecules (ICAM-1 and

VCAM-1), arranged in parallel to the

leukocyte migration path (176,177). A

model was also presented for in vitro

transcellular passage of PMNs, inwhich
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PMNs, but not CD3+ T lymphocytes,

were shown to undergo transcellular

migration via a mechanism involving

high-occupacy levels of ICAM-1 on the

endothelial surface (178).

Studies on the three-dimensional

location of ICAM-1 on the surface of

HECs showed that the molecule

undergoes a most pronounced expo-

sure on the luminal surface of HEV,

forming microfolds and grooves (179)

(Table 3). Translocation of ICAM-1 to

caveolin-rich membrane domains close

to the ends of F-actin stress fibers

controls transcellular diapedesis of

human T lymphocytes (180). On the

lymphocytes that were apposed to

HECs, LFA-1 was shown to form

capping and clustering patterns, indi-

cating that the topology of LFA-1 is

also dynamically regulated during the

course of lymphocyte–HEV interac-

tions (181). The functional and mor-

phological studies of Shulman et al.

(182) demonstrated that T cells crawl

in a millipede-like manner on ICAM-1,

expressing ECs using their LFA-1-

dependent filipodia. Other authors

negate this suggestion, observing, in

scanning electron micrographs, that

the great majority of lymphocytes in

the adhesion step or the early step of

transendothelial migration in HEVs

retain a relatively spherical cell body

rather than an elongated shape that

would be required for millipede-like

movement (8).

Endothelial expression of
adhesion molecules in
periodontal diseases

The most important etiological factor

of chronic periodontitis involves

bacteria and probably also viruses

(183,184). The variable immune

response of the host to pathogens, and

the progress and intensity of inflam-

matory lesions in chronic periodontitis,

depends on genetic and environmental

factors (183–185). Inflammatory pro-

cesses, in conjunction with immune

responses to bacteria, are generally

protective. In profound chronic peri-

odontitis, hyper-responsiveness and

hypersensitivity of the immune system

leads to a destructive process, affecting

the supportive structures of the teeth,

resorption of alveolar bone and

formation of periodontal pockets

(186,187). In the course of the disease,

the gingival tissue, well supplied with

blood vessels, responds to infectious

stimuli. The augmented blood vessel

proliferation (51,59,60) and an

increased number of circulating endo-

thelial progenitor cells (EPCs) have a

clear rationale (188). It has been pro-

ven that the number of EPCs increases

upon development of moderate to

severe chronic periodontitis, compared

with individuals with no or only mild

chronic periodontitis. In such patients

the higher number of EPCs and EPCs

of a more mature phenotype (CD34+/

KDR+) is positively correlated with the

concentrations of C-reactive protein

(188). Recent observations seem to

confirm that periodontitis is an inde-

pendent risk factor for systemic vascu-

lar disease and may reflect stimulation

of acute-phase protein synthesis by

cytokines released byperiodontalHECs

(50,188–192). Expansion of microves-

sels in chronic periodontitis through

increased vascular diameter and tortu-

osity, as well as the development of

HECs, appears to protect from peri-

odontitis by increasing the supply of

both plasma defense factors and PMNs

to the tissues (15,50).

Pioneering studies involving dem-

onstration of PHELVs in the gingiva

of patients with chronic periodontitis

were published in the 1990s (51). In the

lumen, the blood vessels contained

mainly PMNs (51). Similarities of the

blood vessels were demonstrated to

typical HEVs of lymph nodes, also at

the ultrastructural level. Histochemical

techniques defined a particularly

strong activity of acid phosphatase in

PHELVs and the presence of 5¢-nu-
cleotidase in 50% of PHELVs of the

gingiva. Moreover, similarly to lymph-

node HEVs, PHELVs selectively

incorporated 35SO4 (51). It was con-

cluded that gingival HEVs may repre-

sent sites for migration and

recirculation of leukocytes in the in-

flamed periodontal tissues as no such

blood vessels were seen in healthy

gingiva (15,51). For the first time, the

prevalence of PMNs over lymphocytes

(even in the absence of lymphocytes) in

transendothelial migration was dem-

onstrated in chronic periodontitis (51).

Only in earlier gingivitis lesions are

more T lymphocytes (positive for

CD11a, CD25, and CD4) found to

migrate into tissues (193). According to

pioneers of studies on gingival HEVs in

chronic periodontitis, the maintenance

of the high endothelium phenotype in

the blood vessels may reflect not, as

assumed previously, a prolonged and

extensive lymphocyte emigration, but

locally produced factors (51).

