

A Review of Failure Modes in Teeth Restored with Adhesively Luted Endodontic Dowels

Brian J. Rasimick, BS,¹ Jeffrey Wan, BS,¹ Barry L. Musikant, DMD,¹ & Allan S. Deutsch, DMD^{1,2}

¹ Essential Dental Systems, South Hackensack, NJ

² Division of Endodontics, Columbia University College of Dental Medicine, New York, NY

Keywords

Dowel debonding; endodontic lesions; post debonding; post failure; dowel failure.

Correspondence

Brian J. Rasimick, Essential Dental Systems, Ste 8, 89 Leuning St., South Hackensack, NJ 07606. E-mail: brasimick@edsdental.com

The authors of this article are employees of Essential Dental Systems, a manufacturer of endodontic dowels and luting cements. In addition, Drs. Musikant and Deutsch are stockholders of Essential Dental Systems.

Accepted December 22, 2009

doi: 10.1111/j.1532-849X.2010.00647.x

Abstract

Purpose: Previous clinical studies indicated loss of retention between dowel and tooth was a major cause of failure for passive endodontic dowels. Advances in luting cement technology may have improved the retention of dowels. The purpose of this systematic review was to determine the clinical failure modes for dowel/core/crown restorations luted using resin-based cements that are either self-etching or used in conjunction with a bonding agent.

Materials and Methods: PubMed was searched for English language, peer-reviewed clinical research following restorations for 2 years or longer. For inclusion, a study group must have followed more than 50 permanent teeth restored using a dowel luted with resin cement and a bonding agent. Furthermore, more than 80% of the restorations must have received a nonresin crown.

Results: Fifteen studies met the inclusion criteria and reported a total of 187 failures from 3046 restorations. The commonly reported causes of failure were dowel debonding (37% of all failures and primary cause in 8 of the 17 reporting study groups) and endodontic lesions (37% of all failures and primary cause in 6 of the 11 reporting study groups).

Conclusions: Loss of retention remains a major mode of failure even for passive, nonmetal dowels luted by resin cements with a bonding agent. The exact nature and underlying causes of debonding have not been adequately investigated.

Endodontic dowels were traditionally luted using zinc phosphate cement. Although this cement has a long history of clinical use, its properties are not ideal. Of primary concern are its high solubility¹⁻⁵ and weak adhesion.^{1,2,6-9} Other traditional materials include polycarboxylates and glass ionomer cements. Although these cements offer improved adhesion^{1,6-9} and reduced solubility,¹⁻⁵ their compressive and tensile strengths remain mediocre.^{1,10,11} As a result, it is not surprising that clinical trials¹²⁻²⁴ often report the major mode of failure for metal dowel and core restorations luted with these traditional cements is debonding of the dowel from the canal. Out of 13 clinical trials, 12 reported at least one failure due to dowel debonding, and 7 reported it was the primary mode of failure.

Resin-based luting cements, whether self-adhesive or used in conjunction with a bonding agent, promise superior properties. Laboratory studies generally report that they produce superior retention of the dowel,²⁵⁻³⁶ though nonsuperior³⁷⁻⁴¹ and inferior⁴²⁻⁴⁶ performance has also been observed. Laboratory studies⁴⁷⁻⁴⁹ have also suggested that bonded resin luting cements enhance the ability of the restoration to withstand functional forces. This concept is further supported by finite element models.^{50,51} The laboratory performance of resin luting cements, along with their easy handling, have lead to their widespread clinical acceptance for dowel and core cementation.

It is difficult to assess if resin-luting cements yield any measurable improvement in clinical outcome. A properly controlled clinical trial would require thousands of patients to have sufficient statistical power. It is quite understandable that no one has yet attempted this task. A less onerous task would be to perform a metaanalysis of published success rates. Unfortunately, the enormous number of clinical variables in dowel and crown restoration largely prevents direct comparison between different clinical trials. For example, zinc phosphate cements were usually tested in conjunction with cast metal dowel and cores, while bonded resin cements were usually tested with prefabricated fiber-composite dowels and resin cores.

With these limitations in mind, the scope and ambitions of this systematic review were narrowed. Rather than comparing the clinical success rates of different luting systems, this systematic review will focus on the clinical failure modes for dowel/core/crown restorations luted using resin-based cements that are either self-etching or used in conjunction with a bonding agent.

Materials and methods

PubMed was queried using the search string "(post OR dowel) AND (retrospective OR prospective OR longitudinal OR clinical) AND (failure OR success) AND tooth." The search results were assessed for suitability, and full-text articles were obtained. The references cited by each full-text article were skimmed to identify relevant articles that may have been missed by the PubMed search.

The retrieved articles were then subjected to the inclusion and exclusion criteria. Only clinical studies that followed restorations for at least 2 years on average and documented the mode of restoration failure were considered. Studies that did not include at least one group of more than 50 permanent teeth restored using a dowel luted with resin cement and bonding agent were ignored. Only those groups that were frequently (>80%) restored with resin cores and had received a nonresin crown were considered. If failure data for such subgroups were not published, the corresponding author was emailed to request detailed data. Failures of the interim restoration were not included. If more than one study reported on a given patient set, for example, one study after 5 years of observation and another after 10 years, the one presenting data closest to 5 years was chosen.

