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& Fabiana Mantovani Gomes França, DDS, MS, PhD6

1MSc Student in Prosthodontics, Postgraduate Center, São Leopoldo Mandic School of Dentistry, Campinas, Brazil
2PhD Student in Prosthodontics, Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, UNESP – Univ. Estadual
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Abstract
Purpose: This study aimed to evaluate stress distribution on peri-implant bone sim-
ulating the influence of platform switching in external and internal hexagon implants
using three-dimensional finite element analysis.
Materials and Methods: Four mathematical models of a central incisor supported
by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm
external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal
Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm
abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm ×
11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and
Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and
3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks
software. The numerical analysis was performed using ANSYS Workbench. Oblique
forces (100 N) were applied to the palatal surface of the central incisor. The maximum
(σ max) and minimum (σ min) principal stress, equivalent von Mises stress (σ vM), and
maximum principal elastic strain (εmax) values were evaluated for the cortical and
trabecular bone.
Results: For cortical bone, the highest stress values (σ max and σ vm) (MPa) were
observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and
ES (56.7 and 51.6). For εmax, IR showed the highest stress (5.46e-003), followed by IS
(5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest
stress values (σ max) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9),
and IR (4.95). For σ vM, the highest stress values (MPa) were observed in IS (9.65),
followed by ER (9.3), ES (8.61), and IR (5.62). For εmax, ER showed the highest stress
(5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003).
Conclusion: The influence of platform switching was more evident for cortical bone
than for trabecular bone, mainly for the external hexagon implants. In addition, the
external hexagon implants showed less stress concentration in the regular and switching
platforms in comparison to the internal hexagon implants.

The longevity of dental implants depends on integration be-
tween the implant components and hard and soft tissues;1 how-
ever, bone resorption has been frequently reported after 1 year
of implant function.2-39 The most common factors for bone

loss are occlusal overloading,2-18 contamination in the gap be-
tween the abutment and the implant,19-26 biological width for-
mation,27-33 design of the implant neck,34-37 surgical trauma,1

peri-implantitis,1 and gingival biotype.38
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Although there is no consensus in the literature for the main
cause of peri-implant resorption, it is important to determine a
stable level of peri-implant bone loss since preservation of the
supporting bone is essential for soft-tissue esthetics.35,39 Con-
sidering patients’ increasing requirement for esthetics, natural-
looking restorations have been a challenge for clinicians.

Minimal or no bone loss would be ideal. Thus, Lazzara and
Porter40 suggested alteration of the horizontal relation between
the implant and prosthetic component diameters, introducing
the concept of platform switching. This technique is charac-
terized by a reduced diameter of the prosthetic component in
comparison to the implant diameter,40,41 which has been widely
studied and reported in the literature.

Clinical, radiographic, and histological studies have shown
reduced peri-implant bone loss with platform switch-
ing.26,35,36,42,43,44,45-49 Some studies using the finite element
method demonstrated more uniform stress distribution on the
peri-implant bone with platform switching than with the tra-
ditional technique.11,13,15,16,50 The literature demonstrates that
internal connections present better performance in laboratory
tests and superior structural integrity of the implant,51,52 an-
tirotational stability,51,52 reduced rate of abutment screw loos-
ening,53,54 and lower stress transfer to the bone10,55,56 than do
external hexagon connections; however, there is no study evalu-
ating the performance of external hexagon implants associated
with platform switching.

Considering the effect of platform switching to reduce bone
loss, the aim of this study was to evaluate stress distribution
on the peri-implant bone, simulating the influence of platform
switching in external and internal hexagon implants using three-
dimensional finite element analysis.