It is generally accepted that PMNs

play a protective role in periodontal

lesions (55). However, the location,

incidence and extent of perivascular

hyaline material promotes periodon-

titis by inhibiting the migration of

PMNs (42,49). Studies have shown

that the perivascular material in

chronic periodontitis most frequently

involves collagen type IV and lami-

nin, components of basement mem-

branes in mainly venous blood vessels

but deposited also extravascularly

(49,56).

In chronic periodontitis the quanti-

tative vascular lesions were shown to

be accompanied by qualitative altera-

tions, including dilation of basement

membrane in capillaries and venules

(41,49,56,58). In the disease, a quanti-

tatively variable expression of adhesive

molecules is noted on ECs (including

HECs), which is linked to the role of

ECs in the process of transendothelial

migration (194,195). The adhesive

molecules were suggested to represent

one of the main elements which define

the course of the disease (185).

From the references reviewed in this

paper, the results of studies were

selected on the basis of at least an

indirect relationship to transendotheli-

al migration across HEVs present in

the inflamed tissues of the periodon-

tium. The most numerous studies on

the expression of adhesion molecules in

the development and progression of

periodontal diseases pertain to ICAM-

1 (CD54) (172,185,194,196–200). This

molecule was even termed an �inflam-

mation biomarker� for periodontitis

(201). Analysis of the cICAM-1 form

in gingival fluid demonstrated an

increase in the release of protein to the

intercellular fluid, which correlated

with the build-up of dental plaque and
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with intensity of the inflammatory

condition (173). Studies on the serum

concentration of soluble adhesion

molecules, including cICAM-1, in

patients with chronic and aggressive

periodontitis, demonstrated a signifi-

cant increase of the protein in both

forms of periodontitis compared with

the control group (199).

ICAM-1 was detected in various

types of cells (epithelial cells, ECs and

leukocytes) of gingiva, suggesting roles

in the consecutive stages of periodon-

titis (193,196,202). Expression of the

molecule was described in the capillary

loops of gingiva affected by inflamma-

tory condition, but, in contrast to PE-

CAM-1, expression was detected in a

proportion of the blood vessels only

(203). Both adhesion molecules –

ICAM-1 and PECAM-1 – were

detected on ECs and keratinocytes of

gingival epithelium affected by gingi-

vitis and periodontitis and the degree

of expression was dependent on the

size of the inflammatory infiltrates

(197). An interesting study was

devoted to the effect of tobacco

smoking (which affects the systemic

concentration of cICAM-1) on the

local expression of the marker in

patients with chronic periodontitis

(204). Investigations documented an

increased expression of ICAM-1 in

sites with more pronounced inflamma-

tory lesions, manifesting no relationship

to tobacco smoking, but the propor-

tion of the total number of vessels

expressing ICAM-1 in noninflamed

sites was greater in nonsmokers than in

smokers. The authors confirmed the

observations that tobacco smoking

exerts a systemic effect on ICAM-1,

independent of local inflammation

(204). Other studies on the cellular

expression of ICAM-1, linked to anal-

ysis of vascular density in gingiva and

to expression of b1 integrin, demon-

strated no significant differences in

chronic periodontitis patients who

responded to treatment and patients

who failed to respond to initial treat-

ment (185).

The specific cells in gingival inflam-

matory infiltrates that expressed

ICAM-1 were identified. A proportion

of investigators observed expression

mainly on T lymphocytes (50%

involved LFA-1+ and CD29+ T lym-

phocytes) and documented similar

values of lymphocytic expression of

ICAM-1 in the gingiva of patients with

gingivitis and those with periodontitis

(197,205).