Results

The initial PubMed search returned 326 results. After review of these results and their references, a total of 45 articles were subjected to the selection criteria. Fifteen studies⁵²⁻⁶⁶ met the selection criteria (Table 1): six tested glass fiber dowels, six tested carbon fiber dowels, three quartz fiber, one zirconium ceramic, one polyethylene fiber dowels, and none tested metal dowels. Altogether, the studies reported 187 failures from 3046 restorations (Table 2). The most commonly reported causes of failure were dowel debonding (37% of all failures, primary cause in eight study groups) and endodontic lesions (37% of all failures, primary cause in six study groups).

Discussion

Studied dowel materials

The study groups that met the inclusion criteria did not span all the dowel varieties available on the market. The many varieties of cast dowel and prefabricated metal dowels were not represented at all. Threaded, active dowels were also not represented. Of the 17 study groups, 16 used passive fiber-composite dowels and one used zirconium ceramic dowels. Of the fibercomposite dowel groups, six used glass fiber, three quartz fiber, six carbon fiber, and one polyethylene fiber.

The dowel materials with the greatest contemporary acceptance are glass fiber and quartz fiber. Carbon fiber dowels were the original fiber-composite dowel, but have fallen out of common use due to their fiber's black color. Zirconium ceramic dowels enjoy some measure of clinical acceptance due to their high modulus, but are some of the most expensive dowels currently in the market. Polyethylene fiber composites are a recent development that has not yet gained widespread clinical adoption. Laboratory studies on polyethylene fiber dowels report that they have a slightly lower failure strength⁷⁸⁻⁸⁰ and a significantly lower modulus⁷⁸ than glass fiber dowels.

Studied luting cement systems

Of the resin luting cement systems used in the various studies, all used a bonding agent. Of the 17 study groups, one used only a self-etch bonding agent, two sometimes used a self-etch bonding agent, other times a total-etch bonding agent, one used a citric acid etch bonding agent, and 13 used a phosphoric acid total-etch bonding agent. Total-etch bonding systems are known to provide superior results to self-etch systems due to their reduced water sorption.⁸¹

Studied core and crown materials

The core restorations were generally prepared from specialpurpose resin core materials. In a few study groups, universal composites such as Z-100 (3M ESPE, St. Paul, MN) or flowable composites such as Æliteflow (Bisco, Inc., Schaumburg, IL) were used to create the core.

Metal-ceramic restorations were the most popular crown. All-ceramic and all-porcelain crowns were also used. All-gold crowns appeared in only one study group.

Other variables

Most other details of the restoration were not reliably reported. This includes details of the endodontic instrumentation, endodontic obturation, remaining tooth structure, or dowel space preparation.

Overall failure rate

The reported failure rates ranged from a low of 0.0% to a high of 29.6% with a median of 7.0%. The mean failure rate obtained by pooling the studies was 6.1%. The failure modes reported in clinical studies included apical lesions, periodontal lesions, secondary caries, loss of adhesion between crown and core, loss of adhesion between core and tooth, loss of adhesion between dowel and canal, root fractures, dowel fractures, and core fractures. The only combination failures reported were dowel debonding in a tooth with apical lesions. The two major modes of failure commonly present in clinical studies were debonding of the dowel from the tooth and endodontic lesions.

The criteria used to categorize failures were not universally accepted. Although most studies counted asymptomatic periapical lesions as a failure, Mannocci et al⁵⁵ explicitly excluded them, while Hedlund et al,⁵⁶ Paul and Werder,⁵⁹ and Piovesan et al⁶³ are unclear as to whether such failures were counted. Since periapical failure was not reliably reported, the present study cannot accurately assess its prevalence. Other potential discrepancies in the definition or identification of failure modes could further skew the results. For example, secondary caries and periodontal failures were only reported in one study each, which is lower than otherwise expected.

