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Abstract
Purpose: The aim of this study was to evaluate the color stability, surface roughness,
and surface porosity of acrylic resins for eye sclera polymerized by different heat
sources and submitted to accelerated artificial aging (AAA).
Materials and Methods: Three groups of ten specimens each were formed according
to the heat source used during the polymerization cycle: GI—short cycle, GII—long
cycle, and GIII—dry-heat oven. The groups were submitted to color spectrophotometry
through the CIE L∗a∗b∗ system and to surface roughness and porosity analysis using
a Surfcorder IF 1700 profilometer. After the tests, specimens were submitted to AAA,
with a maximum aging time of 384 hours, corresponding to a year of clinical use.
After aging, the color and roughness of each group were assessed.
Results: The results showed that the variability of �E was clinically unacceptable
for all groups but the method of polymerization was insignificant (p > 0.05) for
color change. For roughness, polymerization cycle was significant for the results. GIII
(0.23 ± 0.06) presented the highest roughness difference (before and after AAA),
statistically significant (p < 0.05) from GII. No statistically significant difference
could be found among groups when considering the porosity test.
Conclusion: It may be concluded that irrespective of the type of heat used for polymer-
ization, there was an intense color alteration, to clinically unacceptable levels, when
the specimens were submitted to AAA. For the other properties, alterations were less
intense.

The absence of an eye can lead to esthetic and functional dis-
proportion, as well as personal and interpersonal disorders.1

Epithelial tumors originating from the eyelid, conjunctiva, and
paranasal sinuses, malignant tumors of the lachrymal gland,
intraocular tumors with orbital extension, rare sclerosing pseu-
dotumors, and fungal infections can lead to the loss of an eye.

Research has focused on these concerns in the search for
ideal materials and techniques for prosthetic eye rehabilitation,
with the aim of recovering aspects of patients’ physical es-
thetics and social function. The goal of an ocular prosthesis
is primarily to reconstitute esthetics, maintain muscle tonicity
of the upper eyelid (preventing it from shrinking due to lack
of function), conduct tears to their physiological ducts (pre-
vent lashes from sticking and drying the conjunctival area), and
protect the orbital mucosa from debris and dust.2-4

Acrylic resin is the material used to manufacture these ocular
prostheses,5,6 due to its acceptable physical properties. Com-

posed of a polymer powder of methyl methacrylate and a liquid
monomer, it has excellent resistance and is easy to color, be-
cause of the acrylic translucency, which is an important factor
in ocular prostheses. Acrylic resins are the first-choice mate-
rial in these situations due to their durability, ease of cleaning,
reliable mechanical retention, biocompatibility, and acceptable
cost. As with all materials, they also present disadvantages for
ocular prostheses, such as slight discomfort because of their
rigidity, esthetics inferior to flexible materials, and small ulcers
caused by the edges.7-12

The acrylic resin polymerization process occurs through acti-
vation by different initiators.13-16 Thermoactivated resins trans-
fer heat to heated water when submitted to microwave energy.
Another source for resin heating would be a dry, temperature-
controlled oven.17 The great problem of heat polymerization of
acrylic resins is that the polymerization reaction is exothermic,
and the amount of heat involved in the process could affect
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the material properties.18-20 It is important to find an ideal ma-
terial with physical, mechanical, and biological properties for
maxillofacial use.

Therefore, the aim of this study was to evaluate the color
stability, surface roughness, and surface porosity of acrylic
resins for eye sclera polymerized with different polymerization
cycles.

Materials and methods
The methodology for preparing the specimens followed a se-
quence based on the lost-wax casting method. A stainless steel
metal matrix with an internal diameter of 1.5 cm and 5.0 mm
thickness was put onto clean glass plates that were previously
flattened, polished, and carefully lubricated with petroleum
jelly. Heated casting wax (Polidental, Cotia, Brazil) was de-
posited inside the matrix. After it was totally filled, and with
little excess, another flat, clean, polished, and lubricated glass
plate was put onto the wax and left there until the surface cooled.

After 10 minutes, the glass plate was removed, and the ex-
cess wax was carefully removed with a sharp instrument. After-
ward, the specimens were removed from the matrix. Ten wax
molds were made for each type of polymerization technique.
These molds were included in plaster stone using a metal flask
(Fig 1). After the stone setting time, the matrix was removed
with hot water.