ICAM-1 was also localized in

keratinocytes of the epithelium of the

periodontal pocket (193,197,202). It

should be noted that such a location

was always common to expression of

the molecule on ECs of gingival blood

vessels and leukocytes in inflammatory

infiltrates. Topographically, ICAM-1

was demonstrated both in the normal

epithelium lining healthy gingivae and

in the pocket epithelium in diseased

gingiva (196,202). As a rule, the loca-

tion involved deeper layers of epithelial

keratinocytes (196,202). Increased

expression of ICAM-1 and LFA-1 was

detected in junctional epithelium and

in the apical part of the sulcus epithe-

lium in subjects with chronic peri-

odontitis compared with controls

(202). The expression on keratinocytes

increased in parallel to the size of the

inflammatory foci (197). Interestingly,

cells positive for IL8 mRNA were also

detected, and a gradient of ICAM-1

receptors within the junctional epithe-

lium of clinically healthy gingiva, the

area of PMN migration, was estab-

lished (198). The authors suggested

that ICAM-1 and IL-8 play important

physiological roles in efficiently routing

PMNs to the gingival sulcus (198). In

turn, Takeuchi et al. (193) showed that

expression of ICAM-1 in pocket epi-

thelium in periodontitis is relevant to

the migration of the infiltrating lym-

phocyte population (CD11a, CD25

and CD4 positive) in connective tissue

subjacent to the pocket epithelium in

the periodontal pocket. Functional

studies in vitro on involvement of the

water-channel protein, aquaporin 3 in

chronic periodontitis, documented in-

creased expression of this protein and

of ICAM-1 in keratinocytes of the

gingival epithelium. The studies dis-

covered that a reduction in aquaporin

3 expression of more than 65% signif-

icantly attenuated selected proinflam-

matory events of ICAM-1 expression

that were induced by TNF-a in a

human gingival epithelial cell line,

Ca9-22 (200). Studies on the expression

of ICAM-1 in blood vessels (arterioles,

venous and capillary ECs) of the dental

pulp of patients with chronic peri-

odontitis demonstrated a variable

expression in control subjects and in

patients with chronic periodontitis

(194).

A number of investigations aimed

to define effect of bacterial antigens

(mainly those of Porphyromonas

gingivalis) on expression of adhesion

molecules (195,201,206–208). The pat-

tern of ICAM-1 expression depended

on the cellular model. Gingipains

(cysteine proteases) from P. gingivalis

exerted a direct proteolytic action on

ICAM-1 expressed on cultured oral

epithelial cells (KB and HSC-2) (206).

As a consequence, the interaction of

PMNs with oral epithelia would be

disrupted and periodontal tissues

would be damaged by bacteria

(206). Using the KB line, other

authors demonstrated colocalization

of P. gingivalis, ICAM-1 and

caveolin-1. Using goat polyclonal

anti-ICAM-1 serum, it was possible to

inhibit the infection of KB cells with

P. gingivalis. According to these

investigators, ICAM-1 plays a

significant role at the first stages of

development of periodontal disease,

when bacteria attack epithelial cells.

Decreased or no expression of ICAM-

1 might inhibit infection of epithelial

cells with P. gingivalis and slow down

development of periodontal disease

(207). Finally, the studies related to

the expression of ICAM-1 on ECs

showed that ligation of CD99 on ECs

[via nuclear factor-kappaB (NF-jB)
activation] induced expression of

many adhesion molecules, including

ICAM-1, and resulted in increased

leukocyte adhesion (195). Following

application of gingipains to ECs, a

dose-dependent reduction of adhesion

molecule expression and leukocyte

adhesion was demonstrated, induced

by the ligation of CD99 on ECs (195).

Indirectly, this was believed to reflect a

disruption of adhesion molecule

expression and of leukocyte recruitment

to inflammatory foci (195). Results

contrasting with the above were

obtained by Zhang et al. (201). Modifi-

cation of ICAM-1 production in the

endothelium of umbilical veins (cell line
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ECV-304) by treatment with P. gingi-

valis strains of variable virulence

provided evidence not for inhibition but

for induction of ICAM-1 expression,

slightly more pronounced in the case

of a bacterial strain of a higher

invasiveness. Moreover, the induction

of ICAM-1 production was shown to

occur with the involvement of, first of

all, the NF-jB and not the p38 MAPK

signaling pathway. ICAM-1 production

in ECs was abrogated by inhibition of

the NF-jB pathway (201). Recent

studies in cultured mouse macrophages

(RAW264.7) demonstrated increased

production of ICAM-1 and LFA-1, as

well as a significant role of these

molecules, in plaque-like formation

of periodontopathic Aggregatibacter

acinomycetemcomitans lipopolysaccha-

ride-stimulated macrophages. Such an

effect suggested participation of ICAM-

1 in promotion of atherogenesis by

activating leukocytes in the course of

periodontitis (208).

In peridontal diseases, similarly to

systemic diseases, application of a

therapy was suggested which blocks

the function of ICAM-1, as it was

shown that in such diseases endothelial

expression of the molecule can be

inhibited using antisense oligonucleo-

tides (187). In recent years, studies

have demonstrated that resveratrol

decreased leukocyte (mainly monocyte)

adhesion to ECs, induced by lipopoly-

saccharide from P. gingivalis, by

decreasing expression of ICAM-1 and

VCAM-1 along the NF-jB signaling

pathway (209).