Materials and methods
This study was approved by the Human Research Ethics Com-
mittee (process #2008/01845) at the Araçatuba School of Den-
tistry, São Paulo State University (UNESP), Brazil. After the pa-
tient signed the informed consent, a tomographic examination

Table 1 Characteristics of the models used in the study

External Internal External Internal
regular regular switching switching

(ER) (IR) (ES) (IS)
Characteristic External Internal External Internal
Connection hexagon hexagon hexagon hexagon

Implant 5.0 mm 4.5 mm 5.0 mm 4.5 mm
diameter

Abutment 5.0 mm 4.5 mm 4.1 mm 3.8 mm
diameter

Implant 11.5 mm 11.5 mm 11.5 mm 11.5 mm
length

of the maxilla was conducted to obtain tomographic images
in dicom format. The mathematical models representing the
anterior segment of the maxilla were fabricated using Mimics
11.11 (Materialise, Leuven, Belgium) and Solid Works 2010
(Inovart, São Paulo, Brazil) software.

All models were restored with a crown cemented on the
abutment varying the type of implant (internal and exter-
nal hexagon implants) and the platform diameter (regular—
4.5 mm; switching—4.1 mm) to simulate two regular situations
(IR—internal regular platform; ER—external regular platform)
and two switching situations (IS—internal platform switching;
ES—external platform switching). The four models obtained
are described in Table 1 and represented in Figure 1.

The external hexagon implants SIN Revolution (5.0 mm ×
11.5 mm, Sistema de Implante, São Paulo, Brazil) and internal
hexagon implants SIN Strong (4.5 mm × 11.5 mm, Sistema de
Implante) were restored with an IPS e-max Press crown (Ivoclar
Vivadent, Schaan, Liechtenstein) cemented on the abutment
(5.0-, 4.5-, 4.1-, and 3.8-mm diameter) with 0.05-mm thick
Variolink II cement (Ivoclar Vivadent) (Fig 2). Then, the as-
sembly was inserted in the anterior segment of the maxilla with
cortical and trabecular bone corresponding to the region of the

Figure 1 External regular (ER), internal regular
(IR), external switching (ES), and internal
switching (IS) models.
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Figure 2 Components of the four models:
implant (1), abutment (2), cementation line (3),
coping (4), and crown (5).

right central incisor. The crown was 13.0 mm high, 8.8 mm in
mesiodistal width, and 7.1 mm in buccal-lingual width.

After fabrication, the models were transfered to the finite ele-
ment software Ansys Workbench 10.0 (Swanson Analysis Inc.,
Houston, PA) to determine the regions and generate the finite
element mesh. The mechanical properties of Young’s modu-
lus (E) and Poisson’s ratio (ν) of each structure were used
to consider the study as homogeneous, isotropic, and linearly
elastic (Table 2).5,6,10,15,57 The mechanical properties referred
to a Lekholm and Zarb classification bone type III,58 which is
more frequent in the anterior region of the maxilla.57,59 The
bone/implant interface was considered as completely osseoin-
tegrated.5,6,10,13,15,57

Oblique loading (100 N, 45◦) was applied on the palatal
surface of the crown of the right central incisor (Fig 3).5,10,13,15

The fixed support was determined in the three cartesian axes
(x = y = z = 0) to characterize the boundary condition.

A solid element with parabolic tetrahedral interpolation60

and a mesh composed of elements with 0.2 mm in dimension
were used (Fig 4). The refinement of the mesh was established
through convergence analysis (6%).14 The quantity of nodes
and elements presented by each model is described in Table 3.

For analysis of the results, the maximum (σ max) and mini-
mum (σ min) principal stress, equivalent von Mises stress (σ vM),
and maximum principal elastic strain (εmax) values for the corti-
cal and trabecular bone were obtained. According to Dejak and
Mlotkowski,61 principal stress is the most appropriate analysis
criteria for predicting failures in nonductile materials.

Results
Irrespective of the analysis criterion adopted to evaluate the
stress in cortical bone, σ max or σ vm, the models presented simi-

Table 2 Elastic properties described for the materials used in the models

Young’s Poisson’s
Material modulus (GPa) ratio

Cortical bone14 13.8 0.26
Trabecular bone (type III)62 1.6 0.30
Implant14 110.0 0.35
Abutment screw14 110.0 0.35
Abutment14 110.0 0.35
Variolink II∗ 8.3 0.30
IPS e-max Press∗ 95.0 0.30

∗Information provided by manufacturer.