The resin was manipulated in accordance with the manufac-
turer’s recommendations. When the mass reached the plastic
phase, the space left by the matrix was filled in with the ma-
terial. After total condensation of the material, a polyethylene
sheet was put on the resin; the flask was closed and submit-
ted to pressure. The flask was opened, the polyethylene sheet
was removed from the resin surface, and excess was removed.
Twenty specimens were obtained for each polymerization pro-
cess (Table 1).

Group I was polymerized by the short-cycle polymeriza-
tion technique, in which water was heated to 74◦C, and flasks
containing the specimens were immersed in this water for
1.5 hours. Then, water was warmed to 100◦C, and the spec-
imens remained in the flasks for one additional hour.

Group II was submitted to the heating process proposed by
Anusavice,21 the so-called long cycle. In this process, the water
is heated to 75◦C; the flasks and specimens are immersed in
this water for 8 hours. After this time, they are removed from
water and maintained at room temperature for gradual cooling
to avoid tensions inside the material.

Figure 1 Matrix to manufacture the acrylic
resin specimens.

In Group III, the dry-heat polymerization technique was used.
In this technique, the flasks with specimens were put into an
oven and maintained at a constant temperature of 70◦C for
72 hours.

The specimens were then sanded with aluminum oxide abra-
sive papers of decreasing granulation (#320-, #600-, and #1000-
grit) under cooling, until they reached a thickness of 3.0 mm,
checked with a digital pachymeter. These specimens were re-
turned to the flask, and polymerized colorless resin was de-
posited on the resin. The set was pressed and specimens of
each group were submitted to the same polymerization process
as previously described.

After finishing the cycles, the specimens were removed from
flasks and submitted to finishing and polishing with abrasive
papers of decreasing roughness under cooling. The specimens
were then subdivided into two groups (n = 10): Group A—
specimens submitted to color and roughness tests; Group B—
specimens submitted to the porosity test. Separate groups were
used because of the need to stain the specimens by the method
used, which affects the color.

Initial color spectrophotometry

After fabrication, the specimens were immediately polished
and submitted to color measurement using a spectrophotometer
(PCB 6807, Byk Gardner, Geretsried, Germany; CIE- L∗a∗b∗
system) against a white standard background (Gardner Labora-
tory, Inc, Bethesda, MD) employing an optical geometry 45◦/0◦.
Color was evaluated according to the CIE-L∗a∗b∗ color sys-
tem,22 in which L indicates color luminosity (ranging from 0—
black to 100—white); a∗ indicates the amount of red (positive
values) and green (negative values); b∗ indicates the amount of
yellow (positive values); and blue (negative values). The spec-
imens were coupled to the spectrophotometer. Thirty circular-
shaped LED lamps and ten colors were lit and reached the
material surface at a 45◦ angle of incidence. This beam is re-
flected at 0◦ and thus returns to the device, which captures
and records the L∗, a∗, and b∗ values of each specimen. These
measures were considered the initial values.

Initial roughness measurement

The Surfcorder SE 1700 profilometer (Kosakalab, Tokyo,
Japan) performed the initial roughness analysis. The profilome-
ter needle was positioned on each specimen and ran a distance
of 0.8 mm at a speed of 0.25 mm/s. When the appliance was
activated, the needle moved in a single direction and detected
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Table 1 Materials and polymerization methods tested

Polymerization
Group Material technique

Group I Clássico Short cycle
Group II Clássico Long cycle
Group III Clássico Dry-heat oven

Clássico Dental Products, Sao Paulo, Brazil.

the surface irregularities. These irregularities correspond to the
peaks, valleys, and waves. Thus, a value that constituted the
mean roughness (or Ra) of the surfaces was obtained. This
value was defined as the mean of the pick-up displacements
upward and downward, in relation to a central line. Three read-
ings were made at different points of the surface. The mean
of these three measurements was obtained and considered the
initial value.

Aging

The specimens were then submitted to accelerated artificial ag-
ing (AAA). For this purpose, they were placed in a nonmetal
C-UV Accelerated Aging device (Comexim Matérias Primas
Ltda, São Paulo, Brazil) under the action of UV light and con-
densation, which worked in repeated cycles, successively and
automatically. The condensation process was produced by ex-
posing one of the specimen surfaces to a warm mixture of air-
water saturated steam, while the opposite side of the specimen
was used to fix it to the metal plates.