			0						
Study	Experimental design	Duration (years)	Dowel material	Acid etching	Bonding agent	Luting cement	Core material	Crowns	Samples meeting criteria
Fredriksson et al ⁵²	Retrospective	2 to 3	Carbon	Phosphoric*	All-Bond 2	Unspecified Resin	Resilient	PFM/AC	236
Ferrari et al ⁵³	Retrospective	4	Carbon	Phosphoric*	All-Bond 2	C&B	Biscore	PFM	97
Glazer ⁵⁴	Prospective	4	Carbon	Citric*	C&B	C&B	Core Paste	PFM	52
Mannocci et al ⁵⁵	Prospective	ო	Carbon	Phosphoric	All-Bond 2	C&B	Z-100	PFM	57
Hedlund et al ⁵⁶	Retrospective	2	Carbon	None	Panavia Primer	Panavia	Z-100/Clearfil	PFM/AC	65
Malferrari et al ⁵⁷	Prospective	2.5	Quartz	Phosphoric	All-Bond 2	C&B	Core-Flo	PFM/AC	180
Monticelli et al ⁵⁸	Prospective	2 to 3	Glass	None/Phosphoric	One-Step/Excite DSC	Duo-Link/MultiLink	Tetric Flow/Æliteflow	AP	150
			Quartz	Phosphoric	Excite DSC	MultiLink	Æliteflow	AP	75
Paul and Werder ⁵⁹	Retrospective	1 to 10	Zirconium	Phosphoric*	All-Bond 2	Panavia 21	Core Paste/Empress	PFM/AC	87
Cadigiaco et al ⁶⁰	Prospective	2	Glass	Phosphoric	Prime & Bond NT	Prime & Bond NT	X-Flow/Ceram X	AC	121
Ferrari et al ⁶¹	Prospective	2	Glass	Phosphoric	Prime & Bond NT	Calibria	Core Paste	PFM	120
Ferrari et al ⁶²	Retrospective	7 to 11	Carbon	Phosphoric*	Multiple	Multiple	Multiple	Mostly PFM	615
			Quartz	Phosphoric*	Multiple	Multiple	Multiple	Mostly PFM	370
Piovesan et al ⁶³	Retrospective	00	Ribbon	Phosphoric	Scotchbond Multipurpose	Enforce	Z-250	PFM/AC	68
Cagidiaco et al ⁶⁴	Prospective	ო	Glass	Phosphoric	Prime & Bond NT	Calibria	X-Flow/Ceram X	PFM	120
Mehta and Millar ⁶⁵	Retrospective	2 to 4	Glass	None/Phosphoric	Panavia Primer/Calibria NT	Panavia F/Calibria	ParaCore	PFM/Gold	108
Signore et al ⁶⁶	Retrospective	Ð	Glass	Phosphoric Acid	All-Bond 2	Luxa-Core Dual	Ecusit Composite	AC	526
*Etching not explicitly	stated but implied by	y the choice of	f luting cement.						

Journal of Prosthodontics 19 (2010) 639-646 © 2010 by The American College of Prosthodontists

PFM = porcelain fused to metal; AC = all ceramic; AP = all porcelain.

Table 2 Reported failure modes for the study groups meeting the inclusion criteria

	Number of failures due to									
Study	Dowel material	Included dowels	Observed failures	Failure rate	Dowel debonding	Apical lesions	Crown dislodgement	Dowel breakage	Root fracture	Other
Monticelli et al ⁵⁸	Glass	150	8	5.3	5	3	0	0	0	
Cagidiaco et al ⁶⁰	Glass	121	12	9.9	7	5	0	0	0	
Ferrari et al ⁶¹	Glass	120	11	9.2	9	2	2	0	0	2 debonding with lesions
Cagidiaco et al ⁶⁴	Glass	120	11	9.2	11	0	0	0	0	
Mehta and Millar ⁶⁵	Glass	108	32	29.6	3	9	0	0	2	12 core fractures, 6 secondary caries
Signore et al ⁶⁶	Glass	526	7	1.3	5	3	0	1	0	1 core fracture, 3 debonding with lesions
	Sub-total	1145	81	7.1	40	22	2	1	2	
Fredriksson et al ⁵²	Carbon	236	5	2.1	0	1	0	0	2	2 periodontitis
Ferrari et al ⁵³	Carbon	97	2	2.1	0	2	0	0	0	
Glazer ⁵⁴	Carbon	52	4	7.7	0	2	1	0	0	1 core debonding
Mannocci et al ⁵⁵	Carbon	57	3	5.3	2	*	0	0	0	1 marginal gap
Hedlund et al ⁵⁶	Carbon	65	2	3.1	2	**	0	0	0	
Ferrari et al ⁶²	Carbon	615	43	7.0	13	19	10	1	0	
	Sub-total	1122	59	5.3	17	24	11	1	2	
Malferrari et al ⁵⁷	Quartz	180	0	0.0	0	0	0	0	0	
Monticelli et al ⁵⁸	Quartz	75	6	8.0	3	3	0	0	0	
Ferrari et al ⁶²	Quartz	370	36	9.7	8	20	7	0	1	
	Sub-total	625	42	6.7	11	23	7	0	1	
Paul and Werder ⁵⁹	Zirconium	87	0	0.0	0	**	0	0	0	
Piovesan et al ⁶³	Polyethylene	67	5	7.5	1	**	0	4	0	
	Total	3046	187	6.1	69	69	20	6	5	

*A study group that explicitly ignored apical lesions; **A study group for which it is unclear if apical lesions would be counted as failure. The numbers in bold are the major modes of failure.

The type of dowel material did not noticeably influence the overall failure rate. A mathematical metaanalysis of the data is not warranted due to the considerable variation in clinical conditions. There did not appear to be any obvious association between study duration or design and reported success rate.