Figure 3 Oblique loading on the palatal surface of the maxillary central
incisor.

lar behaviors (Table 4). In the trabecular bone, the stress values
were more divergent.

Cortical bone

For the cortical bone, the highest stress values (σ max and σ vm)
(MPa) were observed in IR (87.4 and 82.3), followed by IS
(83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6)
(Fig 5). In both situations, the switching models decreased the
stress in relation to the internal hexagon (4.6% for σ max, 12%
for σ vm), mainly in relation to the external hexagon (30.8% for
σ max, 20.7% for σ vm).

Considering the type of implant, the external hexagon
showed less stress in both situations (regular: 6.1% for σ max

and 20.8% for σ vM; switching: 31.9% for σ max and 28.7% for
σ vM) than did the internal hexagon implants. For the maximum
principal strain (εmax), IR showed the highest stress, followed
by IS, ER, and ES (Table 4). The decrease in the values of the
switching model in comparison to the regular model was 4.2%
for the internal hexagon and 29.6% for the external hexagon.

Trabecular bone

For the trabecular bone, the highest stress values (σ max) (MPa)
were observed in ER, followed by IS, ES, and IR. For the σ vM,
the highest stress values (MPa) were observed in IS, followed
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Figure 4 Finite element mesh of the ER, IR,
ES, and IS models.

by ER, ES, and IR (Table 4). The internal regular platform (IR)
showed the lowest stress in the trabecular bone for both analysis
criteria in comparison to the other models.

For the maximum principal strain (εmax), ER showed the
highest stress, followed by ES, IS, and IR (Table 4). The de-
crease in the value for the switching model in comparison to
the regular model was 1.27% for the external hexagon implant.
For the internal hexagon implant, a decrease of 16% occurred
from the switching to the regular model.

Discussion
The results observed in cortical bone demonstrated that the im-
plant with external connection associated with platform switch-
ing presented the best behavior, because the values for the σ max,
σ vM, and εmax were the lowest. On the other hand, the implant
with internal hexagon and regular platform showed the worst
performance in this study.

As in this study, the simulated structures (implants and pros-
thetic components) were an exact copy of those commercially
distributed by the manufacturer; the external hexagon implants
were 0.5 mm larger than the internal hexagon implants. Consid-
ering that some authors have suggested that a higher diameter
of the implant should reduce the stress transferred to the cor-
tical bone,5,14,17,18 this could explain the favorable results of
the external connection. Thus, the external switching implants

Table 3 Nodes and elements of the models

Models Nodes Elements

ER 518,220 341,601
IR 539,366 356,679
ES 520,559 343,553
IS 528,776 350,298

transferred less stress to the cortical bone (31.9% for σ max and
28.7% for σ vM) than did the internal switching group.

Comparing ER and ES, σ vM decreased 20.7% in the cortical
bone. Rodriguez-Ciurana et al50 reported similar results with a
26.6% decrease between models with the same characteristics.
The difference of about 6% between the studies may result
from different cortical thicknesses (2 mm in that study, 1 mm
here), as Okumura et al18 said that thinner cortical bone on the
alveolar crest leads to highest stress concentration around the
implant neck.

The εmax analysis revealed that large-diameter implants (ER
and ES) presented lower values than narrower implants (IR and
IS). This result is in accordance with Ding et al,17 who found
reduced strain when the implant diameter increased. In addition,
using switching models, this analysis showed that εmax can be
4.2% lower for the internal hexagon and 29.6% lower for the
external hexagon implants.

When switching platform was used by Maeda et al,11

Quaresma et al,13 and Rodrı́guez-Ciurana et al,50 lower stress
concentration in peri-implant bone was found in comparison
to regular models. This is in agreement with the results of this
study, since both external and internal hexagon-switched groups
presented lower values for all analysis criteria in comparison to
the regular groups.