The results of studies on the

remaining surface adhesion proteins

linked to HEV endothelium (CD34,

PECAM-1 and endoglin) indicate that

these molecules served mainly to mark

a phenotype of gingival blood vessels,

but were not directly connected with

disease progression. Expression of

CD34 was demonstrated on the pro-

liferating ECs of gingiva, including

HECs in patients with chronic peri-

odontitis (41,43). Immunohistochemi-

cal studies detecting this marker of ECs

confirmed proliferation and recon-

struction of blood vessels in gingiva

encompassed by the inflammatory

process (41,210). CD34 served also as a

clinically useful marker of circulating,

more mature, EPCs, the number of

which manifested a positive correlation

with chronic periodontitis progression,

age, gender of the patient, concentra-

tion of C-reactive protein and carotid

intima-media thickness (188). Vascular

expression of CD34 was examined also

in gingival hypertrophy, induced by

cyclosporine A treatment in patients

with liver transplantation. The number

of CD34-positive gingival vessels was

compared before and after nonsurgical

periodontal therapy (211). Another

approach to studies on CD34 expres-

sion in gingival tissues was presented

by Ohta et al. (212). They showed that

mesenchymal stem stells and HSCs

expressing CD34 were not involved in

the regeneration of the periodontium

(212).

PECAM-1 represents one of the

most abundant adhesion molecules in

ECs, playing a key role in adhesion

and in interactions with leukocytes

(195). The available literature was

found to contain individual investiga-

tions on expression of PECAM-1 and

endoglin (CD105), mainly as markers

of periodontitis (194,195,197). In

contrast to ICAM-1, expression of

PECAM-1 was demonstrated mainly

on two types of gingival cells (lym-

phocytes and ECs) in patients with

gingivitis and periodontitis. Expression

of PECAM-1 on lymphocytes was

similar in the two disease states but it

increased significantly in proportion to

the size of the inflammatory infitrate.

The positive immunocytochemical

reaction for PECAM-1 (apart from

ICAM-1) was observed also in ECs, but

the authors did not associate the pres-

ence of the protein with the occurrence

of HECs in the tissues studied (197).

Taşman et al. (194) failed to detect

significant differences in intensity of

PECAM-1 expression between the

chronic periodontitis group and con-

trols. Endoglin (CD105) and ICAM-1

were expressed at varying intensities in

tissue biopsies of both groups.

Activated gingipains preferentially

down-regulated the expression of

PECAM-1 on ECs. Endothelial

monolayers demonstrated progressive

intercellular gap formation, which

correlated with reduced expression of

intercellular junctional PECAM-1.

This was accompanied by an increased

permeability of a single EC layer for

albumin and neutrophils (195).

Attempts at therapeutic
application of antibodies to
adhesion molecules

Disturbances in expression or over-

expression of adhesion molecules were

observed in inflammatory and allergic

processes as well as in malignant

tumors of humans (148). Attempts to

block the action of these molecules as

a novel therapeutic approach were

undertaken using in vitro models and

in experimental animals as well as in

humans (reviewed in 213,214). These

studies used antibodies and antisense

oligonucleotides against human adhe-

sion molecules (213–222). Application

of such therapy was implemented

mainly in acute and chronic inflamma-

tory states and in autoimmune diseases

(108,213,222–225). Subsequently, this

type of therapy was introduced to

inhibit neoangiogenesis in solid tumors

(126,221,226), hematologic diseases

(215,216)and in interventional cardiology,

most frequently to enhance re-endotheli-

alization (217). Most descriptions of

anti-adhesive therapy applications per-

tained to attempts to block ICAM-1

(213,214,222–225,227,228).

To date, no data are available on

applications of anti-adhesion molecule

therapy in periodontology.

Immunocytochemical
evaluation of gingival
membrane markers in HEVs in
chronic periodontitis – our own
studies

The dominant presence of HEVs in

gingiva of patients with chronic peri-

odontitis, and their absence in gingiva

within clinically healthy periodontia, is

well known (15,42,43,50,51). In our

own studies, proliferation of various

types of small blood vessels (mainly of

capillaries and venules) was observed

in chronic periodontitis. In our studies

we decided to characterize periodontal

HEVs with respect to expression of

adhesion molecules with the most

profound role in transendothelial

migration and angiogenesis. It was
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assumed that vascular expression of

leukocyte adhesion molecules is a

critical determinant of tissue response

to microbial challenge in the patho-

genesis of chronic periodontitis. The

location of surface markers (CD34,

PECAM-1, endoglin and ICAM-1) of

ECs in the gingiva of 40 patients with

chronic periodontitis was compared

with an analogous expression in HEVs

of reactive lymph nodes (positive con-

trol) and with ECs of blood vessels in

the gingiva of patients with no peri-

odontal pathology (negative control).