Effect of dowel material on failure mode

The composition of the dowel appears to affect the primary mode of failure. Debonding was the most common mode of failure for glass fiber dowels, while endodontic lesions were the most common failure mode for carbon and quartz fiber dowels. To be more specific, dowel debonding was responsible for 49% of glass fiber dowel failures but only 29% and 26% of carbon fiber and quartz fiber failures, respectively. It is not clear how the choice of dowel fiber influences the retention of the dowel.

Endodontic lesions

Only 11 of the 15 studies explicitly recorded failures due to endodontic lesions. Of the 2770 teeth reported in these studies, 69 failed due to endodontic lesions. This corresponds to a failure rate of 2.5%, far lower than the rates typically reported for root canal therapy alone. Literature reviews^{67,68} have reported that

the success rate of endodontic treatment is about 75% when success is defined as total resolution of the apical lesion and 85% when success is defined as partial resolution of the apical lesion. The de facto definition of endodontic success used in the dowel-and-crown studies is likely even looser, as clinicians may hesitate to re-treat a tooth with significant restorative work. Treatment selection bias is also likely to be a factor, as clinicians defer crowning high-risk endodontially treated teeth until signs of resolution are seen. Another factor skewing the success rates is the fact that all the teeth in the dowel-and-crown studies have received a proper coronal restoration. Metaanalysis⁶⁸ of the role of the coronal restoration found that the odds ratio for teeth with satisfactory coronal restorations versus unsatisfactory was 1.8 with a 95% confidence interval of 1.48 to 2.25. Finally, it may be possible that the adhesive interface between the luting cement and dentin reduces the amount of leakage through the root canal. In vitro evidence for this effect is lacking, with one study⁶⁹ reporting a nonsignificant reduction in leakage versus an extended sealer/gutta-percha filling.

Dowel debonding

Dowel debonding was the most common mode of failure for 8 of the 17 groups and accounted for 37% of all reported failures. The pooled odds that a restoration will fail due to debonding

			Number of failures due to								
Study	Included dowels	Observed failures	Failure rate	Dowel debonding	Apical lesions	Crown dislodgement	Dowel breakage	Root fracture	Other		
Balkenhol et al ¹²	802	90	11.2	39	14	0	3	14	9 periodontal, 6 caries, 4 crown fracture, 1 other		
Bergman et al ¹³	96	16	16.7	6	7	0	0	2	1 periodontal		
Ellner et al ¹⁷	40	1	2.5	0	0	0	0	1			
Ferrari et al ⁵³	98	14	14.3	0	3	2	0	9			
Creugers et al ¹⁴	127	7	5.5	3	*	0	0	4			
Torbjorner et al ²⁴	788	72	9.1	45	*	0	6	21			
Fokkinga et al ¹⁹	118	19	16.1	7	3	0	0	2	4 periodontal, 3 "crown replacement"		
Salvi et al ²³	82	8	9.8	4	1	0	0	3			
Ottl and Lauer ²²	230	18	7.8	0	12	0	0	1	5 periodontal		
Total	2381	245	10.3	104	40	2	9	57			

Table 3 Reported failure modes for clinical studies on passive dowel and cores (primarily cast) luted with zinc phosphate or glass ionomer cements

*A study group that explicitly ignored apical lesions.

are 2.3%. As previously mentioned, many factors prevent a proper comparison of the debonding rate for dowels luted with adhesive resin cements and traditional cements. The closest comparison that can be made with published data is to passive dowel and cores luted with zinc phosphate or glass ionomer ce-ments. Nine clinical studies^{12-14,17-19,22-24} investigated a total of 2381 such restorations and found 245 failures, 104 of which resulted from debonding (Table 3). This corresponds to a 4.3%chance that a given restoration will fail due to debonding. Therefore, resin-luted prefabricated dowels with resin cores appear 50% less likely to fail via debonding compared to traditionally luted passive dowels. Based on this data, adhesive luting cements appear to have succeeded in lowering the incidence of failure due to debonding; however, there are many reasons to be skeptical of this comparison. Studies using traditional luting techniques followed restorations for twice as long as those studies on adhesively luted dowels. Furthermore, the studies using traditional luting techniques often included bridge restorations, which were largely excluded from the studies on fiber dowels. Finally, there seems to be a treatment selection bias towards use of nonmetal dowels only in the anterior regions of the mouth where the occlusal forces are different than the posterior regions.

Although dowel debonding is a common mode of failure, few studies have elaborated on the exact nature of the debonding. The evaluated clinical studies generally reported debonding happens sporadically during the lifetime of the restoration with no noticeable tendency for immediate failure. None of the clinical studies mentioned any significant association between debonding and other failure modes such as secondary caries. The only study that commented on the mechanics of debonding⁵⁷ reported that two of three debondings occurred at the dentin/cement interface and one occurred cohesively within the cement near a bubble. Failure at the dentin/cement interface has also been commonly reported by in vitro studies⁷⁰⁻⁷⁶ on the retention of fiber dowels luted with resin cements, although other failures have been reported.^{70,76,77} None of the clinical studies reported if the loss of retention began at the crown/dentin interface or at the dentin/resin interface.