The situation simulated in this study required incidence of
oblique load in relation to the implant long axis in the anterior
maxillary region,13,57 according to a physiological situation.
For the oblique loading, the highest stress is generated in the
cortical bone surrounding the implant platform.5,6,9,10,11-18,62

Similar performance was observed in this study where all mod-
els had the stress located in the buccal region, except for the
regular internal hexagon model where stress was exhibited in
the proximal region. This situation confirms the worst perfor-
mance of the IR group, since bone loss in the proximal region
leads to loss of papilla and esthetic damage. In all models, the
maximum σ vM in the cortical bone was about 6 to 14 times

Table 4 Maximum (σ max) and minimum (σ min) principal stress, equivalent von Mises stress (σ vM) (all in MPa), and maximum principal elastic strain
(εmax) distributions in cortical and trabecular bone in the regular (external regular—ER, and internal regular—IR) and switching (external switching—ES,
and internal switching—IS) models

Models αmax cortical αmin cortical αvM cortical εmax cortical αmax trabecular αmin trabecular αvM trabecular εmax trabecular

ER 82 −82.1 65.1 5.22e−003 12.5 −5.8 9.3 5.5e−003
IR 87.4 −112 82.3 5.46e−003 4.95 −5.36 5.62 3.15e−003
ES 56.7 −59.5 51.6 3.67e−003 11.9 −8 8.61 5.43e−003
IS 83.3 −84.5 72.4 5.23e−003 12 −4.49 9.65 3.75e−003
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Figure 5 Stress distribution (σmax) in the cortical bone of the ER, IR, ES, and IS models.

higher than that in trabecular bone, in accordance with the find-
ings of Okumura et al.18

The evaluation of the trabecular bone demonstrated that, in
the regular models, stress values (σ max and σ vM) were higher
for the external hexagon implant (ER = 12.5 and 9.3 MPa,
respectively) than for the internal hexagon group (IR = 4.95
and 5.62 MPa, respectively), similar to the findings of other
authors.5,13,17 This may result from the reduced quantity of
trabecular bone when the implant diameter increases.17 Ac-
cording to Holmgren et al,5 this result demonstrates that the
implant with higher diameter is not always the best alternative,
since the stress distribution to bone is unfavorable for cases
with morphological limitations; however, considering the cor-
tical bone, the higher implant diameter usually presents lower
bone stress.5,14,17,18

Ding et al17 stated that an implant with higher platform diam-
eter allows better transference of masticatory forces, decreasing
the bone loss. Thus, according to biomechanics, these authors
suggested that the highest implant diameter should be selected
considering the anatomy of the region.

Considering the hexagon type, this study demonstrated that
the internal connection generated 60.4% less stress in the tra-
becular bone than the external connection in the regular models.
This is in accordance to the results of Baggi et al,16 who demon-
strated that the external hexagon implant generated higher bone
stress than the internal hexagon.

The lowest stress values were observed in the regular internal
hexagon model. This finding in trabecular bone may result from
a greater distance between this bone type and loading position
associated with its lower Young’s modulus in comparison to
the cortical bone.

Even considering that the methodology used in this study
defined the models as isotropic, homogeneous, and linearly
elastic, which is not realistic, and that the connection between
the implant and bone was considered completely osseointe-
grated; it can be suggested that external hexagon implants
should be associated with platform switching for better esthet-
ics and function in the anterior region of the maxilla. However,

additional nonlinear FEA can confirm these data, and clinical
and histological studies are necessary to confirm this clinical
hypothesis.

Conclusion
Within the limitations of this study, the following conclusions
may be drawn:

1. The influence of the switching platform was more evident
for the cortical bone in comparison to the trabecular bone,
mainly for the external hexagon implants;

2. The external hexagon implants showed less stress concen-
tration in the regular and platform switching compared to
the internal hexagon implants.
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