
Three-Dimensional Finite Element Analysis of Custom-Made
Ceramic Dowel Made Using CAD/CAM Technology
Thamer Yousif Marghalani, BDS, DScD,1 Mohamed Tharwat Hamed, BDS, MSD, DMSc, MPH,1,2

Mohamed Abdelmageed Awad, BDS, MScD, PhD,1,3 Ghada Hussein Naguib, BDS, MSD, DSc,4,5

& Ahmed Fouad Elragi, BSc, MSc, PhD6

1Associate Professor, Department of Oral and Maxillofacial Rehabilitation, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
2Associate Professor, Department of Fixed Prosthodontics, Cairo University, Cairo, Egypt
3Associate Professor, Restorative Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
4Assistant Professor, Department of Conservative Dental Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
5Assistant Professor, Department of Oral Biology, Cairo University, Cairo, Egypt
6Assistant Professor, Faculty of Engineering, Qassim University, Qassim, Saudi Arabia

Keywords

Finite element analysis; stress distribution;
tooth; cast gold dowel and core; ceramic;
zirconia dowel and core; restored dowel;
cement.

Correspondence

Thamer Yousif Marghalani, P.O. Box: 11608,
Jeddah, 21463, Saudi Arabia. E-mail:
tmarghalani@kau.edu.sa

The authors deny any conflicts of interest.

Presented at the 2009 Meeting of the IADR,
Miami, FL.

Accepted December 19, 2011

doi: 10.1111/j.1532-849X.2012.00860.x

Abstract
Purpose: This study compares the stress distribution in the structure of a loaded
endodontically treated maxillary extracted canine restored with either custom-made
zirconia (Cercon) or cast gold dowel and core.
Materials and Methods: Standard treatments were implemented to prepare the gutta-
percha-filled root canal and dowel space. The tooth along with the dowel and core
fabricated pattern resin were prepared to receive an all-ceramic (Cercon) crown. An
impression was made for the tooth preparation with the zirconia milled dowel and
core in place to fabricate the Cercon crown using CAD/CAM. The restored canine
was scanned, and from the scan two models were constructed with the surrounding
ligament and bone. Three-dimensional finite element elastic analysis was then carried
out for the stress distribution within the different regions of the two models due to a
concentrated force of 100 N applied at the mid-lingual area. Analyses were made for
three load angulations, vertical, buccolingual horizontal, and an in-between oblique
force at 45o. Each region of the models was assumed isotropic and homogeneous. The
two restored canines with zirconia and gold were compared in terms of the resulting
maximum tensile, compressive, and Von Mises stresses.
Results: Generally, there were no significant differences in the maximum stresses in
most regions for both models. Von Mises stresses for zirconia dowel and core was
8.966 MPa and for cast gold dowel and core was 8.752 MPa. The maximum tensile
stress for zirconia dowel and core was 9.326 MPa, and for cast gold dowel and core
was 8.166 MPa.
Conclusions: The present work validates the use of CAD/CAM zirconia material for
ceramic dowel and cores. Clinical implications: CAD/CAM Zirconia can be used
for a custom-made dowel and core in an esthetically demanding zone as an esthetic
replacement for a metal cast dowel and core when restoring endodontically treated
teeth.

Endodontically treated teeth often lose a large portion of their
structure either due to the removal of existing caries or the
access opening preparation.1 Moreover, the additional tooth
preparation, especially if the marginal ridges are involved, will
result in the largest reduction in tooth stiffness.2,3 These teeth
are generally more fragile than vital teeth and, at times, may
be more predisposed to fracture.4-6 In a study using the uncon-
strained punch shear test,7 the dentin of endodontically treated

molar teeth was found to be weaker and more brittle than that
of vital teeth. This could be attributed to moisture loss,8-11