If initial failure at the crown/dentin interface was common, one would expect that in a certain number of restorations, the debonding interface would continue to propagate in a nearly straight line and follow along the crown/core interface rather than turn to follow the core/dentin interface. Of the clinical investigations considered by this study, 20 restorations failed by loss of crown retention, and 70 restorations failed by loss of dowel retention. Therefore, it seems more likely that failure begins with a decrease in retention at the dentin/resin interface.

Because loss of retention remains a major mode of failure, clinicians should consider taking additional measures to maximize dowel/tooth retention. Such strategies include ferrules, undercuts, antirotational boxes, and active dowels. A ferrule is a well-known preparation technique usually reported to improve the fracture resistance,⁸² and to a lesser extent the retention, of a dowel core restoration.^{64,82} Undercuts and antirotational boxes are techniques for allowing even nonbonded materials to be retained via macromechanical retention. Finally, active dowels have been shown in laboratory testing to be more retentive than passive dowels.⁸²

Crown dislodgement

Dislodgement of the crown was reported in four study groups and accounted for 11% of all reported failures. It is interesting to note that 19 of the 20 dislodgements were reported in just two studies, both performed by similar research groups. In those studies the incidence of dislodgement, 1.7%, was far greater than in other studies, 0.05%. The cause of this discrepancy is unknown, but case selection may have had some influence; the authors claimed⁶² that "dislodgement of the crowns occurred simultaneously with partial or total fracture of the abutments, in teeth with little remaining coronal tooth structure and with natural dentition and heavy occlusion."

Dowel breakage

Breakage of the dowel was the dominant mode of failure reported by the one study group investigating polyethylene fiber dowels (Ribbond). Otherwise, it was responsible for 1% of all reported failures. Laboratory studies on polyethylene fiber dowels report that they have a slightly lower failure strength⁷⁸⁻⁸⁰ and a significantly lower modulus⁷⁸ than glass fiber dowels.

Root fracture

Root fracture was reported in three studies and accounted for less than 3% of all failures. This is markedly less than the rate from previously mentioned studies on traditionally luted passive metal dowels, 23%. Such a reduction is not unprecedented, as numerous computational^{50,51,83-86} and laboratory⁸⁶⁻⁹¹ studies report that low-modulus fiber dowels reduce the risk of root fracture. It should be noted; however, that the laboratory studies are not all in agreement, with several reporting no difference⁹²⁻⁹⁴ or increased⁹⁵⁻⁹⁸ risk of root fracture.

Other failure modes

Uncommon modes of failure included secondary caries, periodontitis, core fracture, core debonding, and marginal gap formation. Core fracture was the major mode of failure in one study, but was only reported once in all other studies. Clearly some unique factor must have affected the one study that reported 12 core fractures. Perhaps the core material, ParaCore Handmix (Coltène/Whaledent, Inc, Cuyahoga Falls, OH), has inadequate properties or was not properly used.

Conclusions

Within the scope of this systematic review, loss of retention is a major mode of failure for passive fiber dowels luted by bonded resin cements. The exact nature and underlying causes of debonding have not been adequately investigated. The other major mode of failure was recurring endodontic lesions. The incidence of endodontic failure in dowel and core restorations was lower than in minimally restored endodontically treated teeth.

References

- Rosenstiel SF, Land MF, Crispin BJ: Dental luting agents: a review of the current literature. J Prosthet Dent 1998;80:280-301
- Burke FJT: Trends in indirect dentistry: 3. Luting materials. Dent Update 2005;32:251-260
- Kuybulu FI, Gemalmaz D, Pameijer CH, et al: Erosion of luting cements exposed to acidic buffer solutions. Int J Prosthodont 2007;20:494-495
- Umino A, Nikaido T, Tsuchiya S, et al: Confocal laser scanning microscopic observations of secondary caries inhibition around different types of luting cements. Am J Dent 2005;18:245-250
- Yoshida K, Tanagawa M, Atsuta M: In-vitro solubility of three types of resin and conventional luting cements. J Oral Rehabil 1998;25:285-291
- Oilo G: Adhesive bonding of dental luting cements; influence of surface treatment. Acta Odontol Scand 1978;36:263-270