The specimens were then fixed with device plates using sil-
icon and taken to the condensation chamber under the light
source at a distance of 50 mm. The operating program was
standardized at 4 hours of exposure to UV-B at 50◦C and
4 hours of condensation at 50◦C with a maximum aging time
of 384 hours. Thus, the C-UV could produce degradation that
corresponded to a year of clinical use.23

After the aging process, the specimens were again submitted
to color and roughness analysis using the spectrophotometer
and profilometer to determine the color (�E) and roughness
change, respectively. The total color change, �E, is commonly
used to represent color difference and is calculated by the for-
mula:

�E∗= [(�L∗)2 + (�a∗)2 + (�b∗)2]1/2

where �L = L1 (before AAA) − L2 (after AAA). �a and
�b were calculated in the same way. Values of �E ≥ 3.3
are considered clinically unaceptable.24 Roughness change
was calculated subtracting the final value from the initial
value of roughness, corresponding to before and after AAA,
respectively.

Surface porosity evaluation

After AAA, the specimens were immersed in an India ink so-
lution for 30 minutes and washed under running water. A 10 ×
10 mm2 area was delimited in the middle of the specimen, where
the surface porosity was estimated for visual appearance by

Table 2 Means (SD) of �L, a, b, and E values

Long cycle Short cycle Dry-heat oven

� L −1.04 (0.8) −0.7 (2.3) −1.07 (2.7)
� a −1.1 (1.8) −0.8 (1.5) −0.4 (1.6)
� b 5.9 (1.8) 5.8 (2.3) 4.2 (2.9)
� E 6.4 (2.04) 6.6 (1.7) 5.8 (1.8)

For all combinations (p > 0.05).

diffuse reflection of the surface on polarized light microscopy
at 60X magnification. The number of pores was obtained by
estimation, starting by counting the pores in the delimited
area.

Statistical analysis

After calculation of the color-dimension changes (�L, �a, �b,
�E), roughness alteration, and the estimated number of surface
pores, the measures were calculated for each group studied.
These measures were submitted to one-way ANOVA and Tukey
test at a significance level of p = 0.05.

Results
Color spectrophotometry

�L, �a, �b, and �E means comparison showed that there
were significant differences in color change for all groups, but
among groups there was no statistically significant difference
(p > 0.05) for all tested parameters (Table 2). The �E vari-
ations were high, mainly for the short cycle, followed by the
specimens polymerized in long cycles and specimens polymer-
ized in an oven. The means are above 3.3, and therefore, they
are considered clinically unacceptable, as defined by Ruyter
et al24 and Mutlu-Sagesen et al.25 So, the effect of aging is that
it results in clinically unacceptable color change, irrespective
of the polymerization method.

Roughness

The mean values of roughness change (before and after AAA)
were analyzed and showed that specimens polymerized in long
cycles presented a smaller difference in roughness, followed
by the specimens polymerized in short cycles. The largest dif-
ferences in roughness following polymerization were observed
in specimens polymerized in the oven. When the means were
compared, it was verified that there was a statistically signifi-
cant difference between specimens polymerized in long cycles,
which presented smoother surfaces than those polymerized in
the oven (Fig 2).

Surface porosity

The mean values of specimen porosity of each group were ana-
lyzed by ANOVA and Tukey tests (95% level of significance).
The statistical analysis showed no statistically significant dif-
ference among groups (Fig 3).
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Figure 2 Roughness difference means (before − after accelerated arti-
ficial aging) of specimens polymerized by different cycles.

Discussion
Over the last few years, acrylic resin has been the material of
choice for complete denture bases. Due to the good inherent
physical properties of this material, it is also used in ocular
prostheses.26 Acrylic resin is a light material, with good es-
thetic properties and relatively low cost. The great disadvantage
of this heat-activated material is the exothermic polymerization
reaction. Excessive heating can cause surface discoloration, in-
crease the number of surface pores, and hence, decrease the
mechanical resistance of the material.27 Acrylic resin for eye
sclera used in ocular prostheses should not undergo color al-
terations, due to the esthetic problems that will cause; neither
can it produce a rough surface, which might be responsible for
bacterial proliferation and injury to the underlying tissue.