architectural changes,2,12,13 altered biomechanical behavior,14

changes in the physical properties of dentine,15 collagen alter-
ation,16 and loss of “Dome Effect.”17 To restore these weakened
teeth, reconstruction of lost tooth structure is performed using a
single material or a combination of available materials; a dowel
is placed to help retain the core, which is essential for crown
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retention.18 Subsequently, a prosthetic crown with an optimal
ferrule design is made to ensure the tooth’s resistance to frac-
ture.19-30 There are many causes of failure of endodontically
treated teeth, including root fracture, caries, dowel distortion,
and loss of retention of the dowel and/or crown.12,31-33 The
use of cast metal dowels and cores is advocated because they
are effective retaining artificial prostheses for teeth with large
coronal defects, and they have a well-established high success
not matched by nonmetallic systems34-36 as reported in retro-
spective studies over a long period of time. Fiber dowels with
composite cores are claimed as a better esthetic alternative be-
cause they have flexural strength almost equal to dentin,35,37

improving fracture resistance.29,38-43 Furthermore, the repair
of a failed fiber dowel and composite core can be easily
performed.44

A new method of fabricating custom-made, all-ceramic dow-
els and cores using CAD/CAM technology was described by
Awad and Marghalani.45 In the current study, an analysis was
completed to evaluate the effect of two dowel and core ma-
terials, CAD/CAM tetragonal zirconia poly-crystals (Cercon,
DeguDent, Hanau-Wolfgang, Germany), and gold, on stress
distribution in the following regions: crown, dowel, core, root,
and surrounding bone. The tooth was subjected to different
loading conditions using 3D finite element analysis (FEA).

Materials and methods
An extracted right maxillary canine was chosen for this study.
The tooth was endodontically treated and filled with gutta-
percha. Part of the gutta-percha was removed to allow for dowel
space. Dowel space was prepared using a number 3 Gates
Glidden drill (Dentsply, Addlestone, UK) and Peeso reamer
(Pulpdent, Watertown, MA) leaving 5-mm of gutta-percha in
the apical portion of the root as an apical seal. A large portion
of the coronal part of the crown was removed to simulate the
tooth loss to be replaced with the dowel and core. A pattern resin
(GC America, Alsip, IL) was made to form the custom-made
dowel and core. The tooth was prepared to receive a Cercon
all-ceramic crown with a 2-mm ferrule design included in the
preparation (Fig 1). The dowel and core were fabricated using
Awad and Marghalani’s method:45 the pattern was scanned and
milled into the presintered form using the Cercon machine and
sintered in the Cercon Heat oven; the dowel and core were
fitted into the maxillary canine. An impression was made for
the tooth preparation with the dowel and core in place, us-
ing polyvinyl siloxane (3M ESPE, St. Paul, MN) to fabricate
the master die. The crown was fabricated as all-ceramic using
a CAD/CAM machine (Cercon). The prepared maxillary ca-
nine, the finished crown, and the zirconia dowel were scanned
and modeled three-dimensionally. Bone was also modeled. The
outer surfaces of four regions were selected to be geometrically
identified and were scanned four times; the mold (representing
bone), the root, the dowel and core, and the crown (Fig 1).

The scanning accuracy was 0.5 mm. The resulting scans
were exported as CAD files and imported by FEA software
(ANSYS, Swanson Analysis Inc., Canonsburg, PA). Volumes
were generated from the imported surface areas. ANSYS was
manipulated to complete the tooth preparations not scanned by
the 3D scanner. To resemble biologic width, a cylindrical block

resembling surrounding bone and the marginal crest located
2 mm apical to the cementoenamel junction was also scanned.
The ANSYS file was expanded to include all needed data for
the FEA, including the periodontal ligament area, which was
taken as 300 μm, and the adhesive resin cement surrounding
the dowel and core, which was taken as 50 μm (Table 1).

A 100-N concentrated load was applied to the crown at the
mid-lingual area in three directions: axial (vertical), inclined
at a 45◦ angle, and horizontal. Resemblance of the regular
mastication load was achieved. Boundary conditions served as
supports located at the base of the bone cylinder. The analysis
was completed for the dowel and core two times: once run with
the zirconia material and then run with type II gold material.
In both cases, the crown material remained Cercon. The dis-
tribution of compressive, tensile, and von Mises stresses was
calculated in all regions.