- Moser JB, Brown DB, Greener EH: Short-term bond strengths between adhesive cements and dental alloys. J Dent Res 1974;53:1377-1386
- Barclay CW, Boyle EL, Williams R, et al: The effect of thermocycling on five adhesive luting cements. J Oral Rehabil 2002;29:546-552
- Galun EA, Saleh N, Lewinstein I: Diametral tensile strength and bonding to dentin of type I glass ionomer cements. J Prosthet Dent 1994;72:424-429
- Piwowarczyk A, Lauer HC: Mechanical properties of luting cements after water storage. Oper Dent 2003;28:535-542
- Li ZC, White SN: Mechanical properties of dental luting cements. J Prosthet Dent 1999;81:597-609
- Balkenhol M, Wostmann B, Rein C, et al: Survival time of cast post and cores: a 10-year retrospective study. J Dent 2007;35:50-58
- Bergman B, Lundquist P, Sjogren U, et al: Restorative and endodontic results after treatment with cast posts and cores. J Prosthet Dent 1989;61:10-15
- Creugers NH, Mentink AG, Fokkinga WA, et al: 5-year follow-up of a prospective clinical study on various types of core restorations. Int J Prosthodont 2005;18:34-39
- Creugers NH, Kreulen CM, Fokkinga WA, et al: A 5-year prospective clinical study on core restorations without covering crowns. Int J Prosthodont 2005;18:40-41
- 16. De Backer H, Van Maele G, De Moor N, et al: An 18-year retrospective survival study of full crowns with or without posts. Int J Prosthodont 2006;19:136-142
- Ellner S, Bergendal T, Bergman B: Four post-and-core combinations as abutments for fixed single crowns: a prospective up to 10-year study. Int J Prosthodont 2003;16:249-254
- Ferrari M, Vichi A, Mannocci F, et al: Retrospective study of the clinical performance of fiber posts. Am J Dent 2000;13:9B-13B
- Fokkinga WA, Kreulen CM, Bronkhorst EM, et al: Up to 17-year controlled clinical study on post-and-cores and covering crowns. J Dent 2007;35:778-786
- Hatzikyriakos AH, Reisis GI, Tsingos N: A 3-year postoperative clinical evaluation of posts and cores beneath existing crowns. J Prosthet Dent 1992;67:454-458
- Mentink AG, Creugers NH, Meeuwissen R, et al: Clinical performance of different post and core systems—results of a pilot study. J Oral Rehabil 1993;20:577-584
- Ottl P, Lauer HC: Success rates for two different types of post-and-cores. J Oral Rehabil 1998;25:752-758
- Salvi GE, Siegrist Guldener BE, Amstad T, et al: Clinical evaluation of root filled teeth restored with or without post-and-core systems in a specialist practice setting. Int Endod J 2007;40:209-215
- Torbjörner A, Karlsson S, Odman PA: Survival rate and failure characteristics for two post designs. J Prosthet Dent 1995;73:439-444
- Bitter K, Noetzel J, Volk C, et al: Bond strength of fiber posts after the application of erbium:yttrium-aluminum-garnet laser treatment and gaseous ozone to the root canal. J Endod 2008;34:306-309
- 26. Saygili G, Sahmali S, Demirel F: Influence of timing of coronal preparation on retention of two types of post cores. Am J Dent 2008;21:105-107
- Marchan S, Coldero L, Whiting R, et al: In vitro evaluation of the retention of zirconia-based ceramic posts luted with glass ionomer and resin cements. Braz Dent J 2005;16:213-217
- 28. Gernhardt CR, Bekes K, Schaller HG: Short-term retentive values of zirconium oxide posts cemented with glass ionomer

and resin cement: an in vitro study and a case report. Quintessence Int 2005;36:593-601

- Bolhuis P, de Gee A, Feilzer A: The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post-resin composite core restorations. Oper Dent 2005;30:220-227
- 30. Bolhuis HP, de Gee AJ, Pallav P, et al: Influence of fatigue loading on the performance of adhesive and nonadhesive luting cements for cast post-and-core buildups in maxillary premolars. Int J Prosthodont 2004;17:571-576
- Hedlund SO, Johansson NG, Sjögren G: Retention of prefabricated and individually cast root canal posts in vitro. Br Dent J 2003;195:155-158
- Cheylan JM, Gonthier S, Degrange M: In vitro push-out strength of seven luting agents to dentin. Int J Prosthodont 2002;15:365-370
- 33. Hagge MS, Wong RD, Lindemuth JS: Retention of posts luted with phosphate monomer-based composite cement in canals obturated using a eugenol sealer. Am J Dent 2002;15:378-382
- Duncan JP, Pameijer CH: Retention of parallel-sided titanium posts cemented with six luting agents: an in vitro study. J Prosthet Dent 1998;80:423-428
- Utter JD, Wong BH, Miller BH: The effect of cementing procedures on retention of prefabricated metal posts. J Am Dent Assoc 1997;128:1123-1127
- El-Mowafy OM, Milenkovic M: Retention of paraposts cemented with dentin-bonded resin cements. Oper Dent 1994;19:176-182
- 37. Menani LR, Ribeiro RF, Antunes RP: Tensile bond strength of cast commercially pure titanium and cast gold-alloy posts and cores cemented with two luting agents. J Prosthet Dent 2008;99:141-147
- Balbosh A, Ludwig K, Kern M: Comparison of titanium dowel retention using four different luting agents. J Prosthet Dent 2005;94:227-233
- Love RM, Purton DG: Retention of posts with resin, glass ionomer and hybrid cements. J Dent 1998;26:599-602
- 40. Leary JM, Holmes DC, Johnson WT: Post and core retention with different cements. Gen Dent 1995;43:416-419
- Mendoza DB, Eakle WS: Retention of posts cemented with various dentinal bonding cements. J Prosthet Dent 1994;72:591-594
- Ertugrul HZ, Ismail YH: An in vitro comparison of cast metal dowel retention using various luting agents and tensile loading. J Prosthet Dent 2005;93:446-452
- Habib B, von Fraunhofer JA, Driscoll CF: Comparison of two luting agents used for the retention of cast dowel and cores. J Prosthodont 2005;14:164-169
- 44. Hochman N, Feinzaig I, Zalkind M: Effect of design of pre-fabricated posts and post heads on the retention of various cements and core materials. J Oral Rehabil 2003;30:702-707
- 45. Bergeron BE, Murchison DF, Schindler WG, et al: Effect of ultrasonic vibration and various sealer and cement combinations on titanium post removal. J Endod 2001;27:13-17
- Schwartz RS, Murchison DF, Walker WA 3rd: Effects of eugenol and noneugenol endodontic sealer cements on post retention. J Endod 1998;24:564-567
- Naumann M, Sterzenbach G, Rosentritt M, et al: Is adhesive cementation of endodontic posts necessary? J Endod 2008;34:1006-1010
- Wu X, Chan AT, Chen YM, et al: Effectiveness and dentin bond strengths of two materials for reinforcing thin-walled roots. Dent Mater 2007;23:479-485
- Mendoza DB, Eakle WS, Kahl EA, et al: Root reinforcement with a resin-bonded preformed post. J Prosthet Dent 1997;78:10-14