Using the classical streptavidin-bioti-

nylated peroxidase complex (ABC)

technique and commercially available

antibodies, distinct patterns of adhe-

sion molecule expression were detected

in all types of blood vessels. Applica-

tion of a novel technique of spatial

visualization permitted quantitative

analysis of the immunocytochemical

reaction for a given marker and for

comparative studies (216).

In line with expectations, an endo-

thelial location of the proteins pre-

vailed. All the molecules were

presented in gingival HEVs in patients

with chronic periodontitis (Fig. 4A)

and in HEVs of reactive lymph nodes

(Fig. 4B), as well as in cell membranes

of typical blood vessels (small arteri-

oles, venules and capillaries) (Fig. 4C).

CD34 was a classical marker of the

luminal part of EC membranes in gin-

gival blood vessels of patients with

chronic periodontitis (Fig. 4A).

Expression of PECAM-1 showed typ-

ical localization on lateral surfaces of

HEC membranes, in the site of inter-

cellular attachments (Fig. 4D), and, of

note, on the cell membranes of extra-

vascular leukocytes (mononuclear cells

and individual neutrophils) of the

inflammatory infiltrates (Fig. 4D).

Quantitatively, in the gingival HEVs of

patients with chronic periodontitis,

PECAM-1 was most abundant and, in

reducing order, CD34, ICAM-1 and

endoglin (CD105). The significantly

enhanced expression of PECAM-1 and

CD34, compared with those of ICAM-

1 and endoglin, is consistent with the

literature (107,114). Probably, the

augmented expression of PECAM-1 is

connected with the angiogenesis pro-

cess (111,112). The significantly higher

total expression of the four membra-

nous markers in gingival HEVs of the

chronic periodontitis group, compared

with the total expression in the control

and the high positive reciprocal corre-

lations among CD34, endoglin and

ICAM-1 in gingival HEVs, may point

to the role of these molecules in tran-

sendothelial migration in chronic peri-

odontitis. Overexpression of the

adhesion molecules in patients with

chronic periodontitis compared with

the control is of significance in pro-

tracted inflammatory processes and

periodic exacerbations of the inflam-

matory process and the subsequent

destruction of periodontal tissues

(229). Within the chronic periodontitis

group, studies demonstrated signifi-

cantly higher expression of CD34, en-

doglin and ICAM in gingival HEVs

compared with the expression of anal-

ogous markers in typical gingival

blood vessels. We have shown that the

levels of expression of CD34 in HEVs

and of PECAM-1 in other blood ves-

sels in the gingiva of patients with

chronic periodontitis correlate signifi-

cantly with the histological score

(grading) of inflammation (229).

Consecutive studies showed that

patients with chronic periodontitis

manifest a higher angiogenetic index

(endoglin/PECAM-1), compared with

control gingiva,which may indicate an

increased angiogenesis in periodontal

tissue altered by inflammation (230).

This observation is consistent with the

literature, demonstrating involvement

of endoglin and PECAM-1 in angio-

genesis in cases of neoplastic lesions

(112). Our studies demonstrated a

quantitatively similar expression of all

the membrane markers studied (except

for PECAM-1) in the gingival HEVs of

patients with chronic periodontitis and

in HEVs of reactive lymph nodes,

which indicates a functional similarity

of HEVs in pathologically altered tis-

sues (230). However, it has been

intriguing that studies have failed to

demonstrate significant differences in

expression of any vascular marker,

depending on the value of the clinical

A B

C D

Fig. 4. Localization of selected adhesion molecules expressed by high endothelial cell post-

capillary venules (HEVs) and blood vessels with flat endothelial cells. (A) CD34 expression in

a fragment of the gingiva a patient with chronic periodontitis; (B) CD34 expression in a

fragment of reactive lymph node; (C) CD34 expression in other gingival blood vessels of a

patient with chronic periodontitis; (D) platelet endothelial cell adhesion molecule 1 (PE-

CAM-1) localization in patients with chronic periodontitis. Note the characteristic locali-

zation (lateral aspects of the cell membranes) and some PECAM-1-positive inflammatory

cells in the gingival lamina propria. Avidin-biotinylated peroxidase complex (ABC) techni-

que. Hematoxylin counterstain. Objective magnification, ·40.
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attachment level/loss (CAL) parame-

ter, the form of the disease (local or

generalized), and the age and sex of the

patient with chronic periodontitis

(230). Perhaps this reflects that we have

studied material with a high prevalence

of the most advanced inflammatory

lesions (grading 3) and the most pro-

nounced CAL parameter.