Results
The distribution of principal stresses and Von Mises stresses
is illustrated in Figs 2–5. The values of the principal stresses
and Von Mises stresses are summarized in Table 2. The stress
distribution in the root was similar for both materials (gold
and zirconia). The stress distribution was in a more favorable
pattern than other systems.

The Von Mises stresses for the zirconia dowel and core
were 4.81% lower than that of the gold dowel and core (dif-
ference of 3.7 MPa). Regarding crown Von Mises stresses,
the zirconia dowel and core experienced 2.78% less stress
(difference of 4.9 MPa) than the gold dowel and core
(Fig 6).

In general, there were no differences in the maximum com-
pressive stresses of bone, periodontal ligaments, and root struc-
ture when the tooth was restored by either gold or zirconia
dowels and cores (Fig 7). The only difference in compressive
stresses between gold and zirconia was found within the dowel
and core, and crown. Similar results are observed in Figure 8 in
relation to the maximum tensile stresses. In general, there were
no significant differences in the maximum stresses in most re-
gions for both materials; the difference in the dowel and core
region was due to the difference in the modulus of elasticity
between the two materials.

Discussion
Three methods have been used to investigate the stress/strain in
tooth structure and dental appliances. Photoelasticity provides
good qualitative information in relation to the overall loca-
tion of stresses; however, only limited quantitative information
is obtained. Strain-gauge measurements provide accurate data
pertaining to strains only at the location of the gauge. FEA is
an analytically powerful tool that provides detailed quantita-
tive data at every location within a mathematical model that
simulates the mechanical behavior of the system. Thus, FEA
has become valuable in the assessment of various systems in
dentistry.

By definition, the present FEA gives an accurate solution for
the present model, which is an approximation of loaded en-
dodontically treated maxillary extracted canines restored with
dowel and cores made of two materials. Thus, the outcome
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Figure 1 (A) Dowel and core and tooth; (B and C) 3D image of scanned tooth and dowel.

solution is approximate, and the closer the model to the ana-
lyzed system, the closer the solution is to reality. To approach
the actual system, the present modeling invoked some assump-
tions that potentially influenced the accuracy of the results.
Modeling approximation was related to (1) detailed geometry
of the analyzed system, (2) boundary conditions, (3) mate-
rial properties, (4) loading conditions, (5) convergence, and
(6) validation.

Table 1 The moduli of elasticity and Poisson’s ratios used in the analysis

Periodontal
Material Gold Cercon Cement ligament Dentin Bone

Elastic
modulus E
(GPa)

100 210 2.6 0.0000689 18.6 3.7

Poisson’s
ratio (ν)

0.31 0.3 0.36 0.4 0.31 0.35

The present work qualitatively compares the effect of two
dowel and core materials. For such an objective, the present
3D FEA is efficient, provided that the analyzed system is sat-
isfactorily modeled. Standard treatments and procedures were
implemented to prepare the analyzed restored canine for 3D
scanning to identify the outer surfaces of the tooth with its
different regions with an accuracy of 0.5 mm. Bone level, pe-
riodontal ligament, and cement were taken into account in this
FEA study.

Periodontal ligament with a realistic 300 μm thickness46

was generated to surround the outer surface of the tooth root. In
the literature, the thickness with the closest strain values to the
experimental values were an isometric voxel size of 0.44 mm,47

which is close to the thickness chosen for this study based on
the average obtained from findings of the PDL thickness for
humans, ranging between 0.2 mm and 0.5 mm.46 Although
periodontal ligaments’ modulus of elasticity values in most of
the literature was taken as 6.89×102 GPa, the value used in this
study was 3 orders less than the one indicated in the literature,
as indicated by Ruse.48
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Figure 2 Root maximum tensile stress (MPa) (gold).

Figure 3 Root maximum Von Mises stress (MPa) (gold).