Usually, acrylic resin has been processed in molds under
pressure. These molds are put into metal flasks and immersed
in water at a controlled temperature for a specific time, a strategy
to convert monomers into polymers.28 Several studies have also
tested microwave-polymerized acrylic resin and related the pro-

Figure 3 Porosity means of specimens polymerized by different cycles.
For all combinations (p > 0.05).

cessing method to the material properties.6,29 The present study
assumes the hypothesis that water used in the polymerization
cycle of this material could interfere with important physical
properties such as roughness, porosity, and color stability.30-32

According to the in vivo studies of Bollen et al33 and
Quirynen et al,34 a clinically acceptable surface roughness of
hard surfaces in the oral environment should not exceed 0.2
μm. The results of the present study showed that roughness was
higher than the recommended value for all groups irrespective
of the polymerization cycle, being lower in Group III; however,
when analyzing the roughness before and after AAA, it was
verified that Group II had a smaller difference than the other
groups, with the highest roughness average found in Group III
(Fig 2). After AAA, there was an increase in surface rough-
ness. The best performance of Group III can be explained by
the absence of water during the processing of the specimens;
however, the application of a dry-heat method can evaporate
the monomers, reducing the degree of conversion, or creating
linear polymeric chains; consequently, more extensive surface
degradation could be found.35

The results of the color analysis demonstrated color al-
teration, irrespective of the polymerization cycle; however,
the groups did not differ statistically among themselves. The
�E means (before and after AAA) were higher than 3.3,
demonstrating that acrylic has a propensity for color alteration
(Table 2). Although statistical analysis showed no significant
difference among specimens, they are considered clinically un-
acceptable as defined by Ruyter et al,24 because their �E was
higher than 3.3.

The material porosity was not affected by the polymerization
cycle, as there were a high number of pores in all cycles. The
most pores were found in Groups II and III, which presented
high averages and standard deviations (Fig 3).

Acrylic resin undergoes water sorption during polymeriza-
tion due to the diffusion process.36 The water molecules inter-
fere in the interlocking of the polymeric chains and alter the
physical characteristics of the resultant polymer, which could
cause excessive color alteration, thus affecting the long-term
clinical success of the ocular prosthesis.

Porosity seems to be related to the polymerization conditions
and to exposure to water. The more acrylic resin is exposed
to water (Group II), the larger the number of pores will be,
confirming the theory that acrylic resin undergoes water sorp-
tion from the environment 14,37 and has its physical properties
altered.

Ogawa and Hasegawa6 showed that the increase in dry-heat
temperature activates a chemical reaction between monomer
and polymer, producing a more complete polymerization, with
small number of pores. Conversely, the results of the present
study contradict Ogawa and Hasegawa,6 because the long cycle
(Group II) had the largest temperature increase and the largest
porosity average. This can be explained because the long cycle
exposes acrylic resin to water for a longer time (8 hours), al-
lowing sorption and increasing the number of pores.21 On the
other hand, the short cycle (Group I) presented fewer pores than
the long cycle (Group II) due to reduced exposure to water.

When the roughness and color stability results were corre-
lated, it was verified that there is no direct relationship between
these two properties. The cycle with specimens that had higher
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roughness values was not the one in which specimens had color
alteration, and vice versa (Table 2, Fig 2). Moreover, the mech-
anism causing porosity alteration is not the same as that causing
a color change, as the polymerization method that most altered
color was not the same as the one that had the highest mean
porosity (Table 2, Fig 3); however, comparing porosity and
roughness change, Group III, which presented higher rough-
ness values, also had more porosity (Figs 2 and 3). As regards
color stability, the dry-heat oven (Group III) seems to be a feasi-
ble alternative for polymerizing heat-activated acrylic resins, as
it was the cycle that least affected the property of the material;
however, this method demands a long time to perform.

Conclusions
In accordance with the results of this study:

(1) Regarding color stability, all polymerization cycles pre-
sented clinically unacceptable alterations (�E >3.3).

(2) Regarding surface roughness, the dry-heat oven
(Group III) was the polymerization method with the low-
est initial roughness; however, AAA interferes in this
property.

(3) Regarding porosity, it was observed that this property was
directly affected by water sorption. This suggests that the
longer the contact with water, the more pores in the acrylic
resin.
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