The putative role of surface adhe-

sion molecules expressed by periodon-

tal HECs in patients with chronic

periodontitis is shown in Fig. 5.

Concluding remarks

Proliferation of gingival blood vessels

and alteration in the phenotype of

endothelial cells allow chronic peri-

odontitis to be included in the category

of vasoproliferative diseases. The

pathogenetic mechanisms that lead to

the proliferation of postcapillary ven-

ules with high endothelium (periodon-

tal HEVs) in gingival tissues remain

relatively unknown, as do their role in

chronic periodontitis. The principal

role of HEVs in physiology involves

their participation in the recruitment,

migration and recirculation of lym-

phocytes from blood to lymphatic

organs and the initiation of an immune

response following contact with anti-

gen. The steps of leukocyte transen-

dothelial migration in peripheral

lymphatic organs are known in detail;

and the directional movement of cells

remains under the guidance of adhe-

sion molecules. The typical glycopro-

teins on the surface of ECs are termed

the addressins.

Few studies have been carried out

on surface adhesion molecules asso-

ciated with HEV endothelium, such as

CD34, PECAM-1 and endoglin, in the

development of periodontal diseases.

These molecules have been used mainly

as markers of gingival blood vessels.

The largest number of studies on the

role of local expression of adhesion

proteins in the development and pro-

gression of periodontal diseases pertain

to ICAM-1 (CD54). This marker has

even been termed the inflammation

Fig. 5. Diagram demonstrating several of the key processes in the destruction of periodontal tissues, with involvement of the adhesion

molecules [CD34, platelet endothelial cell adhesion molecule 1 (PECAM-1), endoglin and intercellular adhesion molecule 1 (ICAM-1)]

expressed on endothelial cells (ECs) [including high endothelial cells (HECs)]. Chronic periodontitis is accompanied by the proliferation of

small blood vessels in the gingiva and by the occurrence of specialized postcapillary high endothelial venules (HEVs). The suggested role of

HEVs in the pathogenesis of chronic periodontitis involves their participation in the transmigration of different types of leukocytes [mainly

polymorphonuclear leukocytes (PMNs)] to inflamed periodontium and in proinflammatory effects. The proinflammatory effects comprise

overproduction of the cytokines, prostaglandin E2 (PGE2), MMPs, multiple classes of L-selectin ligands, leukocyte-specific chemokines,

chemokine-binding proteins and junctional adhesion molecules by infiltrating leukocytes or endothelial cells (including HECs). The local

expression of ICAM-1 (CD54) and PECAM-1 seems to play the most important role in the development and progression of periodontal

diseases. For details see the main text. IL, interleukin; NK, natural killer; TNF-a, tumor necrosis factor-a.
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biomarker of periodontitis and it is

mainly this marker which is considered

a potential therapeutic target in peri-

odontal pathology.

Our studies have demonstrated

highly positive reciprocal correlations

among expression of CD34, endoglin

and ICAM-1 in gingival HEVs, which

may point to a role of these molecules

in transendothelial migration, in

chronic periodontitis. Local expression

of ICAM-1, resembling expression of

endoglin, was not high in the patients

we studied with chronic periodontitis.

Perhaps more extensive clinical signif-

icance could be linked to determina-

tion of the angiogenesis index

(endoglin/PECAM-1), which reflects

enhanced angiogenesis in inflamed

periodontal tissues. However, deter-

mination of whether the biomarkers of

gingival HEVs might be used to iden-

tify sites with an enhanced risk of

progression of periodontal diseases

and a better response for potential

treatment requires continuation of the

studies. According to recent data and

our studies, local expression of ICAM-

1 (CD54) and PECAM-1 seem to play

the most important role in the devel-

opment and progression of periodontal

diseases, but much work remains to be

conducted to understand in greater

detail the mechanisms of the adhesion

molecules in transendothelial migra-

tion and periodontal diseases.
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