Journal of Prosthodontics 21 (2012) 440–450 c© 2012 by the American College of Prosthodontists 443



3D Finite Element Analysis of CAD/CAM Dowel and Core Marghalani et al

Figure 4 Root maximum tensile stress (MPa) (Cercon).

Figure 5 Root maximum Von Mises stress (MPa) (Cercon).
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Table 2 Maximum stress, Von Mises stress, and displacement of different components

Lateral
movement

(μm)
Maximum tensile
stresses (MPa)

Maximum compressive
stresses (MPa)

Maximum shear
stresses (MPa) Von Mises stresses (MPa)

Gold Cercon Gold Cercon Gold Cercon Gold Cercon Gold Cercon

Root 45.1 44.9 8.166 9.326 13.69 13.621 4.8235 4.8245 8.752 8.966
Crown 55.6 55.2 88.154 74.93 215.916 207.301 99.3165 96.837 176.485 171.576
Dowel and

core
53.9 53.4 23.213 19.809 91.494 96.132 43.3295 40.5255 76.78 73.083

Bone 34.3 34.3 4.87 4.827 9.279 9.237 3.0905 3.075 5.698 5.653
Periodontal

ligament
34.3 34.3 0.00002 0.00002 0.00004 0.00004 0.00002 0.00002 0.000038 0.000036

The model was further justified by surrounding the dowel
and core with a realistic 50-μm thick adhesive resin cement,
while in the literature, a reported cement film thickness as high
as 41.7 μm for Bis-GMA resin cement49 and above 25 μm for
more recent cements was used.50 Whether this difference in
film thickness will affect the FEA study results is not known
and could be a subject for future research. Leary et al speculated
that the cement layer would act as a stress breaker.51 Further,
they indicated that if there was any cement present at the apex
of the dowel, it might act as a detrimental effect to the cement
integrity due to tensile stresses.

The cylindrical bone block has been frequently used in the
analysis of similar problems.52-55 If the bone level support di-
minished, the stresses in dentin were found to increase dra-
matically and concentrate in the small amounts of remaining
dentin close to the apex.56 Zero displacement constraints were
placed on the bottom of the bone block. Such an assumption
has frequently been adopted in similar studies.53,57

The present work assumed homogeneous and isotropic lin-
ear elastic materials as reported in similar studies.52,53,55,58 In
reality, enamel and dentin are anisotropic structures containing
tubules and prisms. Although this anisotropy is at a microscopic
scale, the tooth is modeled at a macroscopic scale; therefore,
the isotropic consideration is a valid point.59

Material properties greatly influence the stress distribution in
the analyzed system. The modulus of elasticity and Poisson’s
ratio used in the present work for the material of each analyzed
region were extracted from documented sources.60-63

In the present analysis, the canine was subjected to a con-
centrated force with a reference magnitude of 100 N, which
was not guaranteed as an actual magnitude of the biting force
experienced by that tooth. Mastication involves repeated cyclic
impacts. Further, bite force studies indicated considerable vari-
ations from one area of the mouth to another and from one
individual to the next, and the variation may be related to many
factors such as muscle size, bone shape, sex, age, degree of
edentulism, and parafunction; however, the assumption of a
concentrated force with a certain magnitude is satisfactory to
achieve the comparison objective of the present elastic FEA.
The present analysis further recognized the importance of not
considering only axial forces and horizontal forces but also
combined oblique forces, since the latter represents more real-
istic mastication.57 The selection of the mid-lingual area as a

load application site is realistic for the canine.52-55 The mesh
of the analyzed system was consistently refined to the level of
obtaining a suitably converged analysis with a tolerance of less
than 1% in terms of elastic strain energy.

In this FEA study, a ferrule effect was designed in the tooth
preparation. Teeth with cast dowels and cores have fewer root
fractures and better fracture resistance if a sufficient ferrule ef-
fect is included in preparation design.19-30 Eraslan et al reported
that von Mises stresses were reduced when ferrule design was
included in the restoration of endodontically treated teeth.64 In
comparison, one FEA study showed that stresses accumulate
within the cast dowel system and that the transmission of stress
to supporting teeth and tissues is low, although no ferrule de-
sign was included in the FEA model.53 The current study shows
favorable stress distribution that can be attributed to the use of
the ferrule effect principle in the preparation design.