- Santos AF, Tanaka CB, Lima RG, et al: Vertical root fracture in upper premolars with endodontic posts: finite element analysis. J Endod 2009;35:117-120
- Pegoretti A, Fambri L, Zappini G, et al: Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002;23:2667-2682
- 52. Fredriksson M, Astbäck J, Pamenius M, et al: A retrospective study of 236 patients with teeth restored by carbon fiber-reinforced epoxy resin posts. J Prosthet Dent 1998;80:151-157
- Ferrari M, Vichi A, García-Godoy F: Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores. Am J Dent 2000;13:15B-18B
- Glazer B: Restoration of endodontically treated teeth with carbon fibre posts-a prospective study. J Can Dent Assoc 2000;66:613-618
- 55. Mannocci F, Bertelli E, Sherriff M, et al: Three-year clinical comparison of survival of endodontically treated teeth restored with either full cast coverage or with direct composite restoration. J Prosthet Dent 2002;88:297-301
- Hedlund SO, Johansson NG, Sjögren G: A retrospective study of pre-fabricated carbon fibre root canal posts. J Oral Rehabil 2003;30:1036-1040
- Malferrari S, Monaco C, Scotti R: Clinical evaluation of teeth restored with quartz fiber-reinforced epoxy resin posts. Int J Prosthodont 2003;16:39-44
- Monticelli F, Grandini S, Goracci C, et al: Clinical behavior of translucent-fiber posts: a 2-year prospective study. Int J Prosthodont 2003;16:593-596
- Paul SJ, Werder P: Clinical success of zirconium oxide posts with resin composite or glass-ceramic cores in endodontically treated teeth: a 4-year retrospective study. Int J Prosthodont 2004;17:524-528
- 60. Cagidiaco MC, Radovic I, Simonetti M, et al: Clinical performance of fiber post restorations in endodontically treated teeth: 2-year results. Int J Prosthodont 2007;20:293-298
- Ferrari M, Cagidiaco MC, Grandini S, et al: Post placement affects survival of endodontically treated premolars. J Dent Res 2007;86:729-734
- Ferrari M, Cagidiaco MC, Goracci C, et al: Long-term retrospective study of the clinical performance of fiber posts. Am J Dent 2007;20:287-291
- Piovesan EM, Demarco FF, Cenci MS, et al: Survival rates of endodontically treated teeth restored with fiber-reinforced custom posts and cores: a 97-month study. Int J Prosthodont 2007;20:633-639
- 64. Cagidiaco MC, García-Godoy F, Vichi A, et al: Placement of fiber prefabricated or custom made posts affects the 3-year survival of endodontically treated premolars. Am J Dent 2008;21:179-184
- Mehta SB, Millar BJ: A comparison of the survival of fibre posts cemented with two different composite resin systems. Br Dent J 2008;205:E23
- 66. Signore A, Benedicenti S, Kaitsas V, et al: Long-term survival of endodontically treated, maxillary anterior teeth restored with either tapered or parallel-sided glass-fiber posts and full-ceramic crown coverage. J Dent 2009;37:115-121
- 67. Ng YL, Mann V, Rahbaran S, et al: Outcome of primary root canal treatment: systematic review of the literature—part 1. Effects of study characteristics on probability of success. Int Endod J 2007;40:921-939
- Ng YL, Mann V, Rahbaran S, et al: Outcome of primary root canal treatment: systematic review of the literature—Part 2. Influence of clinical factors. Int Endod J 2008;41:6-31