Yaman et al, in a 3D FEA, compared different combinations
of prefabricated dowel and core materials to cast gold dowels
and cores. They found that the cast dowels and cores yielded the
best results; they had lower stress values than the prefabricated
dowels and cores.65 The current study also demonstrates that the
new ceramic dowel and core have a similar stress distribution
to the cast gold dowel and core.

Esthetic dowels and cores are made to improve the esthetic
and optical qualities of overlying ceramic crowns. Most of
the alloys used for cast dowels and cores are often dark in
color, and they often produce dark shadows around the gingival
third of the ceramic crown and marginal gingiva covering the
root. These results can compromise the final esthetic outcome
of the crown. Using yellow alloys was suggested to give a
warm, yellowish hue of gold under the ceramic crown. This may
produce better esthetic outcomes.66-68 Custom-made zirconia
CAD/CAM dowels and cores offer an esthetic alternative to
the metallic dowel and core.45 The zirconia dowels and cores
have a white and ivory color that serves as a better background
for the translucent ceramic crowns, producing a better esthetic
outcome.

Cast gold dowel and cores have superior mechanical proper-
ties and are rich in yellow color and produce good esthetic re-
sults;66,68 however, they are expensive. Although prefabricated
dowels and composite cores are easier to apply and practical to
use, they have porous characteristics that cause the materials to
absorb water and expand.65,69,70 The composite cores also have
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Figure 6 Von Mises stresses (MPa).

Figure 7 Maximum compressive stresses (MPa).
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Figure 8 Maximum tensile stresses (MPa).

less structural durability. Prefabricated dowels do not take into
account the individual shape of the root canal, and their adap-
tation to the canal is not ideal.71 Dowel adaptation is important
for successful dowel and core systems.71-75 The new ceramic
dowel system offers better adaptation to the root canal.

The problem with having a flexible material such as a fiber
dowel and composite core is that it will flex to various degrees
when subjected to eccentric forces. A continued application
of force can lead to either debonding at the interface and/or
microleakage, resulting in recurrence of caries; the dowel and
core can also loosen and cause the restoration to fail. Loosening
of either carbon and glass fiber-reinforced epoxy resin dowels
have been reported in several studies,76-87 whereas dowel loos-
ening was not reported in several other studies.76,82,88-92

One of the problems of the zirconia dowel and core is its
retrievability in case of failure. The authors suggest the use
of a nonadhesive cement, like zinc phosphate cement, for two
reasons. One reason is that the bond of adhesive cements to
zirconia is an issue, and the other is that the use of zinc phos-
phate cement would allow the safe removal of the dowel using
ultrasonic instruments used to remove broken dowels.

Flaws in the dowel materials and the supporting tooth and
tissue structures were not considered in the FEA modeling. This
study helps to visualize and quantify stress distribution regard-
ing selected strain levels and directions without the influence
of other variables present in the biological materials.

Many studies using experimental and theoretical techniques
have focused on stress distribution.53,64,65,93-98 However, the
comparison of these studies is difficult due to the lack of load

value standardization. A thorough search in the literature con-
cluded that no relevant 3D FEA results on the present analyzed
system exist for comparison. The only data found were in sev-
eral studies95,99-101 in which other dowel and core systems were
investigated, and in one study a new composite dowel was in-
vestigated. Only one in vitro study compared a one-piece milled
zirconia dowel with cast gold dowel and core and showed no
significant difference between the two systems.102 Clinical val-
idation of the present numerical analysis is one of the objectives
of future research.

Conclusions
Within the limitations of the study it can be concluded that
there were no significant differences in the maximum stresses
in most of the regions for both models. Thus, the present work
validates the use of CAD/CAM zirconia material as a dowel
and core similar to gold.
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