- 69. Rogić-Barbić M, Segović S, Pezelj-Ribarić S, et al: Microleakage along Glassix glass fibre posts cemented with three different materials assessed using a fluid transport system. Int Endod J 2006;39:363-367
- Nagase DY, Takemoto S, Hattori M, et al: Influence of fabrication techniques on retention force of fiber-reinforced composite posts. Dent Mat J 2005;24:280-285
- Pithan S, Vieira Rde S, Chain MC: Tensile bond strength of intracanal posts in primary anterior teeth: an in vitro study. J Clin Ped Dent 2002;27:35-39
- 72. Bonfante G, Kaizer OB, Pegoraro LF, et al: Tensile bond strength of glass fiber posts luted with different cements. Braz Oral Res 2007;21:159-164
- D'Arcangelo C, Cinelli M, De Angelis F, et al: The effect of resin cement film thickness on the pullout strength of a fiber-reinforced post system. J Prosthet Dent 2007;98: 193-198
- 74. Rasimick BJ, Shah RP, Musikant BL, et al: Effect of EDTA conditioning upon the retention of fiber posts luted with resin cements. Int Endod J 2008;41:1101-1106
- Burns DR, Moon PC, Webster NP, et al: Effect of endodontic sealers on dowels luted with resin cement. J Prosthodont 2000;9:137-141
- Hagge MS, Wong RD, Lindemuth JS: Effect of dowel space preparation and composite cement thickness on retention of a prefabricated dowel. J Prosthodont 2002;11:19-24
- Balbosh A, Kern M: Effect of surface treatment on retention of glass-fiber endodontic posts. J Prosthet Dent 2006;95:218-223
- Bae JM, Kim KN, Hattori M, et al: The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix. Int J Prosthodont 2001;14:33-39
- Bae JM, Kim KN, Hattori M, et al: Fatigue strengths of particulate filler composites reinforced with fibers. Dent Mater J 2004;23:166-174
- Newman MP, Yaman P, Dennison J, et al: Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthet Dent 2003;89:360-367
- Pegoraro TA, Da Silva NRFA, Carvalho RM: Cements for use in esthetic dentistry. Dent Clin North Am 2007;51:453-471
- Schwartz RS, Robbins JW: Post placement and restoration of endodontically treated teeth: a literature review. J Endod 2004;30:289-301
- Meira JB, Espósito CO, Quitero MF, et al: Elastic modulus of posts and the risk of root fracture. Dent Traumatol 2009;25:394-398
- 84. Spazzin AO, Galafassi D, de Meira-Júnior AD, et al: Influence of post and resin cement on stress distribution of maxillary central

incisors restored with direct resin composite. Oper Dent 2009;34:223-229

- Okada D, Miura H, Suzuki C, et al: Stress distribution in roots restored with different types of post systems with composite resin. Dent Mater J 2008;27:605-611
- Barjau-Escribano A, Sancho-Bru JL, Forner-Navarro L, et al: Influence of prefabricated post material on restored teeth: fracture strength and stress distribution. Oper Dent 2006;31:47-54
- Akkayan B, Gulmez T: Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent 2002;87:431-437
- Kivanç BH, Görgül G: Fracture resistance of teeth restored with different post systems using new-generation adhesives. J Contemp Dent Pract 2008;9:33-40
- Martinez-Insua A, da Silva L, Rilo B, et al: Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core. J Prosthet Dent 1998;80:527-532
- Abo El-Ela OA, Atta OA, El-Mowafy O: Fracture resistance of anterior teeth restored with a novel nonmetallic post. J Can Dent Assoc 2008;74:441e-441e
- Hayashi M, Sugeta A, Takahashi Y, et al: Static and fatigue fracture resistances of pulpless teeth restored with post-cores. Dent Mater 2008;24:1178-1186
- 92. Raygot CG, Chai J, Jameson DL: Fracture resistance and primary failure mode of endodontically treated teeth restored with a carbon fiber-reinforced resin post system in vitro. Int J Prosthodont 2001;14:141-145
- Hu YH, Pang LC, Hsu CC, et al: Fracture resistance of endodontically treated anterior teeth restored with four post-and-core systems. Quintessence Int 2003;34:349-353
- Ottl P, Hahn L, Lauer HC, et al: Fracture characteristics of carbon fibre, ceramic and non-palladium endodontic post systems at monotonously increasing loads. J Oral Rehabil 2002;29:175-183
- 95. Al-Wahadni AM, Hamdan S, Al-Omiri M, et al: Fracture resistance of teeth restored with different post systems: in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:E77-83
- Sidoli GE, King PA, Setchell DJ: An in vitro evaluation of a carbon fiber-based post and core system. J Prosthet Dent 1997;78:5-9
- Asmussen E, Peutzfeldt A, Sahafi A: Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J Prosthet Dent 2005;94:321-329
- Santos-Filho PC, Castro CG, Silva GR, et al: Effects of post system and length on the strain and fracture resistance of root filled bovine teeth. Int Endod J 2008;41:493-501

Copyright of Journal of Prosthodontics is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.